Abstract

Ultrathin metasurface provides a completely new path to realize cloaking devices on account of their fascinating ability to control electromagnetic wave. However, the conventional cloaking devices are limited by their narrow bandwidth. To overcome this challenge, we present the realization of ultrabroadband and wide angle metasurface cloaking through high refractive index dielectric layer and antireflective “moth-eye-like” microstructure in this work. Two options are proposed and demonstrated numerically in terahertz region. By using local phase compensation, the proposed carpet cloaks can suppress significantly the unexpected scattering and reconstruct wavefront. The cloaking effects of the proposed design are verified from 0.65THz to 0.9THz with a wide range of angles. Moreover, the proposed metasurface cloaking is probable to extend to the optical and microwave domains and can be applied in stealth, illusion optic, radar and antenna systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrathin metasurface-based carpet cloak for terahertz wave

Minggui Wei, Quanlong Yang, Xueqian Zhang, Yanfeng Li, Jianqiang Gu, Jiaguang Han, and Weili Zhang
Opt. Express 25(14) 15635-15642 (2017)

Polarization-independent metasurface cloak for visible light

Huan Tao, Zhenyu Yang, Zhaokun Wang, and Ming Zhao
J. Opt. Soc. Am. B 33(11) 2251-2255 (2016)

Multi-frequency metasurface carpet cloaks

Chan Wang, Yihao Yang, Qianghu Liu, Dachuan Liang, Bin Zheng, Hongsheng Chen, Zhiwei Xu, and Huaping Wang
Opt. Express 26(11) 14123-14131 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref] [PubMed]
  2. J. Wang, “Metasurfaces enabling structured light manipulation: advances and perspectives,” Chin. Opt. Lett. 16(5), 050006 (2018).
    [Crossref]
  3. Q. Zhan and Q. Gan, “Editorial for special issue on advances in metasurface,” Chin. Opt. Lett. 16(5), 050001 (2018).
    [Crossref]
  4. D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
    [Crossref]
  5. O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
    [Crossref]
  6. J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
    [Crossref]
  7. W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
    [Crossref]
  8. X. Chen, J. Gao, and B. Kang, “Experimental realization of a switchable filter based on a dynamically transformable array,” Chin. Opt. Lett. 16(8), 081202 (2018).
    [Crossref]
  9. V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  11. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  12. E. Ozbay, Z. Li, and K. Aydin, “Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index,” J. Phys. Condens. Matter 20(30), 3304–3310 (2008).
    [Crossref]
  13. N. Kundtz, D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith, “Optical source transformations,” Opt. Express 16(26), 21215–21222 (2008).
    [Crossref] [PubMed]
  14. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  15. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  16. X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
    [Crossref]
  17. N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
    [Crossref] [PubMed]
  18. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  19. B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
    [Crossref] [PubMed]
  20. L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [Crossref]
  21. S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, “Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers,” High Power Laser Sci. Eng. 6(4), e62 (2018).
    [Crossref]
  22. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [Crossref] [PubMed]
  23. A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245115 (2009).
    [Crossref]
  24. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  25. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
    [Crossref] [PubMed]
  26. P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
    [Crossref]
  27. D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE T. Microw. Theory. 54(6), 2516–2526 (2006).
    [Crossref]
  28. A. Rajput and K. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Trans. Antenn. Propag. 16, 2848–2851 (2017).
    [Crossref]
  29. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  30. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [Crossref] [PubMed]
  31. X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
    [Crossref] [PubMed]
  32. B. Orazbayev, N. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195444 (2015).
    [Crossref]
  33. K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6(4), e59 (2018).
    [Crossref]
  34. N. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Trans. Antenn. Propag. 13, 1775–1778 (2014).
    [Crossref]
  35. J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
    [Crossref]
  36. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
    [Crossref] [PubMed]
  37. M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
    [Crossref] [PubMed]
  38. L. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
    [Crossref]
  39. B. Orazbayev, N. Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
    [Crossref]
  40. S. Diedenhofen, R. Algra, E. Bakkers, and J. Gómez Rivas, “Mimicking moth’s eyes for photovoltaic applications with tapered GaP nanorods,” Proceedings of SPIE-The International Society for Optical Engineering 7772, 77720M (2010).
    [Crossref]
  41. L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
    [Crossref]
  42. Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
    [Crossref]
  43. Y. Ryu and K. Kim, “Fabrication of antireflective hierarchical TiO2 nanostructures by moth-eye patterning of anodic anodized nanotubes,” Opt. Express 26(24), 31490–31499 (2018).
    [Crossref] [PubMed]
  44. M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
    [Crossref]
  45. C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
    [Crossref]
  46. C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
    [Crossref]
  47. M. Chen, H. C. Chang, A. S. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
    [Crossref] [PubMed]
  48. C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
    [Crossref]
  49. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
    [Crossref] [PubMed]
  50. G. Lee, C. Choi, D. Kim, and Y. Song, “Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses,” Adv. Funct. Mater. 28(24), 1705202 (2018).
    [Crossref]

