Abstract

Broadband femtosecond laser pulses manipulated by pulse shapers based on a liquid crystal spatial light modulator (LC-SLM) inevitably experience periodic spectral distortions due to Fabry-Perot interference effects within the LC-SLM. We present a method, applicable to phase and amplitude pulse shapers based on dual LC-SLMs, that enables the calibration and suppression of the undesired spectral intensity modulations in a non-iterative fashion. We demonstrate that the method considerably improves the amplitude shaping fidelity of phase and amplitude pulse shapers without compromising the phase shaping properties.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators

Eugene Frumker and Yaron Silberberg
J. Opt. Soc. Am. B 24(12) 2940-2947 (2007)

Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators

Marc M. Wefers and Keith A. Nelson
J. Opt. Soc. Am. B 12(7) 1343-1362 (1995)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10(12), 609–611 (1985).
    [Crossref]
  2. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  3. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At., Mol. Opt. Phys. 43(10), 103001 (2010).
    [Crossref]
  4. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
    [Crossref]
  5. D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S125–S131 (2000).
    [Crossref]
  6. L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
    [Crossref]
  7. T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
    [Crossref]
  8. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
    [Crossref]
  9. J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19(12), 11638–11653 (2011).
    [Crossref]
  10. M. Liebel and P. Kukura, “Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit,” Nat. Chem. 9(1), 45–49 (2017).
    [Crossref]
  11. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopiesvia pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
    [Crossref]
  12. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
    [Crossref]
  13. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
    [Crossref]
  14. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737 (1994).
    [Crossref]
  15. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
    [Crossref]
  16. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128- Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
    [Crossref]
  17. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
    [Crossref]
  18. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
    [Crossref]
  19. M. M. Wefers and K. a. Nelson, “Programmable phase and amplitude femtosecond pulse shaping,” Opt. Lett. 18(23), 2032–2034 (1993).
    [Crossref]
  20. A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75(8), 2668–2671 (2004).
    [Crossref]
  21. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
    [Crossref]
  22. J. W. Wilson, P. Schlup, and R. A. Bartels, “Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask,” Opt. Express 15(14), 8979–8987 (2007).
    [Crossref]
  23. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26(8), 557–559 (2001).
    [Crossref]
  24. F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34(8), 1258–1260 (2009).
    [Crossref]
  25. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization state control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15(26), 18025–18032 (2007).
    [Crossref]
  26. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
    [Crossref]
  27. R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE J. Quantum Electron. 22(5), 682–696 (1986).
    [Crossref]
  28. E. Brühl, T. Buckup, and M. Motzkus, “Minimization of 1/fˆn phase noise in liquid crystal masks for reliable femtosecond pulse shaping,” Opt. Express 25(19), 23376–23386 (2017).
    [Crossref]
  29. A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
    [Crossref]
  30. J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
    [Crossref]
  31. A. Márquez, I. Moreno, J. Campos, and M. J. Yzuel, “Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays,” Opt. Commun. 265(1), 84–94 (2006).
    [Crossref]
  32. C. Dorrer and F. Salin, “Characterization of spectral phase modulation by classical and polarization spectral interferometry,” J. Opt. Soc. Am. B 15(8), 2331 (1998).
    [Crossref]
  33. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S119–S124 (2000).
    [Crossref]
  34. S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26(4), 3915 (2018).
    [Crossref]
  35. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
    [Crossref]

2018 (1)

2017 (2)

E. Brühl, T. Buckup, and M. Motzkus, “Minimization of 1/fˆn phase noise in liquid crystal masks for reliable femtosecond pulse shaping,” Opt. Express 25(19), 23376–23386 (2017).
[Crossref]

M. Liebel and P. Kukura, “Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit,” Nat. Chem. 9(1), 45–49 (2017).
[Crossref]

2014 (2)

A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
[Crossref]

J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
[Crossref]

2011 (3)

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19(12), 11638–11653 (2011).
[Crossref]

2010 (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At., Mol. Opt. Phys. 43(10), 103001 (2010).
[Crossref]

2009 (3)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopiesvia pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34(8), 1258–1260 (2009).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

A. Márquez, I. Moreno, J. Campos, and M. J. Yzuel, “Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays,” Opt. Commun. 265(1), 84–94 (2006).
[Crossref]

