Abstract

We combine diffraction and absorption tomography by raster scanning samples through a hollow cone of pseudo monochromatic X-rays with a mean energy of 58.4 keV. A single image intensifier takes 90x90 (x,y) snapshots during the scan. We demonstrate a proof-of-principle of our technique using a heterogeneous three-dimensional (x,y,z) phantom (90x90x170 mm3) comprised of different material phases, i.e., copper and sodium chlorate. Each snapshot enables the simultaneous measurement of absorption contrast and diffracted flux. The axial resolution was ~1 mm along the (x,y) orthogonal scan directions and ~7 mm along the z-axis. The tomosynthesis of diffracted flux measurements enable the calculation of d-spacing values with ~0.1 Å full width at half maximum (FWHM) at ~2 Å. Thus the identified materials may be color-coded in the absorption optical sections. Characterization of specific material phases is of particular interest in security screening for the identification of narcotics and a wide range of homemade explosives concealed within complex “everyday objects.” Other potential application areas include process control and biological imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sporadic absorption tomography using a conical shell X-ray beam

F. Elarnaut, J. P. O. Evans, D. Downes, A. J. Dicken, S. X. Godber, and K. D. Rogers
Opt. Express 25(26) 33029-33042 (2017)

X-ray absorption tomography employing a conical shell beam

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers
Opt. Express 24(25) 29048-29059 (2016)

Confocal energy-dispersive X-ray diffraction tomography employing a conical shell beam

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, F. Elarnaut, A. Shevchuk, D. Downes, and M. Wilson
Opt. Express 27(14) 19834-19841 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
    [Crossref] [PubMed]
  2. T. Gomi, H. Hirano, and T. Umeda, “Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction,” Comput. Med. Imaging Graph. 33(4), 267–274 (2009).
    [Crossref] [PubMed]
  3. C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage,” Nucl. Instrum. Methods Phys. Res. A 652(1), 108–111 (2011).
    [Crossref]
  4. G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
    [Crossref] [PubMed]
  5. A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
    [Crossref] [PubMed]
  6. K. Wells and D. A. Bradley, “A review of x-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
    [Crossref] [PubMed]
  7. G. Harding and A. Harding, “X-ray diffraction imaging for explosives detection,” in Counterterrorist Detection Techniques of Explosives, J. Yinon, ed. (Elsevier B.V., 2007), pp. 199–223.
  8. D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).
  9. Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
    [Crossref] [PubMed]
  10. A. H. Khan and R. A. Chaudhuri, “Fan-beam geometry based inversion algorithm in computed tomography (CT) for imaging of composite materials,” Compos. Struct. 110, 297–304 (2014).
    [Crossref]
  11. K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52(19), 4582–4589 (2013).
    [Crossref] [PubMed]
  12. J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39(1), 111–114 (2014).
    [Crossref] [PubMed]
  13. Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).
    [Crossref] [PubMed]
  14. J. A. Greenberg and D. J. Brady, “Structured illumination for compressive x-ray diffraction tomography,” Proc. SPIE 9020, 90200I (2014).
    [Crossref]
  15. M. Marshall and J. C. Oxley, Aspects of Explosives Detection (Elsevier B.V., 2009).
  16. J. P. O. Evans, “Kinetic depth effect X-ray (KDEX) imaging for security screening,” in International Conference on Visual Information Engineering (VIE, 2003), pp. 69–72.
    [Crossref]
  17. Z. Ying, R. Naidu, and C. R. Crawford, “Dual energy computed tomography for explosive detection,” J. XRay Sci. Technol. 14, 235–256 (2006).
  18. R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
    [Crossref] [PubMed]
  19. S. Michel, M. Mendes, and A. Schwaninger, “Can the difficulty level reached in computer-based training predict results in x-ray image interpretation tests?” in Proceedings of IEEE Conference on Security Technology (IEEE, 2010), pp. 148–154.
    [Crossref]
  20. R. Moss, C. Crews, M. Wilson, and R. Speller, “miniPixD: A compact sample analysis system which combines X-ray imaging and diffraction,” J. Instrum. 12(02), 1–16 (2017).
    [Crossref]
  21. J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
    [Crossref] [PubMed]
  22. P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
    [Crossref] [PubMed]
  23. A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
    [Crossref] [PubMed]
  24. K. Rogers and P. Evans, “X-ray diffraction and focal construct technology,” in X-Ray Diffraction Imaging: Technology and Applications, J. Greenberg, ed. (CRR Press, 2018).
  25. K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
    [Crossref]
  26. P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
    [Crossref]
  27. K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
    [Crossref]
  28. A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
    [Crossref] [PubMed]
  29. D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
    [Crossref] [PubMed]
  30. D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
    [Crossref]
  31. E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
    [Crossref] [PubMed]
  32. M. C. Green and L. D. Partain, “High throughput baggage scanning employing x-ray diffraction for accurate explosives detection,” Proc. SPIE 5048, 63–72 (2003).
  33. J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” in Proceedings of IEEE Conference on Audio, Speech and Language Processing (IEEE, 2008), pp. 757–765.
    [Crossref]
  34. A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
    [Crossref] [PubMed]
  35. N. Altman and M. Krzywinski, “Association, correlation and causation,” Nat. Methods 12(10), 899–900 (2015).
    [Crossref] [PubMed]
  36. M. Puth, M. Neuhauser, and G. D. Ruxton, “Effective use of Pearson’s product-moment correlation coefficient,” Anim. Behav. 93, 183–189 (2014).
    [Crossref]
  37. A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
    [Crossref] [PubMed]
  38. F. Elarnaut, J. P. O. Evans, D. Downes, A. J. Dicken, S. X. Godber, and K. D. Rogers, “Sporadic absorption tomography using a conical shell X-ray beam,” Opt. Express 25(26), 33029–33042 (2017).
    [Crossref]
  39. A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
    [Crossref] [PubMed]
  40. A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
    [Crossref] [PubMed]