2018 (10)

S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, “Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers,” High Power Laser Sci. Eng. 6(4), e62 (2018).
[Crossref]

K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6(4), e59 (2018).
[Crossref]

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

G. Lee, C. Choi, D. Kim, and Y. Song, “Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses,” Adv. Funct. Mater. 28(24), 1705202 (2018).
[Crossref]

J. Wang, “Metasurfaces enabling structured light manipulation: advances and perspectives,” Chin. Opt. Lett. 16(5), 050006 (2018).
[Crossref]

Q. Zhan and Q. Gan, “Editorial for special issue on advances in metasurface,” Chin. Opt. Lett. 16(5), 050001 (2018).
[Crossref]

X. Chen, J. Gao, and B. Kang, “Experimental realization of a switchable filter based on a dynamically transformable array,” Chin. Opt. Lett. 16(8), 081202 (2018).
[Crossref]

Y. Ryu and K. Kim, “Fabrication of antireflective hierarchical TiO2 nanostructures by moth-eye patterning of anodic anodized nanotubes,” Opt. Express 26(24), 31490–31499 (2018).
[Crossref] [PubMed]

2017 (5)

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

B. Orazbayev, N. Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
[Crossref]

A. Rajput and K. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Trans. Antenn. Propag. 16, 2848–2851 (2017).
[Crossref]

2016 (4)

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

2015 (3)

L. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

B. Orazbayev, N. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195444 (2015).
[Crossref]

2014 (1)

N. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Trans. Antenn. Propag. 13, 1775–1778 (2014).
[Crossref]

2013 (4)

J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

2012 (1)

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

2011 (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

2010 (5)

S. Diedenhofen, R. Algra, E. Bakkers, and J. Gómez Rivas, “Mimicking moth’s eyes for photovoltaic applications with tapered GaP nanorods,” Proceedings of SPIE-The International Society for Optical Engineering 7772, 77720M (2010).
[Crossref]

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010).
[Crossref] [PubMed]

2009 (5)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245115 (2009).
[Crossref]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

2008 (3)

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[Crossref] [PubMed]

N. Kundtz, D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith, “Optical source transformations,” Opt. Express 16(26), 21215–21222 (2008).
[Crossref] [PubMed]

E. Ozbay, Z. Li, and K. Aydin, “Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index,” J. Phys. Condens. Matter 20(30), 3304–3310 (2008).
[Crossref]

2007 (3)

M. Chen, H. C. Chang, A. S. Chang, S. Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46(26), 6533–6538 (2007).
[Crossref] [PubMed]

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2006 (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE T. Microw. Theory. 54(6), 2516–2526 (2006).
[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Afshinmanesh, F.

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

Algra, R.

S. Diedenhofen, R. Algra, E. Bakkers, and J. Gómez Rivas, “Mimicking moth’s eyes for photovoltaic applications with tapered GaP nanorods,” Proceedings of SPIE-The International Society for Optical Engineering 7772, 77720M (2010).
[Crossref]

Allen, J.

Alù, A.

B. Orazbayev, N. Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195444 (2015).
[Crossref]

N. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Trans. Antenn. Propag. 13, 1775–1778 (2014).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245115 (2009).
[Crossref]

Aydin, K.

