Abstract

Compressive sensing (CS) has been used in LiDAR systems utilizing one single-photon-counting avalanche diode. We demonstrate an unexpected grayscale inversed image of an object at an unchosen depth, which appears in the reconstruction of the infrared single-pixel LiDAR system due to the pile-up effect. A correction algorithm and the sparse measurement are proposed and experimentally verified to effectively reduce the photon pile-up influence, so that the negative images can be completely removed. The correction methods in this research can improve the accuracy and the flexibility of the single-pixel LiDAR systems employing detectors with a low maximum light count.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photon counting compressive depth mapping

Gregory A. Howland, Daniel J. Lum, Matthew R. Ware, and John C. Howell
Opt. Express 21(20) 23822-23837 (2013)

Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation

Huidong Dai, Guohua Gu, Weiji He, Ling Ye, Tianyi Mao, and Qian Chen
Opt. Express 24(23) 26080-26096 (2016)

Frequency-modulated continuous-wave LiDAR compressive depth-mapping

Daniel J. Lum, Samuel H. Knarr, and John C. Howell
Opt. Express 26(12) 15420-15435 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Albota, “Three-dimensional imaging laser radars with geiger-mode avalange photodiode arrays,” Lincoln Lab. J. 13, 351–367 (2002).
  2. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791–2799 (2002).
    [Crossref] [PubMed]
  3. J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
    [Crossref]
  4. R. M. Marino and W. R. Davis, “Real-time 3D ladar imaging,” Lincoln Lab. J. 15, 23–35 (2005).
  5. R. M. Marino, T. Stephens, and R. E. Hatch, “A compact 3D imaging laser radar system using geiger-mode APD arrays: System and measurements,” Proc. SPIE 5086, 15 (2003).
  6. A. McIntosh, “Arrays of gieger-mode avalanche photodiodes for ladar and laser communications,” In Applications of Lasers for Sensing and Free Space Communications (Optical Society of America, 2010), p. LSWC1
    [Crossref]
  7. A. Lacaita, P. A. Francese, F. Zappa, and S. Cova, “Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes,” Appl. Opt. 33, 6902–6918 (1994).
    [Crossref] [PubMed]
  8. G. R. Osche and D. S. Young, “Imaging laser radar in the near and far infrared,” Proc IEEE,  84, 103–125 (1996).
    [Crossref]
  9. J. L. Guerrero-Rascado, Maria Joao Costa, D. Bortoli, AM. Silva, H. Lyamani, and L. Alados-Arboledas, “Infrared lidar overlap function: an experimental determination,” Opt. Express 18, 20350–20359 (2010).
    [Crossref] [PubMed]
  10. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [Crossref]
  11. L. Xue, C. Huang, and L. Hu, “3D laser imaging with high-precision laser ranging using SSPD array,” in 2017 International Conference on Information, Communication and Engineering (ICICE, 2017), pp. 393–395.
  12. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
    [Crossref]
  13. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
    [Crossref]
  14. E. J. Candes, “Compressive sampling,” Proceedings of the International Congress of Mathematicians, Madrid, Spain, 1–20 (2006).
  15. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [Crossref]
  16. G. A. Howland, P. B. Dixon, and J. C. Howell, “Photon-counting compressive sensing laser radar for 3D imaging,” Appl. Opt. 50, 5917–5920 (2011).
    [Crossref] [PubMed]
  17. G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express 21, 23822–23837 (2013).
    [Crossref] [PubMed]
  18. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref] [PubMed]
  19. M. P. Edgar, S. Johnson, D. Phillips, and M. J. Padgett, “Real-time computational photon-counting lidar,” Opt. Eng. 57, 031304 (2018).
  20. C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
    [Crossref]
  21. A. Kirmani, A. Colaco, F. N. C. Wong, and V. K. Goyal, “Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor,” Opt. Express 19, 21485–21507 (2011).
    [Crossref] [PubMed]
  22. M. H. Conde, “Compressive sensing for the photonic mixer device,” in “Compressive Sensing for the Photonic Mixer Device,” (Springer, 2017). 207–352.
    [Crossref]
  23. D. J. Lum, S. H. Knarr, and J. C. Howell, “Frequency-modulated continuous-wave lidar compressive depth-mapping,” Opt. Express 12, 15420–15435 (2018).
    [Crossref]
  24. J. G. Walker, “Iterative correction for ‘pile-up’ in single-photon lifetime measurement,” Opt. Commun. 15, 271–277 (2002).
    [Crossref]
  25. P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radiative lifetimes,” J. Phys. E: Sci. Instrum. 1, 878–879 (1968).
    [Crossref]
  26. M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
    [Crossref]
  27. Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
    [Crossref]
  28. M. L. Chen, E. R. Li, H. Wang, and S. S. Han, “Ghost imaging based on sparse array pseudothermal light system,” Acta Optica Sinica 32, 0503001 (2012).
    [Crossref]
  29. L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