2018 (2)

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[Crossref] [PubMed]

A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (4)

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

2015 (4)

N. Altman and M. Krzywinski, “Association, correlation and causation,” Nat. Methods 12(10), 899–900 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

2014 (7)

M. Puth, M. Neuhauser, and G. D. Ruxton, “Effective use of Pearson’s product-moment correlation coefficient,” Anim. Behav. 93, 183–189 (2014).
[Crossref]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

J. Greenberg, K. Krishnamurthy, and D. Brady, “Compressive single-pixel snapshot x-ray diffraction imaging,” Opt. Lett. 39(1), 111–114 (2014).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

Y. Kaganovsky, D. Li, A. Holmgren, H. Jeon, K. P. MacCabe, D. G. Politte, J. A. O’Sullivan, L. Carin, and D. J. Brady, “Compressed sampling strategies for tomography,” J. Opt. Soc. Am. A 31(7), 1369–1394 (2014).
[Crossref] [PubMed]

A. H. Khan and R. A. Chaudhuri, “Fan-beam geometry based inversion algorithm in computed tomography (CT) for imaging of composite materials,” Compos. Struct. 110, 297–304 (2014).
[Crossref]

J. A. Greenberg and D. J. Brady, “Structured illumination for compressive x-ray diffraction tomography,” Proc. SPIE 9020, 90200I (2014).
[Crossref]

2013 (2)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. P. MacCabe, A. D. Holmgren, M. P. Tornai, and D. J. Brady, “Snapshot 2D tomography via coded aperture x-ray scatter imaging,” Appl. Opt. 52(19), 4582–4589 (2013).
[Crossref] [PubMed]

2012 (4)

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

K. Wells and D. A. Bradley, “A review of x-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

2011 (1)

C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage,” Nucl. Instrum. Methods Phys. Res. A 652(1), 108–111 (2011).
[Crossref]

2010 (2)

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

2009 (1)

T. Gomi, H. Hirano, and T. Umeda, “Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction,” Comput. Med. Imaging Graph. 33(4), 267–274 (2009).
[Crossref] [PubMed]

2007 (1)

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

2006 (1)

Z. Ying, R. Naidu, and C. R. Crawford, “Dual energy computed tomography for explosive detection,” J. XRay Sci. Technol. 14, 235–256 (2006).