E. Ozbay, Z. Li, and K. Aydin, “Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index,” J. Phys. Condens. Matter 20(30), 3304–3310 (2008).
[Crossref]

Bakkers, E.

S. Diedenhofen, R. Algra, E. Bakkers, and J. Gómez Rivas, “Mimicking moth’s eyes for photovoltaic applications with tapered GaP nanorods,” Proceedings of SPIE-The International Society for Optical Engineering 7772, 77720M (2010).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Beruete, M.

B. Orazbayev, N. Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195444 (2015).
[Crossref]

Botton, M.

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Brongersma, M.

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

Cai, W.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cao, L.

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

Cardenas, J.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Cech, M.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

Chang, A. S.

Chang, H. C.

Chen, H.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Chen, M.

Chen, X.

Chettiar, U.

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Choi, C.

G. Lee, C. Choi, D. Kim, and Y. Song, “Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses,” Adv. Funct. Mater. 28(24), 1705202 (2018).
[Crossref]

Choi, H. J.

Cui, T. J.

J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Cummer, S.

Cummer, S. A.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dai, J.

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

David, S.

S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, “Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers,” High Power Laser Sci. Eng. 6(4), e62 (2018).
[Crossref]

Deng, D.

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Deslandes, D.

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE T. Microw. Theory. 54(6), 2516–2526 (2006).
[Crossref]

Diedenhofen, S.

S. Diedenhofen, R. Algra, E. Bakkers, and J. Gómez Rivas, “Mimicking moth’s eyes for photovoltaic applications with tapered GaP nanorods,” Proceedings of SPIE-The International Society for Optical Engineering 7772, 77720M (2010).
[Crossref]

Dong, Q.

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Engheta, N.

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Estakhri, N.

B. Orazbayev, N. Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195444 (2015).
[Crossref]

N. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Trans. Antenn. Propag. 13, 1775–1778 (2014).
[Crossref]

Falk, K.

K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6(4), e59 (2018).
[Crossref]

Fan, P.

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

Feng, Q.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Ferber, Y.

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

Furuse, H.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

Gabrielli, L.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Gan, Q.

Gao, J.

Gómez Rivas, J.

S. Diedenhofen, R. Algra, E. Bakkers, and J. Gómez Rivas, “Mimicking moth’s eyes for photovoltaic applications with tapered GaP nanorods,” Proceedings of SPIE-The International Society for Optical Engineering 7772, 77720M (2010).
[Crossref]

Gu, J.

Han, J.

Hao, R.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

Henis, Z.

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

Hong, M.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Hsu, L.

L. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Hu, Y.

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

Hua, Y.

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Hutchinson, S.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

Jambunathan, V.

S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, “Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers,” High Power Laser Sci. Eng. 6(4), e62 (2018).
[Crossref]

Jian, D.

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

Jiang, Q.

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Jin, S.

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

Jing, L.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Jing, X.

W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
[Crossref]

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

Jun, H.

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, B.

Kante, B.

L. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Kildishev, A.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, D.

G. Lee, C. Choi, D. Kim, and Y. Song, “Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses,” Adv. Funct. Mater. 28(24), 1705202 (2018).
[Crossref]

Kim, K.

Kundtz, N.

Landy, N.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

Lee, C.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Lee, G.

G. Lee, C. Choi, D. Kim, and Y. Song, “Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses,” Adv. Funct. Mater. 28(24), 1705202 (2018).
[Crossref]

Lee, Y. T.

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Lepetit, T.

L. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

Li, C.

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Li, E.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Li, Y.

W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
[Crossref]

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Li, Z.

E. Ozbay, Z. Li, and K. Aydin, “Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index,” J. Phys. Condens. Matter 20(30), 3304–3310 (2008).
[Crossref]

Liang, P.

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

Lin, S. Y.

Lipson, M.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Liu, X.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Lucianetti, A.

S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, “Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers,” High Power Laser Sci. Eng. 6(4), e62 (2018).
[Crossref]

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

Luo, X.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Ma, H.

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Ma, Y.