2019 (1)

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

2018 (2)

D. J. Lum, S. H. Knarr, and J. C. Howell, “Frequency-modulated continuous-wave lidar compressive depth-mapping,” Opt. Express 12, 15420–15435 (2018).
[Crossref]

M. P. Edgar, S. Johnson, D. Phillips, and M. J. Padgett, “Real-time computational photon-counting lidar,” Opt. Eng. 57, 031304 (2018).

2016 (1)

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

2014 (1)

L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

2013 (1)

2012 (3)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

M. L. Chen, E. R. Li, H. Wang, and S. S. Han, “Ghost imaging based on sparse array pseudothermal light system,” Acta Optica Sinica 32, 0503001 (2012).
[Crossref]

2011 (2)

2010 (2)

J. L. Guerrero-Rascado, Maria Joao Costa, D. Bortoli, AM. Silva, H. Lyamani, and L. Alados-Arboledas, “Infrared lidar overlap function: an experimental determination,” Opt. Express 18, 20350–20359 (2010).
[Crossref] [PubMed]

M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[Crossref]

2008 (3)

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

2006 (1)

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

2005 (1)

R. M. Marino and W. R. Davis, “Real-time 3D ladar imaging,” Lincoln Lab. J. 15, 23–35 (2005).

2003 (1)

R. M. Marino, T. Stephens, and R. E. Hatch, “A compact 3D imaging laser radar system using geiger-mode APD arrays: System and measurements,” Proc. SPIE 5086, 15 (2003).

2002 (3)

M. A. Albota, “Three-dimensional imaging laser radars with geiger-mode avalange photodiode arrays,” Lincoln Lab. J. 13, 351–367 (2002).

B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791–2799 (2002).
[Crossref] [PubMed]

J. G. Walker, “Iterative correction for ‘pile-up’ in single-photon lifetime measurement,” Opt. Commun. 15, 271–277 (2002).
[Crossref]

1996 (1)

G. R. Osche and D. S. Young, “Imaging laser radar in the near and far infrared,” Proc IEEE,  84, 103–125 (1996).
[Crossref]

1994 (1)

1968 (1)

P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radiative lifetimes,” J. Phys. E: Sci. Instrum. 1, 878–879 (1968).
[Crossref]

Alados-Arboledas, L.

Albota, M. A.

M. A. Albota, “Three-dimensional imaging laser radars with geiger-mode avalange photodiode arrays,” Lincoln Lab. J. 13, 351–367 (2002).

Baraniuk, R.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Barr, D. N.

Bortoli, D.

Candes, E. J.

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

E. J. Candes, “Compressive sampling,” Proceedings of the International Congress of Mathematicians, Madrid, Spain, 1–20 (2006).

Chen, D. Y.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Chen, M.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Chen, M. L.

M. L. Chen, E. R. Li, H. Wang, and S. S. Han, “Ghost imaging based on sparse array pseudothermal light system,” Acta Optica Sinica 32, 0503001 (2012).
[Crossref]

Chen, Z. D.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Coates, P. B.

P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radiative lifetimes,” J. Phys. E: Sci. Instrum. 1, 878–879 (1968).
[Crossref]

Colaco, A.

Conde, M. H.