2005 (2)

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
[Crossref]

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
[Crossref]

2004 (1)

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75(8), 2668–2671 (2004).
[Crossref]

2001 (2)

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26(8), 557–559 (2001).
[Crossref]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

2000 (3)

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S125–S131 (2000).
[Crossref]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
[Crossref]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S119–S124 (2000).
[Crossref]

1998 (1)

1997 (3)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
[Crossref]

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
[Crossref]

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
[Crossref]

1996 (1)

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

1994 (1)

1993 (1)

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128- Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

1990 (1)

1986 (1)

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE J. Quantum Electron. 22(5), 682–696 (1986).
[Crossref]

1985 (1)

a. Nelson, K.

Aeschlimann, M.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Arias, J.

A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
[Crossref]

Bardeen, C. J.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
[Crossref]

Bartels, R. A.

Baumert, T.

J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19(12), 11638–11653 (2011).
[Crossref]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
[Crossref]

Bayer, T.

Binhammer, T.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
[Crossref]

Brixner, T.

S. Goetz, D. Li, V. Kolb, J. Pflaum, and T. Brixner, “Coherent two-dimensional fluorescence micro-spectroscopy,” Opt. Express 26(4), 3915 (2018).
[Crossref]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26(8), 557–559 (2001).
[Crossref]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S119–S124 (2000).
[Crossref]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
[Crossref]

Brühl, E.

Buckup, T.

Campos, J.

A. Márquez, I. Moreno, J. Campos, and M. J. Yzuel, “Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays,” Opt. Commun. 265(1), 84–94 (2006).
[Crossref]

Carpenter, S. D.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
[Crossref]

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At., Mol. Opt. Phys. 43(10), 103001 (2010).
[Crossref]

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75(8), 2668–2671 (2004).
[Crossref]

Cundiff, S. T.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Del Mar Sánchez-López, M.

A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
[Crossref]

J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
[Crossref]

Dorrer, C.

Dugan, M. A.

Ell, R.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
[Crossref]

Feurer, T.

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
[Crossref]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

Fischer, A.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

García-Martínez, P.

A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
[Crossref]

J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
[Crossref]

Gerber, G.

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26(8), 557–559 (2001).
[Crossref]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S119–S124 (2000).
[Crossref]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
[Crossref]

Goetz, S.

Goswami, D.

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Hacker, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

Heritage, J. P.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE J. Quantum Electron. 22(5), 682–696 (1986).
[Crossref]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10(12), 609–611 (1985).
[Crossref]

Hillegas, C. W.

Hornung, T.

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
[Crossref]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S125–S131 (2000).
[Crossref]

Kärtner, F. X.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
[Crossref]

Köhler, J.

Kolb, V.

Kramer, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Kukura, P.

M. Liebel and P. Kukura, “Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit,” Nat. Chem. 9(1), 45–49 (2017).
[Crossref]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128- Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
[Crossref]

Lewis, K. L. M.

Li, D.

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Liebel, M.

M. Liebel and P. Kukura, “Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit,” Nat. Chem. 9(1), 45–49 (2017).
[Crossref]

Lindinger, A.

Márquez, A.

A. Márquez, I. Moreno, J. Campos, and M. J. Yzuel, “Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays,” Opt. Commun. 265(1), 84–94 (2006).
[Crossref]

Martínez, J. L.

Masihzadeh, O.

Melchior, P.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At., Mol. Opt. Phys. 43(10), 103001 (2010).
[Crossref]

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75(8), 2668–2671 (2004).
[Crossref]

Moreno, I.

J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
[Crossref]

A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
[Crossref]

A. Márquez, I. Moreno, J. Campos, and M. J. Yzuel, “Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays,” Opt. Commun. 265(1), 84–94 (2006).
[Crossref]

Morgner, U.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
[Crossref]

Morita, R.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
[Crossref]

Motzkus, M.

E. Brühl, T. Buckup, and M. Motzkus, “Minimization of 1/fˆn phase noise in liquid crystal masks for reliable femtosecond pulse shaping,” Opt. Express 25(19), 23376–23386 (2017).
[Crossref]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S125–S131 (2000).
[Crossref]

Myers, J. A.