2003 (1)

M. C. Green and L. D. Partain, “High throughput baggage scanning employing x-ray diffraction for accurate explosives detection,” Proc. SPIE 5048, 63–72 (2003).

1896 (1)

W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
[Crossref] [PubMed]

Al-Hawary, M. M.

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

Altman, N.

N. Altman and M. Krzywinski, “Association, correlation and causation,” Nat. Methods 12(10), 899–900 (2015).
[Crossref] [PubMed]

Beale, A. M.

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

Benesty, J.

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” in Proceedings of IEEE Conference on Audio, Speech and Language Processing (IEEE, 2008), pp. 757–765.
[Crossref]

Betcke, M. M.

C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage,” Nucl. Instrum. Methods Phys. Res. A 652(1), 108–111 (2011).
[Crossref]

Bradley, D. A.

K. Wells and D. A. Bradley, “A review of x-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Brady, D.

Brady, D. J.

Caoili, E. M.

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

Carin, L.

Cernik, R. J.

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

Chan, J.

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Chana, D.

C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage,” Nucl. Instrum. Methods Phys. Res. A 652(1), 108–111 (2011).
[Crossref]

Chaudhuri, R. A.

A. H. Khan and R. A. Chaudhuri, “Fan-beam geometry based inversion algorithm in computed tomography (CT) for imaging of composite materials,” Compos. Struct. 110, 297–304 (2014).
[Crossref]

Chen, J.

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” in Proceedings of IEEE Conference on Audio, Speech and Language Processing (IEEE, 2008), pp. 757–765.
[Crossref]

Christodoulou, C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

Clement, J. G.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Cohan, R. H.

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

Cook, E.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Crawford, C. R.

Z. Ying, R. Naidu, and C. R. Crawford, “Dual energy computed tomography for explosive detection,” J. XRay Sci. Technol. 14, 235–256 (2006).

Crews, C.

R. Moss, C. Crews, M. Wilson, and R. Speller, “miniPixD: A compact sample analysis system which combines X-ray imaging and diffraction,” J. Instrum. 12(02), 1–16 (2017).
[Crossref]

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

Di Michiel, M.

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

Dicken, A.

A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
[Crossref] [PubMed]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Dicken, A. J.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
[Crossref] [PubMed]

F. Elarnaut, J. P. O. Evans, D. Downes, A. J. Dicken, S. X. Godber, and K. D. Rogers, “Sporadic absorption tomography using a conical shell X-ray beam,” Opt. Express 25(26), 33029–33042 (2017).
[Crossref]

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Downes, D.

Drakos, I.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

Elarnaut, F.

Evans, J. P. O.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
[Crossref] [PubMed]

F. Elarnaut, J. P. O. Evans, D. Downes, A. J. Dicken, S. X. Godber, and K. D. Rogers, “Sporadic absorption tomography using a conical shell X-ray beam,” Opt. Express 25(26), 33029–33042 (2017).
[Crossref]

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

J. P. O. Evans, “Kinetic depth effect X-ray (KDEX) imaging for security screening,” in International Conference on Visual Information Engineering (VIE, 2003), pp. 69–72.
[Crossref]

Evans, P.

A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
[Crossref] [PubMed]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Fleckenstein, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Fong, R.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Godber, S.

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

Godber, S. X.

F. Elarnaut, J. P. O. Evans, D. Downes, A. J. Dicken, S. X. Godber, and K. D. Rogers, “Sporadic absorption tomography using a conical shell X-ray beam,” Opt. Express 25(26), 33029–33042 (2017).
[Crossref]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
[Crossref] [PubMed]

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Gomi, T.

T. Gomi, H. Hirano, and T. Umeda, “Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction,” Comput. Med. Imaging Graph. 33(4), 267–274 (2009).
[Crossref] [PubMed]

Green, M. C.

M. C. Green and L. D. Partain, “High throughput baggage scanning employing x-ray diffraction for accurate explosives detection,” Proc. SPIE 5048, 63–72 (2003).

Greenberg, J.

Greenberg, J. A.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[Crossref] [PubMed]

J. A. Greenberg and D. J. Brady, “Structured illumination for compressive x-ray diffraction tomography,” Proc. SPIE 9020, 90200I (2014).
[Crossref]

Greenwood, C.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Harding, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Hirano, H.