M. H. Conde, “Compressive sensing for the photonic mixer device,” in “Compressive Sensing for the Photonic Mixer Device,” (Springer, 2017). 207–352.
[Crossref]

Cova, S.

Davenport, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Davis, W. R.

R. M. Marino and W. R. Davis, “Real-time 3D ladar imaging,” Lincoln Lab. J. 15, 23–35 (2005).

Degnan, J.

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

Dixon, P. B.

Donoho, D.

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

Duarte, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Edgar, M. P.

M. P. Edgar, S. Johnson, D. Phillips, and M. J. Padgett, “Real-time computational photon-counting lidar,” Opt. Eng. 57, 031304 (2018).

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Fan, R. W.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Field, C.

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

Francese, P. A.

Gibson, G. M.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Gong, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Goyal, V. K.

Guerrero-Rascado, J. L.

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Han, S.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Han, S. S.

M. L. Chen, E. R. Li, H. Wang, and S. S. Han, “Ghost imaging based on sparse array pseudothermal light system,” Acta Optica Sinica 32, 0503001 (2012).
[Crossref]

Hatch, R. E.

R. M. Marino, T. Stephens, and R. E. Hatch, “A compact 3D imaging laser radar system using geiger-mode APD arrays: System and measurements,” Proc. SPIE 5086, 15 (2003).

Hong, K.

M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[Crossref]

Howell, J. C.

Howland, G. A.

Hu, L.

L. Xue, C. Huang, and L. Hu, “3D laser imaging with high-precision laser ranging using SSPD array,” in 2017 International Conference on Information, Communication and Engineering (ICICE, 2017), pp. 393–395.

Huang, C.

L. Xue, C. Huang, and L. Hu, “3D laser imaging with high-precision laser ranging using SSPD array,” in 2017 International Conference on Information, Communication and Engineering (ICICE, 2017), pp. 393–395.

Joao Costa, Maria

Jodor, G.

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

Johnson, S.

M. P. Edgar, S. Johnson, D. Phillips, and M. J. Padgett, “Real-time computational photon-counting lidar,” Opt. Eng. 57, 031304 (2018).

Kelly, K.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Kim, B.

M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[Crossref]

Kim, T.

M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[Crossref]

Kirmani, A.

Knarr, S. H.

D. J. Lum, S. H. Knarr, and J. C. Howell, “Frequency-modulated continuous-wave lidar compressive depth-mapping,” Opt. Express 12, 15420–15435 (2018).
[Crossref]

Kong, H.

M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[Crossref]

Lacaita, A.

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Laska, J.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Lawrence, D.

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

Leventhal, E.

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

Li, E.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Li, E. R.

M. L. Chen, E. R. Li, H. Wang, and S. S. Han, “Ghost imaging based on sparse array pseudothermal light system,” Acta Optica Sinica 32, 0503001 (2012).
[Crossref]

Li, X. D.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Liu, X. F.

L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

Lu, L. T.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Lum, D. J.

D. J. Lum, S. H. Knarr, and J. C. Howell, “Frequency-modulated continuous-wave lidar compressive depth-mapping,” Opt. Express 12, 15420–15435 (2018).
[Crossref]

G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express 21, 23822–23837 (2013).
[Crossref] [PubMed]

Lyamani, H.

Machan, R.

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

Marino, R. M.

R. M. Marino and W. R. Davis, “Real-time 3D ladar imaging,” Lincoln Lab. J. 15, 23–35 (2005).

R. M. Marino, T. Stephens, and R. E. Hatch, “A compact 3D imaging laser radar system using geiger-mode APD arrays: System and measurements,” Proc. SPIE 5086, 15 (2003).

McIntosh, A.

A. McIntosh, “Arrays of gieger-mode avalanche photodiodes for ladar and laser communications,” In Applications of Lasers for Sensing and Free Space Communications (Optical Society of America, 2010), p. LSWC1
[Crossref]

Mizerka, L. J.

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Oh, M.

M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[Crossref]

Osche, G. R.

G. R. Osche and D. S. Young, “Imaging laser radar in the near and far infrared,” Proc IEEE,  84, 103–125 (1996).
[Crossref]

Padgett, M. J.