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

Madni, H. A.

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

Manjappa, M.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Mocek, T.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, “Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers,” High Power Laser Sci. Eng. 6(4), e62 (2018).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mrejen, M.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Ng, B.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Ni, X.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Orazbayev, B.

B. Orazbayev, N. Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

B. Orazbayev, N. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195444 (2015).
[Crossref]

Ozbay, E.

E. Ozbay, Z. Li, and K. Aydin, “Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index,” J. Phys. Condens. Matter 20(30), 3304–3310 (2008).
[Crossref]

Papeer, J.

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pitchappa, P.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Poitras, C.

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Rahm, M.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[Crossref] [PubMed]

Rajput, A.

A. Rajput and K. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Trans. Antenn. Propag. 16, 2848–2851 (2017).
[Crossref]

Roberts, D. A.

Ryu, Y.

Schleifer, E.

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

Schubert, E. F.

Schurig, D.

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shalaev, V.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shavit, O.

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

Shi, G.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

Singh, R.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Slezak, O.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

Smith, D. R.

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[Crossref] [PubMed]

N. Kundtz, D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith, “Optical source transformations,” Opt. Express 16(26), 21215–21222 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Song, Y.

G. Lee, C. Choi, D. Kim, and Y. Song, “Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses,” Adv. Funct. Mater. 28(24), 1705202 (2018).
[Crossref]

Song, Y. M.

Soukoulis, C. M.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Srivastava, K.

A. Rajput and K. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Trans. Antenn. Propag. 16, 2848–2851 (2017).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Tian, Y.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
[Crossref]

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Vojna, D.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

Wang, J.

Wang, L.

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

Wang, N.

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Wang, W.

W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
[Crossref]

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

Wang, Y.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Wei, M.

Wong, Z. J.

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Wu, K.

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE T. Microw. Theory. 54(6), 2516–2526 (2006).
[Crossref]

Xi, J. Q.

Xu, S.

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Yang, F.

J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Yang, L.

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Yang, Q.

Yang, Y.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Yasuhara, R.

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

Yin, W.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Yu, H.

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

Yu, J. S.

Yu, L.

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhan, Q.

Zhang, J.

J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Zhang, W.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Zhang, X.

M. Wei, Q. Yang, X. Zhang, Y. Li, J. Gu, J. Han, and W. Zhang, “Ultrathin metasurface-based carpet cloak for terahertz wave,” Opt. Express 25(14), 15635–15642 (2017).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
[Crossref]

Zhao, S.

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

Zheng, B.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

Zhong, L.

J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Zhu, D.

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

Zigler, A.

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

Adv. Funct. Mater. (1)

G. Lee, C. Choi, D. Kim, and Y. Song, “Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses,” Adv. Funct. Mater. 28(24), 1705202 (2018).
[Crossref]

Adv. Mater. (1)

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-polarization 3D metasurface cloak with preserved amplitude and phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

B. Orazbayev, N. Estakhri, A. Alù, and M. Beruete, “Experimental demonstration of metasurface-based ultrathin carpet cloaks for millimeter waves,” Adv. Opt. Mater. 5(1), 1600606 (2017).
[Crossref]

M. Manjappa, P. Pitchappa, N. Wang, C. Lee, and R. Singh, “Active control of resonant cloaking in a terahertz MEMS metamaterial,” Adv. Opt. Mater. 6(16), 1800141 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

L. Yang, Q. Feng, B. Ng, X. Luo, and M. Hong, “Hybrid moth-eye structures for enhanced broadband Antireflection Characteristics,” Appl. Phys. Express 3(10), 102602 (2010).
[Crossref]

Appl. Phys. Lett. (1)

J. Zhang, L. Zhong, W. Zhang, F. Yang, and T. J. Cui, “An ultrathin directional carpet cloak based on generalized Snell’s law,” Appl. Phys. Lett. 103(15), 151115 (2013).
[Crossref]

Ceram. Int. (1)

C. Li, D. Jian, H. Jun, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, and S. Xu, “Crystal structure, luminescent properties and white light emitting diode application of Ba3GdNa(PO4)(3)F:Eu2+ single-phase white light-emitting phosphor,” Ceram. Int. 42(6), 6891–6898 (2016).
[Crossref]

