Abstract

We present here a detailed investigation into the sensitivity of the taper-based Mach-Zehnder interferometer as a function of external refractive index, with particular attention to the dispersion turning point (DTP) and possibilities for ultra-sensitive sensors. Our numerical simulation revealed that two DTPs exist with a decrease in the microfiber waist diameter; given this relationship, it is possible to obtain an ultra-sensitive operation. We then conducted experiments with fabricated devices with different waist diameters to achieve both positive and negative sensitivities at two DTPs. In particular, we achieved an ultrahigh refractive index sensitivity of approximately 95,832 nm/RIU at the second DTP when working with a diameter of 1.87 µm around the RI of air. These results show its potential for use in acoustic sensing and biochemical detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point

Nancy Meng Ying Zhang, Kaiwei Li, Nan Zhang, Yu Zheng, Ting Zhang, Miao Qi, Ping Shum, and Lei Wei
Opt. Express 26(22) 29148-29158 (2018)

High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai
Appl. Opt. 50(28) 5503-5507 (2011)

Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications

Yanzhen Tan, Li-Peng Sun, Long Jin, Jie Li, and Bai-Ou Guan
Opt. Express 21(1) 154-164 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
    [Crossref]
  2. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
    [Crossref]
  3. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
    [Crossref]
  4. Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [Crossref]
  5. A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
    [Crossref]
  6. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
    [Crossref]
  7. Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
    [Crossref]
  8. W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
    [Crossref]
  9. G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
    [Crossref]
  10. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  11. Y. Tan, L.-P. Sun, L. Jin, J. Li, and B.-O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Opt. Express 21(1), 154–164 (2013).
    [Crossref]
  12. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref]
  13. S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: the achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
    [Crossref]
  14. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
    [Crossref]
  15. L.-P. Sun, J. Li, Y. Tan, S. Gao, L. Jin, and B.-O. Guan, “Bending effect on modal interference in a fiber taper and sensitivity enhancement for refractive index measurement,” Opt. Express 21(22), 26714–26720 (2013).
    [Crossref]
  16. J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
    [Crossref]
  17. L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
    [Crossref]
  18. K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
    [Crossref]
  19. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  20. Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
    [Crossref]
  21. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
    [Crossref]
  22. J. Wang, Y. Liao, S. Wang, and X. Wang, “Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer,” Opt. Express 26(19), 24843–24853 (2018).
    [Crossref]
  23. K. P. Birch and M. J. Downs, “An Updated Edlén Equation for the Refractive Index of Air,” Metrologia 30(3), 155–162 (1993).
    [Crossref]
  24. Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
    [Crossref]
  25. A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
    [Crossref]
  26. E. R. Peck and B. N. Khanna, “Dispersion of Nitrogen,” J. Opt. Soc. Am. 56(8), 1059–1063 (1966).
    [Crossref]
  27. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18(9), 1445–1448 (1979).
    [Crossref]
  28. H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach–Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
    [Crossref]

2019 (1)

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

2018 (2)

2015 (2)

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (5)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
[Crossref]

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
[Crossref]

W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
[Crossref]

2011 (1)

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (2)

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

2002 (2)

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[Crossref]

1999 (1)

1993 (1)

K. P. Birch and M. J. Downs, “An Updated Edlén Equation for the Refractive Index of Air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

1988 (1)

1979 (1)

1973 (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

1966 (1)

Abjean, R.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Ahmad, F.

A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
[Crossref]

Ahmad, H.

A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
[Crossref]

Akimov, Y.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Allsop, T.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[Crossref]

Ang, L.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Bai, P.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Bao, X.

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

Bennion, I.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[Crossref]

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[Crossref]

Bideau-Mehu, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Bin Ji, W.

W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Birch, K. P.

K. P. Birch and M. J. Downs, “An Updated Edlén Equation for the Refractive Index of Air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: the achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
[Crossref]

Bures, J.

Cardenas-Sevilla, G. A.

Chang, Y.-L.

Chen, L.

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Chow, K. K.

W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Dong, X.

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

Downs, M. J.

K. P. Birch and M. J. Downs, “An Updated Edlén Equation for the Refractive Index of Air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Gao, S.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: the achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
[Crossref]

Guan, B.-O.

Guern, Y.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Harun, S. W.

A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

Hocker, G. B.

Jin, L.

Johannin-Gilles, A.

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Khanna, B. N.

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Knoll, W.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: the achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
[Crossref]

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38(16), 3450–3459 (1999).
[Crossref]

Li, J.

Li, K.

Li, L.

Li, X.

Li, Y.

Liao, Y.

Lim, A.

W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Lim, K. S.

A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
[Crossref]

Liu, D.

Liu, G.

Liu, H. H.

W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Loock, H. P.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

Lu, P.

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Luo, H.

Martinez-Rios, A.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Monzon-Hernandez, D.