M. P. Edgar, S. Johnson, D. Phillips, and M. J. Padgett, “Real-time computational photon-counting lidar,” Opt. Eng. 57, 031304 (2018).

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Phillips, D.

M. P. Edgar, S. Johnson, D. Phillips, and M. J. Padgett, “Real-time computational photon-counting lidar,” Opt. Eng. 57, 031304 (2018).

Radwell, N.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Schilling, B. W.

Silva, AM.

Stephens, T.

R. M. Marino, T. Stephens, and R. E. Hatch, “A compact 3D imaging laser radar system using geiger-mode APD arrays: System and measurements,” Proc. SPIE 5086, 15 (2003).

Sun, B.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Sun, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Sun, T.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Sun, T. Y.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Takhar, D.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Templeton, G. C.

Trussell, C. W.

Wakin, M. B.

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

Walker, J. G.

J. G. Walker, “Iterative correction for ‘pile-up’ in single-photon lifetime measurement,” Opt. Commun. 15, 271–277 (2002).
[Crossref]

Wang, H.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

M. L. Chen, E. R. Li, H. Wang, and S. S. Han, “Ghost imaging based on sparse array pseudothermal light system,” Acta Optica Sinica 32, 0503001 (2012).
[Crossref]

Ware, M. R.

Wong, F. N. C.

Xu, W.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Xue, L.

L. Xue, C. Huang, and L. Hu, “3D laser imaging with high-precision laser ranging using SSPD array,” in 2017 International Conference on Information, Communication and Engineering (ICICE, 2017), pp. 393–395.

Yao, X. R.

L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

Ye, G. C.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Young, D. S.

G. R. Osche and D. S. Young, “Imaging laser radar in the near and far infrared,” Proc IEEE,  84, 103–125 (1996).
[Crossref]

Yu, W. K.

L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

Zappa, F.

Zhai, G. J.

L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

Zhao, C.

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

Zhen, L. L.

L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

Zhou, Z. G.

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

Acta Optica Sinica (1)

M. L. Chen, E. R. Li, H. Wang, and S. S. Han, “Ghost imaging based on sparse array pseudothermal light system,” Acta Optica Sinica 32, 0503001 (2012).
[Crossref]

Acta Phys. Sin (1)

L. L. Zhen, X. R. Yao, X. F. Liu, W. K. Yu, and G. J. Zhai, “Super-resolution ghost imaging via compressed sensing,” Acta Phys. Sin 63, 224201 (2014).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).
[Crossref]

IEEE Signal Process. Mag. (2)

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 83–91 (2008).
[Crossref]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[Crossref]

J. Phys. E: Sci. Instrum. (1)

P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radiative lifetimes,” J. Phys. E: Sci. Instrum. 1, 878–879 (1968).
[Crossref]

Lincoln Lab. J. (2)

R. M. Marino and W. R. Davis, “Real-time 3D ladar imaging,” Lincoln Lab. J. 15, 23–35 (2005).

M. A. Albota, “Three-dimensional imaging laser radars with geiger-mode avalange photodiode arrays,” Lincoln Lab. J. 13, 351–367 (2002).

Nat. Commun. (1)

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Opt. Commun. (3)

M. Oh, H. Kong, T. Kim, K. Hong, and B. Kim, “Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode,” Opt. Commun. 283, 304–308 (2010).
[Crossref]

Z. D. Chen, X. D. Li, G. C. Ye, Z. G. Zhou, L. T. Lu, T. Y. Sun, R. W. Fan, and D. Y. Chen, “A correction method for range walk error in time-correlated single-photon counting using photomultiplier tube,” Opt. Commun. 434, 7–11 (2019).
[Crossref]

J. G. Walker, “Iterative correction for ‘pile-up’ in single-photon lifetime measurement,” Opt. Commun. 15, 271–277 (2002).
[Crossref]

Opt. Eng. (1)

M. P. Edgar, S. Johnson, D. Phillips, and M. J. Padgett, “Real-time computational photon-counting lidar,” Opt. Eng. 57, 031304 (2018).

