Abstract

Room temperature surface emission is realized on a large area (1.5 mm × 1.5 mm) photonic crystal quantum cascade laser (PhC-QCL) driven under pulsed mode, at the wavelength around 8.75 μm. By introducing in-plane asymmetry to the pillar shape and optimizing the current injection with a grid-like window contact, the maximum peak power of the PhC-QCL is up to 5 W. The surface emitting beam has a crossing shape with 10° divergence.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature

Ilia Sergachev, Richard Maulini, Alfredo Bismuto, Stephane Blaser, Tobias Gresch, and Antoine Muller
Opt. Express 24(17) 19063-19071 (2016)

Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers

Zhixin Wang, Yong Liang, Xuefan Yin, Chao Peng, Weiwei Hu, and Jérôme Faist
Opt. Express 25(10) 11997-12007 (2017)

Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators

Gangyi Xu, Raffaele Colombelli, Remy Braive, Gregoire Beaudoin, Luc Le Gratiet, Anne Talneau, Laurence Ferlazzo, and Isabelle Sagnes
Opt. Express 18(11) 11979-11989 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  2. N. Lang, J. Röpcke, S. Wege, and A. Steinbach, “In situ diagnostic of etch plasmas for process control using quantum cascade laser absorption spectroscopy,” Eur. Phys. J. Appl. Phys. 49, 13110 (2010).
    [Crossref]
  3. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
    [Crossref]
  4. Z. Wang, Y. Liang, X. Yin, C. Peng, W. Hu, and J. Faist, “Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers,” Opt. Express 25, 11997–12007 (2017).
    [Crossref] [PubMed]
  5. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
    [Crossref] [PubMed]
  6. Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
    [Crossref]
  7. G. Xu, R. Colombelli, R. Braive, G. Beaudoin, L. Le Gratiet, A. Talneau, L. Ferlazzo, and I. Sagnes, “Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators,” Opt. Express 18, 11979–11989 (2010).
    [Crossref] [PubMed]
  8. L. Mahler and A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser Photonics Rev. 5, 647–658 (2011).
  9. Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
    [Crossref]
  10. D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
    [Crossref] [PubMed]
  11. C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
    [Crossref]
  12. C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
    [Crossref]
  13. Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
    [Crossref]
  14. R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
    [Crossref]
  15. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
    [Crossref] [PubMed]
  16. K. Sakai, E. Miyai, and S. Noda, “Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization,” Opt. Express 15, 3981–3990 (2007).
    [Crossref] [PubMed]
  17. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84, 195119 (2011).
    [Crossref]
  18. Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization,” Opt. Lett. 39, 4498–4501 (2014).
    [Crossref] [PubMed]
  19. M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
    [Crossref]
  20. H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
    [Crossref]
  21. Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
    [Crossref]
  22. L. Ni, Z. Wang, C. Peng, and Z. Li, “Tunable optical bound states in the continuum beyond in-plane symmetry protection,” Phys. Rev. B 94, 245148 (2016).
    [Crossref]
  23. W. Rabinovich and B. Feldman, “Spatial hole burning effects in distributed feedback lasers,” IEEE J. Quantum Electron. 25, 20–30 (1989).
    [Crossref]
  24. M. N. Sadiku, Elements of electromagnetics (Oxford University, 2007).
  25. Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20, 15945 (2012).
    [Crossref] [PubMed]

2019 (2)

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

2017 (1)

2016 (4)

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
[Crossref]

L. Ni, Z. Wang, C. Peng, and Z. Li, “Tunable optical bound states in the continuum beyond in-plane symmetry protection,” Phys. Rev. B 94, 245148 (2016).
[Crossref]

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

2015 (1)

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

2014 (3)

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization,” Opt. Lett. 39, 4498–4501 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

2012 (2)

2011 (2)

L. Mahler and A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser Photonics Rev. 5, 647–658 (2011).

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

2010 (2)

N. Lang, J. Röpcke, S. Wege, and A. Steinbach, “In situ diagnostic of etch plasmas for process control using quantum cascade laser absorption spectroscopy,” Eur. Phys. J. Appl. Phys. 49, 13110 (2010).
[Crossref]

G. Xu, R. Colombelli, R. Braive, G. Beaudoin, L. Le Gratiet, A. Talneau, L. Ferlazzo, and I. Sagnes, “Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators,” Opt. Express 18, 11979–11989 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
[Crossref]

2007 (1)

2003 (1)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

1989 (1)

W. Rabinovich and B. Feldman, “Spatial hole burning effects in distributed feedback lasers,” IEEE J. Quantum Electron. 25, 20–30 (1989).
[Crossref]

1972 (1)

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Bai, Y.

Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
[Crossref]

Balaji, M.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Beaudoin, G.

Beck, M.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

Bismuto, A.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Bonzon, C.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

Botez, D.

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

Boyle, C.

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

Braive, R.

Capasso, F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cathabard, O.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Cho, A. Y.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Colombelli, R.

G. Xu, R. Colombelli, R. Braive, G. Beaudoin, L. Le Gratiet, A. Talneau, L. Ferlazzo, and I. Sagnes, “Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators,” Opt. Express 18, 11979–11989 (2010).
[Crossref] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Darvish, S.

Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
[Crossref]

De Zoysa, M.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Diao, Z.

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

Earles, T.

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

Faist, J.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

Z. Wang, Y. Liang, X. Yin, C. Peng, W. Hu, and J. Faist, “Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers,” Opt. Express 25, 11997–12007 (2017).
[Crossref] [PubMed]

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Feldman, B.

W. Rabinovich and B. Feldman, “Spatial hole burning effects in distributed feedback lasers,” IEEE J. Quantum Electron. 25, 20–30 (1989).
[Crossref]

Ferlazzo, L.

Gelleta, J.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Gini, E.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Gmachl, C. F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Go, R.

Gokden, B.

Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
[Crossref]

Hatsuda, R.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Hirose, K.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Houdré, R.

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

Hu, W.

Z. Wang, Y. Liang, X. Yin, C. Peng, W. Hu, and J. Faist, “Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers,” Opt. Express 25, 11997–12007 (2017).
[Crossref] [PubMed]

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Ishizaki, K.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Iwahashi, S.

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20, 15945 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

Jia, Z.-W.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Kawasaki, M.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Kirch, J.

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Kurosaka, Y.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Lang, N.

N. Lang, J. Röpcke, S. Wege, and A. Steinbach, “In situ diagnostic of etch plasmas for process control using quantum cascade laser absorption spectroscopy,” Eur. Phys. J. Appl. Phys. 49, 13110 (2010).
[Crossref]

Le Gratiet, L.

Li, Z.

L. Ni, Z. Wang, C. Peng, and Z. Li, “Tunable optical bound states in the continuum beyond in-plane symmetry protection,” Phys. Rev. B 94, 245148 (2016).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization,” Opt. Lett. 39, 4498–4501 (2014).
[Crossref] [PubMed]

Liang, Y.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

Z. Wang, Y. Liang, X. Yin, C. Peng, W. Hu, and J. Faist, “Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers,” Opt. Express 25, 11997–12007 (2017).
[Crossref] [PubMed]

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization,” Opt. Lett. 39, 4498–4501 (2014).
[Crossref] [PubMed]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20, 15945 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

Lindberg, D.

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

Liu, F.-Q.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Liu, Y.-H.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Liverini, V.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Lourdudoss, S.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Lyakh, A.

Mahler, L.

L. Mahler and A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser Photonics Rev. 5, 647–658 (2011).

Maulini, R.

Mawst, L.

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

Meng, B.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

Metaferia, W.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Miyai, E.

Ni, L.

L. Ni, Z. Wang, C. Peng, and Z. Li, “Tunable optical bound states in the continuum beyond in-plane symmetry protection,” Phys. Rev. B 94, 245148 (2016).
[Crossref]

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
[Crossref]

Noda, S.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization,” Opt. Lett. 39, 4498–4501 (2014).
[Crossref] [PubMed]

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20, 15945 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

K. Sakai, E. Miyai, and S. Noda, “Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization,” Opt. Express 15, 3981–3990 (2007).
[Crossref] [PubMed]

Painter, O.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Patel, C. K. N.

Peng, C.

Z. Wang, Y. Liang, X. Yin, C. Peng, W. Hu, and J. Faist, “Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers,” Opt. Express 25, 11997–12007 (2017).
[Crossref] [PubMed]

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
[Crossref]

L. Ni, Z. Wang, C. Peng, and Z. Li, “Tunable optical bound states in the continuum beyond in-plane symmetry protection,” Phys. Rev. B 94, 245148 (2016).
[Crossref]

Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Three-dimensional coupled-wave theory for the guided mode resonance in photonic crystal slabs: TM-like polarization,” Opt. Lett. 39, 4498–4501 (2014).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization: finite-size effects,” Opt. Express 20, 15945 (2012).
[Crossref] [PubMed]

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

Peretti, R.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Rabinovich, W.

W. Rabinovich and B. Feldman, “Spatial hole burning effects in distributed feedback lasers,” IEEE J. Quantum Electron. 25, 20–30 (1989).
[Crossref]

Razeghi, M.

Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
[Crossref]

Röpcke, J.