T. Gomi, H. Hirano, and T. Umeda, “Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction,” Comput. Med. Imaging Graph. 33(4), 267–274 (2009).
[Crossref] [PubMed]

Holmgren, A.

Holmgren, A. D.

Horrocks, J.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Huang, Y.

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” in Proceedings of IEEE Conference on Audio, Speech and Language Processing (IEEE, 2008), pp. 757–765.
[Crossref]

Jacques, S. D. M.

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

Jeon, H.

Kaganovsky, Y.

Kapadia, A. J.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[Crossref] [PubMed]

Katsevich, A.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[Crossref] [PubMed]

Kaza, R. K.

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

Khan, A. H.

A. H. Khan and R. A. Chaudhuri, “Fan-beam geometry based inversion algorithm in computed tomography (CT) for imaging of composite materials,” Compos. Struct. 110, 297–304 (2014).
[Crossref]

Kosciesza, D.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Krishnamurthy, K.

Krzywinski, M.

N. Altman and M. Krzywinski, “Association, correlation and causation,” Nat. Methods 12(10), 899–900 (2015).
[Crossref] [PubMed]

Li, D.

Lyburn, I.

Lyburn, I. D.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

MacCabe, K. P.

Martin, R. M.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Mendes, M.

S. Michel, M. Mendes, and A. Schwaninger, “Can the difficulty level reached in computer-based training predict results in x-ray image interpretation tests?” in Proceedings of IEEE Conference on Security Technology (IEEE, 2010), pp. 148–154.
[Crossref]

Michel, S.

S. Michel, M. Mendes, and A. Schwaninger, “Can the difficulty level reached in computer-based training predict results in x-ray image interpretation tests?” in Proceedings of IEEE Conference on Security Technology (IEEE, 2010), pp. 148–154.
[Crossref]

Middelkoop, V.

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

Moss, R.

R. Moss, C. Crews, M. Wilson, and R. Speller, “miniPixD: A compact sample analysis system which combines X-ray imaging and diffraction,” J. Instrum. 12(02), 1–16 (2017).
[Crossref]

Naidu, R.

Z. Ying, R. Naidu, and C. R. Crawford, “Dual energy computed tomography for explosive detection,” J. XRay Sci. Technol. 14, 235–256 (2006).

Neuhauser, M.

M. Puth, M. Neuhauser, and G. D. Ruxton, “Effective use of Pearson’s product-moment correlation coefficient,” Anim. Behav. 93, 183–189 (2014).
[Crossref]

O’Flynn, D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

O’Sullivan, J. A.

Olesinski, S.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Pang, S.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[Crossref] [PubMed]

Partain, L. D.

M. C. Green and L. D. Partain, “High throughput baggage scanning employing x-ray diffraction for accurate explosives detection,” Proc. SPIE 5048, 63–72 (2003).

Platt, J. F.

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

Politte, D. G.

Prokopiou, D.

A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

Puth, M.

M. Puth, M. Neuhauser, and G. D. Ruxton, “Effective use of Pearson’s product-moment correlation coefficient,” Anim. Behav. 93, 183–189 (2014).
[Crossref]

Reid, C. B.

C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage,” Nucl. Instrum. Methods Phys. Res. A 652(1), 108–111 (2011).
[Crossref]

Rogers, J.

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Rogers, K.

A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
[Crossref] [PubMed]

A. Dicken, A. Shevchuk, K. Rogers, S. Godber, and P. Evans, “High energy transmission annular beam X-ray diffraction,” Opt. Express 23(5), 6304–6312 (2015).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

P. Evans, K. Rogers, A. Dicken, S. Godber, and D. Prokopiou, “X-ray diffraction tomography employing an annular beam,” Opt. Express 22(10), 11930–11944 (2014).
[Crossref] [PubMed]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

Rogers, K. D.

F. Elarnaut, J. P. O. Evans, D. Downes, A. J. Dicken, S. X. Godber, and K. D. Rogers, “Sporadic absorption tomography using a conical shell X-ray beam,” Opt. Express 25(26), 33029–33042 (2017).
[Crossref]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
[Crossref] [PubMed]

J. P. O. Evans, S. X. Godber, F. Elarnaut, D. Downes, A. J. Dicken, and K. D. Rogers, “X-ray absorption tomography employing a conical shell beam,” Opt. Express 24(25), 29048–29059 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Röntgen, W. C.