Nakagawa, N.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
[Crossref]

Nelson, K. A.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
[Crossref]

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

Oehrlein, A.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S119–S124 (2000).
[Crossref]

Ogilvie, J. P.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128- Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
[Crossref]

Pfeiffer, W.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Pflaum, J.

Proch, D.

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S125–S131 (2000).
[Crossref]

Reichel, F.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

Rittweger, E.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
[Crossref]

Salin, F.

Sarpe, C.

Schlup, P.

Schneider, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
[Crossref]

Shigekawa, H.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
[Crossref]

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopiesvia pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref]

Stobrawa, G.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Strehle, M.

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S119–S124 (2000).
[Crossref]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
[Crossref]

Strickland, D.

Struber, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Tekavec, P. F.

Thurston, R. N.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE J. Quantum Electron. 22(5), 682–696 (1986).
[Crossref]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10(12), 609–611 (1985).
[Crossref]

Tomlinson, W. J.

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE J. Quantum Electron. 22(5), 682–696 (1986).
[Crossref]

Tuchscherer, P.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Tull, J. X.

Turner, D. B.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Vargas, A.

A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
[Crossref]

J. L. Martínez, I. Moreno, M. del Mar Sánchez-López, A. Vargas, and P. García-Martínez, “Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM,” Opt. Express 22(21), 25866–25879 (2014).
[Crossref]

Vaughan, J. C.

Voronine, D. V.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

Warren, W. S.

Weber, P. M.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
[Crossref]

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At., Mol. Opt. Phys. 43(10), 103001 (2010).
[Crossref]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

M. M. Wefers and K. a. Nelson, “Programmable phase and amplitude femtosecond pulse shaping,” Opt. Lett. 18(23), 2032–2034 (1993).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128- Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
[Crossref]

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE J. Quantum Electron. 22(5), 682–696 (1986).
[Crossref]

J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude manipulation,” Opt. Lett. 10(12), 609–611 (1985).
[Crossref]

Weise, F.

Wilson, J. W.

Wilson, K. R.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
[Crossref]

Wollenhaupt, M.

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128- Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
[Crossref]

Xu, L.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
[Crossref]

Yakovlev, V. V.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
[Crossref]

Yamashita, M.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
[Crossref]

Yzuel, M. J.

A. Márquez, I. Moreno, J. Campos, and M. J. Yzuel, “Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays,” Opt. Commun. 265(1), 84–94 (2006).
[Crossref]

Zanni, M. T.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopiesvia pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref]

Zeidler, D.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S125–S131 (2000).
[Crossref]

Appl. Phys. B: Lasers Opt. (4)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B: Lasers Opt. 65(6), 779–782 (1997).
[Crossref]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S125–S131 (2000).
[Crossref]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B: Lasers Opt. 72(5), 627–630 (2001).
[Crossref]

T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70(S1), S119–S124 (2000).
[Crossref]

Chem. Phys. Lett. (1)

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280(1–2), 151–158 (1997).
[Crossref]

IEEE J. Quantum Electron. (5)

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron. 36(8), 893–899 (2000).
[Crossref]

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron. 41(12), 1552–1557 (2005).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128- Element Liquid Crystal Phase Modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[Crossref]

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE J. Quantum Electron. 22(5), 682–696 (1986).
[Crossref]

J. Appl. Phys. (1)

A. Vargas, M. Del Mar Sánchez-López, P. García-Martínez, J. Arias, and I. Moreno, “Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects,” J. Appl. Phys. 115(3), 033101 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B: At., Mol. Opt. Phys. (1)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B: At., Mol. Opt. Phys. 43(10), 103001 (2010).
[Crossref]

Nat. Chem. (1)

M. Liebel and P. Kukura, “Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit,” Nat. Chem. 9(1), 45–49 (2017).
[Crossref]

Opt. Commun. (2)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

A. Márquez, I. Moreno, J. Campos, and M. J. Yzuel, “Analysis of Fabry-Perot interference effects on the modulation properties of liquid crystal displays,” Opt. Commun. 265(1), 84–94 (2006).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Phys. Chem. Chem. Phys. (1)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopiesvia pulse shaping,” Phys. Chem. Chem. Phys. 11(5), 748–761 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75(8), 2668–2671 (2004).
[Crossref]