Neal, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[Crossref]

Nishii, J.

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Peck, E. R.

Png, C. E.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Quan, Z.

Ran, Y.

Reeves, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[Crossref]

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Salceda-Delgado, G.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Shu, X.

Song, J.

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

Sulaiman, A.

A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
[Crossref]

Sun, L.-P.

Sun, Q.

Tan, Y.

Tian, Z.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Tjin, S. C.

W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

Tong, L.

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Villatoro, J.

Wang, J.

Wang, S.

Wang, X.

Webb, D. J.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[Crossref]

Wei, L.

Wu, L.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Xia, L.

Xie, Z.

Xu, Y.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

Xu, Z.

Yam, S. S. H.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Yan, Z.

Zhang, L.

Zhang, N. M. Y.

Zhang, T.

Zheng, N.

Zhou, X.

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Adv. Opt. Mater. (1)

Y. Xu, P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. Ang, W. Knoll, and L. Wu, “Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth,” Adv. Opt. Mater. 7(9), 1801433 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEE Proc.-J: Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

W. Bin Ji, H. H. Liu, S. C. Tjin, K. K. Chow, and A. Lim, “Ultrahigh sensitivity refractive index sensor based on optical microfiber,” IEEE Photonics Technol. Lett. 24(20), 1872–1874 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

Metrologia (1)

K. P. Birch and M. J. Downs, “An Updated Edlén Equation for the Refractive Index of Air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Opt. Commun. (1)

A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt. Commun. 9(4), 432–434 (1973).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

A. Sulaiman, S. W. Harun, K. S. Lim, F. Ahmad, and H. Ahmad, “Microfiber Mach-Zehnder interferometer embedded in low index polymer,” Opt. Laser Technol. 44(4), 1186–1189 (2012).
[Crossref]

Opt. Lett. (7)

L.-P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B.-O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref]

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach–Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref]

G. Salceda-Delgado, D. Monzon-Hernandez, A. Martinez-Rios, G. A. Cardenas-Sevilla, and J. Villatoro, “Optical microfiber mode interferometer for temperature-independent refractometric sensing,” Opt. Lett. 37(11), 1974–1976 (2012).
[Crossref]

S. Lacroix, F. Gonthier, R. J. Black, and J. Bures, “Tapered-fiber interferometric wavelength response: the achromatic fringe,” Opt. Lett. 13(5), 395–397 (1988).
[Crossref]

Y. Li and L. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[Crossref]

J. Li, L.-P. Sun, S. Gao, Z. Quan, Y.-L. Chang, Y. Ran, L. Jin, and B.-O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref]

Photonic Sens. (1)

Y. Xu, P. Lu, J. Song, P. Lu, L. Chen, X. Bao, and X. Dong, “Dispersion effects of high-order-mode fiber on temperature and axial strain discrimination,” Photonic Sens. 5(3), 224–234 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum. 73(4), 1702–1705 (2002).
[Crossref]

Sensors (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric Fiber Optic Sensors,” Sensors 12(3), 2467–2486 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematic diagram of the taper-based MZI; the inset presents calculated intensity profiles of the two modes, HE11 and HE12, respectively. (b) Simulated dispersion factor Γ and (c) RI sensitivity as functions of the fiber diameter. Calculated RI sensitivities for each diameter as a function of wavelength at (d) 2nd DTP (@Air) and (e) 1st DTP (@Water).
Fig. 2.
Fig. 2. (a) Transmission spectra and (b) dip wavelength shifts of the fabricated MZI at 1st DTP with waist diameter of 43.6 µm, and (c) Transmission spectra and (d) dip wavelengths of the fabricated MZI at 2nd DTP with waist diameter of 3.21 µm placed in different liquid environments. (e) Spectra and (f) RI responses of the fabricated MZI near 2nd DTP but cut-off with different diameter and the inset indicates detailed structural parameters.
Fig. 3.
Fig. 3. (a) Transmission spectra and (b) dip wavelength of the fabricated MZI at the 2nd DTP with waist diameter of 1.87 µm placed in different pressure environments. (c) Comparison of theoretically calculated and experimentally acquired RI sensitivities. (d) The typical spectra of the MZI with waist diameter of 2.12 µm in pure CO2 and N2. (e) Consecutive measurements of cyclically injected gasses.
Fig. 4.
Fig. 4. (a) Transmission spectra and (b) dip wavelength shifts of the fabricated MZI at the 1st DTP with waist diameter of 43.6 µm, and (c) transmission spectra and (d) dip wavelengths of the MZI at 2nd DTP with waist diameter of 2.1 µm placed in different ambient temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + I 1 I 2 cos φ
S n = λ / λ n e x t n e x t = λ 1 / 1 Γ Γ ( 1 / 1 Δ n Δ n Δ n / Δ n n e x t n e x t )

Metrics