W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
[Crossref] [PubMed]

Ruxton, G. D.

M. Puth, M. Neuhauser, and G. D. Ruxton, “Effective use of Pearson’s product-moment correlation coefficient,” Anim. Behav. 93, 183–189 (2014).
[Crossref]

Schwaninger, A.

S. Michel, M. Mendes, and A. Schwaninger, “Can the difficulty level reached in computer-based training predict results in x-ray image interpretation tests?” in Proceedings of IEEE Conference on Security Technology (IEEE, 2010), pp. 148–154.
[Crossref]

Seller, P.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

Senecal, P.

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

Shackel, J.

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

Shevchuk, A.

Speller, R.

R. Moss, C. Crews, M. Wilson, and R. Speller, “miniPixD: A compact sample analysis system which combines X-ray imaging and diffraction,” J. Instrum. 12(02), 1–16 (2017).
[Crossref]

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Speller, R. D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage,” Nucl. Instrum. Methods Phys. Res. A 652(1), 108–111 (2011).
[Crossref]

Spence, D.

A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
[Crossref] [PubMed]

Stone, N.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Strecker, H.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Theedt, T.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Tornai, M. P.

Umeda, T.

T. Gomi, H. Hirano, and T. Umeda, “Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction,” Comput. Med. Imaging Graph. 33(4), 267–274 (2009).
[Crossref] [PubMed]

Vamvakeros, A.

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

Veale, M. C.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

Wasnik, A.

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

Wells, K.

K. Wells and D. A. Bradley, “A review of x-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Wilkinson, D.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

Wilson, M.

R. Moss, C. Crews, M. Wilson, and R. Speller, “miniPixD: A compact sample analysis system which combines X-ray imaging and diffraction,” J. Instrum. 12(02), 1–16 (2017).
[Crossref]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, D. Prokopiou, S. X. Godber, and M. Wilson, “Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam,” Opt. Express 25(18), 21321–21328 (2017).
[Crossref] [PubMed]

Wilson, M. D.

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

Ying, Z.

Z. Ying, R. Naidu, and C. R. Crawford, “Dual energy computed tomography for explosive detection,” J. XRay Sci. Technol. 14, 235–256 (2006).

Zhu, Z.

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[Crossref] [PubMed]

Zienert, G.

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

Zioupos, P.

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

A. J. Dicken, J. P. O. Evans, K. D. Rogers, C. Greenwood, S. X. Godber, D. Prokopiou, N. Stone, J. G. Clement, I. Lyburn, R. M. Martin, and P. Zioupos, “Energy-dispersive X-ray diffraction using an annular beam,” Opt. Express 23(10), 13443–13454 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. Dicken, D. Spence, K. Rogers, D. Prokopiou, and P. Evans, “Dual conical shell illumination for volumetric high-energy X-ray diffraction imaging,” Analyst (Lond.) 143(20), 4849–4853 (2018).
[Crossref] [PubMed]

Anim. Behav. (1)

M. Puth, M. Neuhauser, and G. D. Ruxton, “Effective use of Pearson’s product-moment correlation coefficient,” Anim. Behav. 93, 183–189 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Evans, K. Rogers, J. Chan, J. Rogers, and A. Dicken, “High intensity x-ray diffraction in transmission mode employing an analog of Poisson’s spot,” Appl. Phys. Lett. 97(20), 204101 (2010).
[Crossref]

Appl. Radiat. Isot. (4)

D. Prokopiou, K. Rogers, P. Evans, S. Godber, and A. Dicken, “Discrimination of liquids by a focal construct X-ray diffraction geometry,” Appl. Radiat. Isot. 77, 160–165 (2013).
[Crossref] [PubMed]

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref] [PubMed]

G. Harding, H. Fleckenstein, D. Kosciesza, S. Olesinski, H. Strecker, T. Theedt, and G. Zienert, “X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening,” Appl. Radiat. Isot. 70(7), 1228–1237 (2012).
[Crossref] [PubMed]