Science (2)

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Struber, P. Tuchscherer, and D. V. Voronine, “Coherent Two-Dimensional Nanoscopy,” Science 333(6050), 1723–1726 (2011).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,” Science 324(5931), 1169–1173 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) The pulse shaping setup. The frequency components of the input pulse are angularly dispersed by a grating (G). A spherical mirror (SM) with focal length $f=500\,\textrm {mm}$ recollimates and focuses the frequency components. A folding mirror (FM) is placed in the focal plane and the LC-SLM is situated directly in front of this mirror. A small vertical tilt of the folding mirror leads to a vertical displacement of the outgoing beam, which passes through the linear output polarizer (P). (Incoming and outgoing beam have horizontal linear polarization.) (b) Multilayer-structure of the dual liquid crystal mask. The main beam and multiple reflections within the LC layers are indicated by arrows.
Fig. 2.
Fig. 2. (a) Transmittance of the SLM (single pass) measured with linearly polarized light at $45^\circ$ (parallel to LC alignment direction in mask B) at zero voltage. The arrows indicate nodes where the oscillation amplitude is reduced due to destructive interference. (b) Oscillatory component of the SLM transmittance recorded at different positions on the mask. Measured with linearly polarized light at $45^\circ$ (parallel to LC alignment direction in mask B) and with maximum voltage ($8\,\textrm {V}$) applied to the LC masks.
Fig. 3.
Fig. 3. Voltage dependence of the Fabry-Pérot effect. (a) Oscillatory component $\Delta T$ of the SLM transmittance (single pass) as a function of optical frequency $\nu$ and driving voltage $V_B$ applied to mask B. (b) Voltage dependent power spectra of the measured transmittance oscillations. The spectra were interpolated using zero-padding before taking the Fourier transform. Contributions originating in masks A and B respectively are marked by arrows. (c) Oscillating component of the SLM transmittance (single pass) calculated using the extended Jones matrix model. (d) Power spectra of the modelled transmittance oscillations shown in (c).
Fig. 4.
Fig. 4. Measured intensity modulation $L_\omega ^2 (V_A, V_B) = I(\omega )/I_{\textrm {ref}}(\omega )$ for $\omega =2.512\,\textrm {rad/fs}$ $(750\,\textrm {nm})$. The white areas above and below the diagonal indicate voltage combinations were no data has been recorded.
Fig. 5.
Fig. 5. Amplitude shaping experiments demonstrating the effect of the voltage correction procedure. (a, b) Gaussian intensity profile centered at $760\,\textrm {nm}$ with $50\,\textrm {nm}$ FWHM and (c, d) flat-top intensity profile of $60\,\textrm {nm}$ width. Spectra recorded before (top) and after (bottom) adjusting the voltage patterns are shown.
Fig. 6.
Fig. 6. Spectrum and intensity autocorrelation of the compressed output pulses before (a, c) and after (b, d) applying the voltage correction.
Fig. 7.
Fig. 7. (a) Spectral phase shift introduced by the SLM before and after applying the voltage correction, calculated from the SLM calibration tables. (b) Difference between the phase curves shown in (a).

Tables (1)

Tables Icon

Table 1. Model parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Φ ( ω i ) = ϕ A ( ω i , V A , i ) + ϕ B ( ω i , V B , i )
M ( ω i ) = cos [ ϕ A ( ω i , V A , i ) ϕ B ( ω i , V B , i ) ]
V A , i = V A , i + Δ V A , i
V B , i = V B , i + Δ V B , i
Δ Φ i Φ | V i Δ V i = 0.
L ω ( V A , V B ) = I ( ω , V A , V B ) I ref ( ω )
E out = J B J A E in
J A = ( t o e i θ o 0 0 t e e i θ e ) ( ( 1 r o 2 ) e i ϕ o 1 r o 2 e i 2 ϕ o 0 0 ( 1 r e 2 ) e i ϕ e 1 r e 2 e i 2 ϕ e )
T = | E out | 2 | E in | 2 = ( t o A ) 2 ( t e B ) 2
n ( λ , V ) = n e ( λ ) g ( V ) + n o ( λ ) ( 1 g ( V ) )

Metrics