Chem. Soc. Rev. (1)

Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref] [PubMed]

Chin. Opt. Lett. (3)

High Power Laser Sci. Eng. (4)

D. Vojna, R. Yasuhara, H. Furuse, O. Slezak, S. Hutchinson, A. Lucianetti, T. Mocek, and M. Cech, “Faraday effect measurements of holmium oxide (Ho2O3) ceramics-based magneto-optical materials,” High Power Laser Sci. Eng. 6(1), e2 (2018).
[Crossref]

O. Shavit, Y. Ferber, J. Papeer, E. Schleifer, M. Botton, A. Zigler, and Z. Henis, “Femtosecond laser-induced damage threshold in snow micro-structured targets,” High Power Laser Sci. Eng. 6(1), e7 (2018).
[Crossref]

K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng. 6(4), e59 (2018).
[Crossref]

S. David, V. Jambunathan, A. Lucianetti, and T. Mocek, “Overview of ytterbium based transparent ceramics for diode pumped high energy solid-state lasers,” High Power Laser Sci. Eng. 6(4), e62 (2018).
[Crossref]

IEEE T. Microw. Theory. (1)

D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE T. Microw. Theory. 54(6), 2516–2526 (2006).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

A. Rajput and K. Srivastava, “Dual-band cloak using microstrip patch with embedded u-shaped slot,” IEEE Trans. Antenn. Propag. 16, 2848–2851 (2017).
[Crossref]

N. Estakhri and A. Alù, “Ultra-thin unidirectional carpet cloak and wavefront reconstruction with graded metasurfaces,” IEEE Trans. Antenn. Propag. 13, 1775–1778 (2014).
[Crossref]

J. Lumin. (1)

C. Li, H. Chen, Y. Hua, L. Yu, Q. Jiang, D. Deng, S. Zhao, H. Ma, and S. Xu, “Enhanced luminescence of Ba3Si6O9N4:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions,” J. Lumin. 143, 459–462 (2013).
[Crossref]

J. Phys. Condens. Matter (1)

E. Ozbay, Z. Li, and K. Aydin, “Super-resolution imaging by one-dimensional, microwave left-handed metamaterials with an effective negative index,” J. Phys. Condens. Matter 20(30), 3304–3310 (2008).
[Crossref]

Light Sci. Appl. (1)

B. Zheng, H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen, “Concealing arbitrary objects remotely with multi-folded transformation optics,” Light Sci. Appl. 5(12), e16177 (2016).
[Crossref] [PubMed]

Nano Today (1)

Y. Li, J. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[Crossref]

Nat. Mater. (2)

N. Landy and D. R. Smith, “A full-parameter unidirectional metamaterial cloak for microwaves,” Nat. Mater. 12(1), 25–28 (2013).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Nat. Photonics (4)

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

V. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

P. Fan, U. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics 6(6), 380–385 (2012).
[Crossref]

Opt. Appl. (1)

W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, “Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure,” Opt. Appl. 47(2), 183–198 (2017).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (2)

X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, “Analysis of the sinusoidal nanopatterning grating structure,” Opt. Laser Technol. 48(6), 160–166 (2013).
[Crossref]

J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, “Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region,” Opt. Laser Technol. 95(1), 56–62 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

A. Alù, “Mantle cloak: Invisibility induced by a surface,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245115 (2009).
[Crossref]

B. Orazbayev, N. Estakhri, M. Beruete, and A. Alù, “Terahertz carpet cloak based on a ring resonator metasurface,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195444 (2015).
[Crossref]

Phys. Rev. Lett. (4)

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100(6), 063903 (2008).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Proceedings of SPIE-The International Society for Optical Engineering (1)

S. Diedenhofen, R. Algra, E. Bakkers, and J. Gómez Rivas, “Mimicking moth’s eyes for photovoltaic applications with tapered GaP nanorods,” Proceedings of SPIE-The International Society for Optical Engineering 7772, 77720M (2010).
[Crossref]