K. Wells and D. A. Bradley, “A review of x-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref] [PubMed]

Compos. Struct. (1)

A. H. Khan and R. A. Chaudhuri, “Fan-beam geometry based inversion algorithm in computed tomography (CT) for imaging of composite materials,” Compos. Struct. 110, 297–304 (2014).
[Crossref]

Comput. Med. Imaging Graph. (1)

T. Gomi, H. Hirano, and T. Umeda, “Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction,” Comput. Med. Imaging Graph. 33(4), 267–274 (2009).
[Crossref] [PubMed]

J. Appl. Cryst. (2)

A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal, V. Middelkoop, R. J. Cernik, and A. M. Beale, “Interlaced X-ray diffraction computed tomography,” J. Appl. Cryst. 49, 485–496 (2016).
[Crossref] [PubMed]

K. Rogers, P. Evans, J. Rogers, J. Chan, and A. Dicken, “Focal construct geometry – a novel approach to the acquisition of diffraction data,” J. Appl. Cryst. 43(2), 264–268 (2010).
[Crossref]

J. Instrum. (1)

R. Moss, C. Crews, M. Wilson, and R. Speller, “miniPixD: A compact sample analysis system which combines X-ray imaging and diffraction,” J. Instrum. 12(02), 1–16 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

D. O’Flynn, C. Crews, I. Drakos, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, and R. D. Speller, “Materials identification using a small-scale pixelated x-ray diffraction system,” J. Phys. D Appl. Phys. 49(17), 1–10 (2016).

J. XRay Sci. Technol. (1)

Z. Ying, R. Naidu, and C. R. Crawford, “Dual energy computed tomography for explosive detection,” J. XRay Sci. Technol. 14, 235–256 (2006).

Nat. Methods (1)

N. Altman and M. Krzywinski, “Association, correlation and causation,” Nat. Methods 12(10), 899–900 (2015).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (3)

K. Rogers, P. Evans, D. Prokopiou, A. Dicken, S. Godber, and J. Rogers, “Fundamental parameters approach applied to focal construct geometry for x-ray diffraction,” Nucl. Instrum. Methods Phys. Res. A 690, 1–6 (2012).
[Crossref]

D. Prokopiou, K. Rogers, P. Evans, S. Godber, J. Shackel, and A. Dicken, “X-ray diffraction with novel geometry,” Nucl. Instrum. Methods Phys. Res. A 735, 341–348 (2014).
[Crossref]

C. B. Reid, M. M. Betcke, D. Chana, and R. D. Speller, “The development of a pseudo-3D imaging system (tomosynthesis) for security screening of passenger baggage,” Nucl. Instrum. Methods Phys. Res. A 652(1), 108–111 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, D. Prokopiou, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “X-ray diffraction from bone employing annular and semi-annular beams,” Phys. Med. Biol. 60(15), 5803–5812 (2015).
[Crossref] [PubMed]

Proc. SPIE (2)

M. C. Green and L. D. Partain, “High throughput baggage scanning employing x-ray diffraction for accurate explosives detection,” Proc. SPIE 5048, 63–72 (2003).

J. A. Greenberg and D. J. Brady, “Structured illumination for compressive x-ray diffraction tomography,” Proc. SPIE 9020, 90200I (2014).
[Crossref]

Radiographics (1)

R. K. Kaza, J. F. Platt, R. H. Cohan, E. M. Caoili, M. M. Al-Hawary, and A. Wasnik, “Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract,” Radiographics 32(2), 353–369 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

A. J. Dicken, J. P. O. Evans, K. D. Rogers, N. Stone, C. Greenwood, S. X. Godber, J. G. Clement, I. D. Lyburn, R. M. Martin, and P. Zioupos, “Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter,” Sci. Rep. 6(1), 29011 (2016).
[Crossref] [PubMed]

Z. Zhu, A. Katsevich, A. J. Kapadia, J. A. Greenberg, and S. Pang, “X-ray diffraction tomography with limited projection information,” Sci. Rep. 8(1), 522 (2018).
[Crossref] [PubMed]

Science (1)