N. Lang, J. Röpcke, S. Wege, and A. Steinbach, “In situ diagnostic of etch plasmas for process control using quantum cascade laser absorption spectroscopy,” Eur. Phys. J. Appl. Phys. 49, 13110 (2010).
[Crossref]

Sadiku, M. N.

M. N. Sadiku, Elements of electromagnetics (Oxford University, 2007).

Sagnes, I.

Sakai, K.

Scalari, G.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

Sergent, A. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Shank, C.

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Sigler, C.

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Slivken, S.

Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
[Crossref]

Song, B.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Srinivasan, K.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Steinbach, A.

N. Lang, J. Röpcke, S. Wege, and A. Steinbach, “In situ diagnostic of etch plasmas for process control using quantum cascade laser absorption spectroscopy,” Eur. Phys. J. Appl. Phys. 49, 13110 (2010).
[Crossref]

Süess, M. J.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Sugiyama, T.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Talneau, A.

Tanaka, Y.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Tennant, D. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Tredicucci, A.

L. Mahler and A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser Photonics Rev. 5, 647–658 (2011).

Troccoli, M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Tsekoun, A.

Vigneron, P.-B.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Wang, Z.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

Z. Wang, Y. Liang, X. Yin, C. Peng, W. Hu, and J. Faist, “Analytical coupled-wave model for photonic crystal surface-emitting quantum cascade lasers,” Opt. Express 25, 11997–12007 (2017).
[Crossref] [PubMed]

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
[Crossref]

L. Ni, Z. Wang, C. Peng, and Z. Li, “Tunable optical bound states in the continuum beyond in-plane symmetry protection,” Phys. Rev. B 94, 245148 (2016).
[Crossref]

Wang, Z.-G.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Watanabe, A.

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Wege, S.

N. Lang, J. Röpcke, S. Wege, and A. Steinbach, “In situ diagnostic of etch plasmas for process control using quantum cascade laser absorption spectroscopy,” Eur. Phys. J. Appl. Phys. 49, 13110 (2010).
[Crossref]

Wolf, J.

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

Wolf, J. M.

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

Xu, G.

Yang, Y.

Yao, D.-Y.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Yin, X.

Yoshida, M.

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Yu, Z.

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

Zhai, S.-Q.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Zhang, H.

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
[Crossref]

Zhang, J.-C.

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

Y. Bai, B. Gokden, S. Darvish, S. Slivken, and M. Razeghi, “Photonic crystal distributed feedback quantum cascade lasers with 12 W output power,” Appl. Phys. Lett. 95, 1105 (2009).
[Crossref]

C. Sigler, J. Kirch, T. Earles, L. Mawst, Z. Yu, and D. Botez, “Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes,” Appl. Phys. Lett. 104, 131108 (2014).
[Crossref]

C. Boyle, C. Sigler, J. Kirch, D. Lindberg, T. Earles, D. Botez, and L. Mawst, “High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode,” Appl. Phys. Lett. 108, 121107 (2016).
[Crossref]

Y. Liang, Z. Wang, J. Wolf, E. Gini, M. Beck, B. Meng, J. Faist, and G. Scalari, “Room temperature surface emission on large-area photonic crystal quantum cascade lasers,” Appl. Phys. Lett. 114, 031102 (2019).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

N. Lang, J. Röpcke, S. Wege, and A. Steinbach, “In situ diagnostic of etch plasmas for process control using quantum cascade laser absorption spectroscopy,” Eur. Phys. J. Appl. Phys. 49, 13110 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

Z. Wang, H. Zhang, L. Ni, W. Hu, and C. Peng, “Analytical perspective of interfering resonances in high-index-contrast periodic photonic structures,” IEEE J. Quantum Electron. 52, 1–9 (2016).
[Crossref]

W. Rabinovich and B. Feldman, “Spatial hole burning effects in distributed feedback lasers,” IEEE J. Quantum Electron. 25, 20–30 (1989).
[Crossref]

J. Appl. Phys. (1)

H. Kogelnik and C. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[Crossref]

Laser Photonics Rev. (3)

R. Peretti, V. Liverini, M. J. Süess, Y. Liang, P.-B. Vigneron, J. M. Wolf, C. Bonzon, A. Bismuto, W. Metaferia, M. Balaji, S. Lourdudoss, E. Gini, M. Beck, and J. Faist, “Room temperature operation of a deep etched buried heterostructure photonic crystal quantum cascade laser,” Laser Photonics Rev. 10, 843–848 (2016).
[Crossref]

L. Mahler and A. Tredicucci, “Photonic engineering of surface-emitting terahertz quantum cascade lasers,” Laser Photonics Rev. 5, 647–658 (2011).

Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, and R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, L45–L50 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

D.-Y. Yao, J.-C. Zhang, O. Cathabard, S.-Q. Zhai, Y.-H. Liu, Z.-W. Jia, F.-Q. Liu, and Z.-G. Wang, “10-W pulsed operation of substrate emitting photonic-crystal quantum cascade laser with very small divergence,” Nanoscale Res. Lett. 10, 177 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nat. Mater. 18, 121 (2019).
[Crossref]

Nat. Photonics (1)

K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-power, high-beam-quality photonic-crystal lasers,” Nat. Photonics 8, 406–411 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (2)

Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach,” Phys. Rev. B 84, 195119 (2011).
[Crossref]

L. Ni, Z. Wang, C. Peng, and Z. Li, “Tunable optical bound states in the continuum beyond in-plane symmetry protection,” Phys. Rev. B 94, 245148 (2016).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[Crossref] [PubMed]

Other (1)

M. N. Sadiku, Elements of electromagnetics (Oxford University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) A schematic drawing of the surface-emitting PhC-QCL. The PhC layer consists of a square lattice of active-region (InGaAs/AlInAs) pillars (red) surrounded by semi-insulating InP with a lower refractive index. The shape of the pillars is illustrated in the inset at the left-top corner. The active region is not fully etched through, in order to retain a sufficient overlap factor and to prevent over-etching into the InP substrate. (b) Cross-sectional SEM image of the PhC-QCL after ICP dry-etching, before HVPE regrowth.
Fig. 2
Fig. 2 (a) Vertical current density Jz at the center layer of the active region, with and without additional gold contacts, simulated by COMSOL Multiphysics. (b) Refractive index profile (black curve) and normalized |Ez| profile (blue curve) along the out-of-plane axis. As illustrated in the insets, the upper panel shows the results of a vertical cut-line down through a point inside the PhC pillar, whereas the lower panel shows the results of a cut-line outside the PhC pillar. The profile is simulated by COMSOL with the PhC filling factor of 0.45 and the mode E1, of which the mode pattern is shown in Fig. 3. The darker area indicates the active region that is not dry-etched, the lighter area indicates the PhC layer, and the remaining represent the cladding layer and the substrate. (c) The four fundamental Bloch waves (red arrows) at the Γ2 point of a square-lattice PhC structure in the momentum space. The green and blue arrows indicate the two kinds of major coupling mechanisms among these waves: κ1D and κ2D.
Fig. 3
Fig. 3 (a) The mode patterns in a single lattice of the four band-edge modes at the Γ2 point of the PhC-QCL. The color-map indicates the out-of-plane component Ez, and the vector map indicates the in-plane electric field components Ex, Ey. (b–e): Pillar filling factor dependence of mode frequencies, overlap factors, vertical losses and radiation constants of the modes. In the simulation for the radiation constant (e), the epi-side gold contact is replaced by InP with a perfectly matched layer. The period of the PhC is 2.78 μm in the simulation.
Fig. 4
Fig. 4 (a) LIV characteristics of the PhC-QCL. The measurement is taken at room temperature (both 298 K and 289 K) in pulsed operation. The power is collected from the surface. The designed structural parameters of the PhC-QCL: period = 2.78 μm, filling factor = 0.45. In both measurements, the maximum current is limited by the electrical driver. (b) Measured surface-emitting spectrum of the PhC-QCL. The measurement conditions are shown in the inset.
Fig. 5
Fig. 5 The far-field pattern (a) and the polarization characteristics (b–e) of the surface-emitting beam. The measurement conditions are shown in the inset of (a). In (b–e), the white arrow represents the direction of the polarizer, and the schematic pillar helps indicate the orientation of the polarizer with respect to the PhC.
Fig. 6
Fig. 6 LIV measurement of the presented PhC-QCL, where the power is collected through edge emission. The measurement conditions are shown in the inset.
Fig. 7
Fig. 7 Cross-sectional SEM image of a PhC-QCL on the same wafer as the one shown in the main text, showing the voids.
Fig. 8
Fig. 8 Electrode shape influence on the far-field pattern. (a,b) show the near-field intensity distribution with and without the additional net-like electrode. (c) and (d) are the corresponding far-field patterns of (a) and (b), respectively. In (a) and (b), the near-field intensity in the exposed area is set to constantly unity and the phase is assumed to be everywhere the same. In both cases, the PhC pattern is neglected for simplicity. The intensity is normalized to 1 in each figure. In (c,d), the maximum colorbar value is compressed to 0.1, in order to show the side-lobes clearly.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ext = ( 1 α s ) ( 1 R ) 1 R ( 1 α s ) 2 ( 1 A electrode A All ) = 43.2 %

Metrics