Opt. Express (4)

Proc IEEE (1)

G. R. Osche and D. S. Young, “Imaging laser radar in the near and far infrared,” Proc IEEE,  84, 103–125 (1996).
[Crossref]

Proc. SPIE (2)

R. M. Marino, T. Stephens, and R. E. Hatch, “A compact 3D imaging laser radar system using geiger-mode APD arrays: System and measurements,” Proc. SPIE 5086, 15 (2003).

J. Degnan, R. Machan, E. Leventhal, D. Lawrence, G. Jodor, and C. Field, “Inflight performance of a second-generation photon-counting 3D imaging lidar,” Proc. SPIE 6950, 695007 (2008).
[Crossref]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[Crossref]

Other (4)

L. Xue, C. Huang, and L. Hu, “3D laser imaging with high-precision laser ranging using SSPD array,” in 2017 International Conference on Information, Communication and Engineering (ICICE, 2017), pp. 393–395.

A. McIntosh, “Arrays of gieger-mode avalanche photodiodes for ladar and laser communications,” In Applications of Lasers for Sensing and Free Space Communications (Optical Society of America, 2010), p. LSWC1
[Crossref]

E. J. Candes, “Compressive sampling,” Proceedings of the International Congress of Mathematicians, Madrid, Spain, 1–20 (2006).

M. H. Conde, “Compressive sensing for the photonic mixer device,” in “Compressive Sensing for the Photonic Mixer Device,” (Springer, 2017). 207–352.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of single-pixel 3D infrared laser radar system.
Fig. 2
Fig. 2 Time histogram of photon arrival times in a pattern. The time resolution of TCSPC is 64 ps. Two peaks present the two objects.
Fig. 3
Fig. 3 Reconstructions for objects “N” (a) and “T” (b) at depths 1.98m and 2.13m.
Fig. 4
Fig. 4 Reconstructions for the object “N” with different photon counting rate, (a) the repetition rate of laser pulse is 20MHz and the average photon counting rate is 655kHz; (b) the repetition rate of laser pulse is 10MHz and the average photon counting rate is 536kHz; (c) the repetition rate of laser pulse is 5MHz and the average photon counting rate is 272kHz; (d) the repetition rate of laser pulse is 1MHz and the average photon counting rate is 120kHz.
Fig. 5
Fig. 5 The histograms of photon arrival times in a certain pattern with different repetition rates of laser pulse. The repetition rate of laser pulse is 20MHz(a), 10MHz(b), 5MHz(c) and 1MHz(d), respectively.
Fig. 6
Fig. 6 The objects at two depart depths in simulation.
Fig. 7
Fig. 7 The simulation results with different values of α. (a) α = 0.5, MSE=0.0615; (b) α = 0.1, MSE=0.0085; (b) α = 0.01, MSE=0.0069.
Fig. 8
Fig. 8 The plot of MSE vs α.
Fig. 9
Fig. 9 The effectiveness of applying the correction algorithm to the experimental data shown in Fig. 4(a) and 4(b). (a) and (b) are the corrected images of Fig. 4(a) and 4(b), respectively.
Fig. 10
Fig. 10 The reconstructions of the sparse matrix measurement. (a) The number of “1” in each pattern is 1000. (b) The number of “1” in each pattern is 500. (c) The number of “1” in each pattern is 100. (d) The number of “1” in each pattern is 50.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y = AO ( x ) + e ,
O ^ ( x ) = argmin { A Ψ O ( x ) y 2 2 τ O ( x ) 1 } , O ^ ( x ) = Ψ O ^ ( x )
y N ( i ) = N P exp ( α P T ( i ) ) [ 1 exp ( α P N ( i ) ) ] + e N P ( 1 α P T ( i ) ) α P N ( i ) + e .
P k ( i ) = 1 n R k x n U k ( x ) A i ( x ) , k = N , T ,
MSE = 1 n x n [ O ^ ( x ) O ( x ) ] 2 .
y ^ N ( i ) = ln ( 1 y N ( i ) / ( N P y P ( i ) ) ) ,

Metrics