Prog. Electromagnetics Res. (1)

L. Hsu, T. Lepetit, and B. Kante, “Extremely thin dielectric metasurface for carpet cloaking,” Prog. Electromagnetics Res. 152, 33–40 (2015).
[Crossref]

RSC Advances (1)

C. Li, J. Dai, H. Yu, D. Deng, H. Jun, L. Wang, Y. Hu, and S. Xu, “Luminescence properties of single-phase color-tunable Li4SrCa(Si2O4N8/3):Eu2+ phosphor for white light-emitting diodes,” RSC Advances 6(45), 38731–38740 (2016).
[Crossref]

Science (5)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[Crossref] [PubMed]

X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility skin cloak for visible light,” Science 349(6254), 1310–1314 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The transmission performance of moth-eye-like structure. a) Calculated transmittance of the moth-eye-like from 0.6 THz to 0.9THz; b) The internal electric field distribution of the moth-eye-like structure in the case of incident light at different angles.
Fig. 2
Fig. 2 Schematic view of the metasurface cloak and structure models of three unit cell. a) 3D view of the metasurface cloak composed of an array of rectangle patch. The number 1-6 represents six basic unit cell in each case; b-d) Detail of one unit cell for the typical metasurface, and the metasurface cloaking of case I with dielectric layer, and case II with broadband antireflective moth-eye-like microstructure, respectively. The parameters of three structures as follow: P = 138 μ m , d1 = 0.2 μ m , d2 = 25 μ m , d3 = 0.2 μ m , d4 = 40 μ m , e = 10 μ m , h = 46 μ m , r = 23 μ m .
Fig. 3
Fig. 3 a) Original reflection pattern when light is incident on a plane with an oblique angle; b) The angular response of reflection when adding a dielectric layer with high refractive index; c) The moth-eye-like can be divided into multiple dielectric layers when light is incident on a plane with an oblique angle; d) The working principle of the moth-eye-like microstructure.
Fig. 4
Fig. 4 a), b), c) Near-field distribution of ground plane, bare bump, cloaked bump, respectively, at 0.75 THz. d), e), f) Far-field intensity distribution corresponding to a),b),c), respectively. g), h), i) Far-field radiation pattern of ground plane, bare bump, cloaked bump at 0.65 THz-0.85 THz.
Fig. 5
Fig. 5 Scattering field of the wide angle response at 0.75THz. a), b), c)Electric field distribution of the typical cloaking, the metasurface cloak of case I, and case II, respectively, when incident wave at an angle of 55°. d) Far-field radiation pattern of the typical cloaking, the metasurface cloak of case I, and case II, respectively, when incident wave at an angle of 55°. e), f), g) Electric field distribution of the typical cloak, the metasurface cloaking of case I and case II at the incident angle of 60°. h) Far-field radiation pattern of the typical cloaking, the metasurface cloak of case I, and case II, respectively, when incident wave at an angle of 60°.
Fig. 6
Fig. 6 Simulation results of the bandwidth comparison. a), b), c) The near field distribution of the typical cloak, the metasurface cloak of case I, and case II, respectively, at 0.65THz. d) Far-field radiation pattern of the typical cloaking, the metasurface cloak of case I, and case II, respectively, when incident wave at an angle of 0.65THz. e), f), g) The near field distribution of the typical cloak, the metasurface cloaking of case I, and case II, respectively, at 0.9THz. h) Far-field radiation pattern of the typical cloaking, the metasurface cloak of case I, and case II, respectively, when incident wave at an angle of 0.9THz.
Fig. 7
Fig. 7 Far-field radiation pattern of typical, case I and case II at broadband range from 0.6THz to 0.9THz.

Tables (3)

Tables Icon

Table 1 The structural parameters, Phase responses of the unit cell of three options ((1), (2), (3) correspond to the typical metasurface, case I, and case II, respectively.)

Tables Icon

Table 2 Far-field radiation pattern of case II with different height of microstructure.

Tables Icon

Table 3 Far-field radiation pattern of case II with different diameter of microstructure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ = 180 ° 2 k 0 H cos θ ,

Metrics