W. C. Röntgen, “On a new kind of rays,” Science 3(59), 227–231 (1896).
[Crossref] [PubMed]

Other (6)

M. Marshall and J. C. Oxley, Aspects of Explosives Detection (Elsevier B.V., 2009).

J. P. O. Evans, “Kinetic depth effect X-ray (KDEX) imaging for security screening,” in International Conference on Visual Information Engineering (VIE, 2003), pp. 69–72.
[Crossref]

G. Harding and A. Harding, “X-ray diffraction imaging for explosives detection,” in Counterterrorist Detection Techniques of Explosives, J. Yinon, ed. (Elsevier B.V., 2007), pp. 199–223.

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” in Proceedings of IEEE Conference on Audio, Speech and Language Processing (IEEE, 2008), pp. 757–765.
[Crossref]

S. Michel, M. Mendes, and A. Schwaninger, “Can the difficulty level reached in computer-based training predict results in x-ray image interpretation tests?” in Proceedings of IEEE Conference on Security Technology (IEEE, 2010), pp. 148–154.
[Crossref]

K. Rogers and P. Evans, “X-ray diffraction and focal construct technology,” in X-Ray Diffraction Imaging: Technology and Applications, J. Greenberg, ed. (CRR Press, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A conical shell X-ray beam with a beam half-opening angle ϕ~3.92° produces a circular footprint upon a planar detection surface at a distance L from the X-ray focus. A Debye cone originating along a specimen path at distance z from the X-ray focus contributes to the formation of a caustic in the diffracted flux. (b) Raster scanning a phantom through the shell beam is geometrically equivalent to scanning the beam through a stationary phantom. The relative (x,y) position of a sequence of snapshots forms a coplanar grid of X-ray focus positions. The axial focal plane positions of the reconstructed optical sections or z-slices are parallel with the X-ray focus plane and the detector plane.
Fig. 2
Fig. 2 (a) Photograph of the FCG experiment setup with the system components highlighted. (b) Plan view graphic of the phantom showing the outline of the raster scanned region providing a 90x90x170 mm3 inspection volume (via the projection of the of X-ray focus positions). (c) Side-view graphic showing relative positions of the two samples. Note that the oblique (parallel) X-ray views generated by our method do not exhibit a change in magnification as a function of range (z-axis) as illustrated by the ‘point projection’ graphics.
Fig. 3
Fig. 3 (A) Absorption contrast optical section through a copper disk at 164 mm along the z-axis (including the out-of-focus artifact from the sodium chlorate sample). (B) Spatially corresponding diffraction (single d-spacing) optical section for the (200) Bragg peak of copper at 1.82 Å and (C) the optical section for the (111) Bragg peak at 2.08 Å. The 1D-diffraction profile for the material is shown in (D) where the Bragg peaks, b’ and c’ refer to the uppercase labeled optical sections, respectively. From the above it was estimated that the FWHM for b’ and c’ is 0.1Å and 0.08Å, respectively.
Fig. 4
Fig. 4 (A) Absorption optical section through a sodium chlorate sample at 313 mm along the z-axis (including the out-of-focus artifact from the copper sample). (B) Spatially corresponding diffraction optical section (single d-spacing) for a the (221) Bragg peak for sodium chlorate at 2.18 Å and (C) showing the optical section for the (210) Bragg peak at 2.95 Å. The 1D-diffraction profile for the material is shown in (D) where the Bragg peaks, b’ and c’ refer to the uppercase labeled optical sections, respectively.
Fig. 5
Fig. 5 (a) PCC heat map of a match result per pixel for the diffraction optical sections through a copper disk (164 mm along the z-axis). (b) Absorption optical section of a copper sample color-coded (green) via analysis of the diffraction optical sections. (c) PCC heat map of a match result per pixel for the diffraction optical sections through the sodium chlorate sample (313 mm along the z-axis). (d) Absorption optical section of the sodium chlorate sample color-coded (red) via analysis of the diffraction optical sections.

Tables (1)

Tables Icon

Table 1 Details of the sample materials used in the phantom.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d= λ 2sin( 1 2 { ϕ+ tan 1 [ ( R±r Lz )tanϕ ] } )

Metrics