Abstract

A wavelength division multiplexer (WDM) based on asymmetric grating-assisted couplers is proposed, which can flexibly adjust the bandwidth by changing the corrugation width of the grating. The simulation results show that, compared with asymmetric uniform grating-assisted couplers, asymmetric unilateral amplitude apodization grating-assisted couplers and asymmetric bilateral amplitude apodization grating-assisted couplers can effectively suppress the sidelobes. The experimental results show that the insertion loss of each wavelength channel is between 0.23dB and 0.58dB, and the sidelobe suppress ratio of both unilateral amplitude apodization grating-assisted couplers and bilateral amplitude apodization grating-assisted couplers is larger than 10dB, which reduces channel crosstalk and proves the feasibility of the wavelength division multiplexers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon mode multi/demultiplexer based on multimode grating-assisted couplers

Huiye Qiu, Hui Yu, Ting Hu, Guomin Jiang, Haifeng Shao, Ping Yu, Jianyi Yang, and Xiaoqing Jiang
Opt. Express 21(15) 17904-17911 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
    [Crossref] [PubMed]
  2. P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31(16), 3085–3092 (2013).
    [Crossref]
  3. F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
    [Crossref] [PubMed]
  4. S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
    [Crossref]
  5. D. Malka, Y. Sintov, and Z. Zalevsky, “Design of a 1× 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures,” J. Opt. 17(12), 125702 (2015).
    [Crossref]
  6. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  7. D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
    [Crossref]
  8. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Prog. Electromagnetics Res. 143, 773–819 (2013).
    [Crossref]
  9. Z. Zhang, Y. Yu, and S. Fu, “Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction,” IEEE Photonics J. 9(2), 1–6 (2017).
    [Crossref]
  10. S. Li, Y. Zhou, J. Dong, X. Zhang, E. Cassan, J. Hou, C. Yang, S. Chen, D. Gao, and H. Chen, “Universal multimode waveguide crossing based on transformation optics,” Optica 5(12), 1549–1556 (2018).
    [Crossref]
  11. D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
    [Crossref]
  12. D. Melati, A. Alippi, A. Annoni, N. Peserico, and A. Melloni, “Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission,” Opt. Lett. 42(2), 342–345 (2017).
    [Crossref] [PubMed]
  13. S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H.-K. Tsang, and D. Dai, “On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems,” Opt. Lett. 42(14), 2802–2805 (2017).
    [Crossref] [PubMed]
  14. J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
    [Crossref]
  15. L. Zhu and J. Sun, “Silicon-based wavelength division multiplexer by exploiting mode conversion in asymmetric directional couplers,” OSA Continuum 1(1), 92–103 (2018).
    [Crossref]
  16. H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
    [Crossref] [PubMed]
  17. H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
    [Crossref]
  18. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
    [Crossref]
  19. W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
    [Crossref] [PubMed]
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  21. H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
    [Crossref] [PubMed]
  22. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
    [Crossref] [PubMed]
  23. A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
    [Crossref]
  24. A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
    [Crossref] [PubMed]
  25. J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, and X. Jiang, “Silicon lateral-apodized add-drop filter for on-chip optical interconnection,” Appl. Opt. 56(30), 8425–8429 (2017).
    [Crossref] [PubMed]
  26. M. J. Strain and M. Sorel, “Integrated III–V Bragg Gratings for Arbitrary Control Over Chirp and Coupling Coefficient,” IEEE Photonics Technol. Lett. 20(22), 1863–1865 (2008).
    [Crossref]
  27. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
    [Crossref] [PubMed]
  28. H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
    [Crossref] [PubMed]
  29. X. Zhao, Y. Wang, Q. Huang, and J. Xia, “Two-mode contra-directional coupler based on superposed grating,” Opt. Express 25(3), 2654–2665 (2017).
    [Crossref] [PubMed]
  30. J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
    [Crossref] [PubMed]
  31. M. Ma, Z. Chen, H. Yun, Y. Wang, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Apodized Spiral Bragg Grating Waveguides in Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 30(1), 111–114 (2018).
    [Crossref]
  32. Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6(10), 1222–1224 (1994).
    [Crossref]
  33. A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of Sidewall Roughness on Integrated Bragg Gratings,” J. Lightwave Technol. 29(24), 3693–3704 (2011).
    [Crossref]
  34. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  35. X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
    [Crossref] [PubMed]

2019 (1)

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

2018 (4)

2017 (6)

2016 (1)

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

2015 (5)

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

D. Malka, Y. Sintov, and Z. Zalevsky, “Design of a 1× 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures,” J. Opt. 17(12), 125702 (2015).
[Crossref]

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (8)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

P. De Heyn, J. De Coster, P. Verheyen, G. Lepage, M. Pantouvaki, P. Absil, W. Bogaerts, J. Van Campenhout, and D. Van Thourhout, “Fabrication-tolerant four-channel wavelength-division-multiplexing filter based on collectively tuned Si microrings,” J. Lightwave Technol. 31(16), 3085–3092 (2013).
[Crossref]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

2012 (2)

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

2011 (2)

2008 (1)

M. J. Strain and M. Sorel, “Integrated III–V Bragg Gratings for Arbitrary Control Over Chirp and Coupling Coefficient,” IEEE Photonics Technol. Lett. 20(22), 1863–1865 (2008).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1994 (1)

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Absil, P.

Alippi, A.

Annoni, A.

Assefa, S.

Ayotte, N.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Baehr-Jones, T.

Bedard, S.

Belhadj, N.

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

Bogaerts, W.

Bojko, R.

Cassan, E.

Chen, H.

Chen, S.

Chen, Z.

M. Ma, Z. Chen, H. Yun, Y. Wang, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Apodized Spiral Bragg Grating Waveguides in Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 30(1), 111–114 (2018).
[Crossref]

Chrostowski, L.

Dai, D.

S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H.-K. Tsang, and D. Dai, “On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems,” Opt. Lett. 42(14), 2802–2805 (2017).
[Crossref] [PubMed]

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Dai, T.

De Coster, J.

De Heyn, P.

Dong, J.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Fard, S. T.

Feng, X.

Finlayson, E. D.

Flueckiger, J.

Fu, S.

Z. Zhang, Y. Yu, and S. Fu, “Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

Fu, X.

Fu, Z.

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Gao, D.

Gao, S.

Gardes, F. Y.

Green, W. M.

Greenberg, M.

Grist, S.

He, S.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Hochberg, M.

Horst, F.

Hou, J.

Hu, T.

Hu, Y.

Huang, Q.

Jaeger, N. A.

Jaeger, N. A. F.

Jenkins, R. M.

Jiang, G.

Jiang, J.

Jiang, X.

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
[Crossref] [PubMed]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, and X. Jiang, “Silicon lateral-apodized add-drop filter for on-chip optical interconnection,” Appl. Opt. 56(30), 8425–8429 (2017).
[Crossref] [PubMed]

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

Kondo, Y.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

LaRochelle, S.

Lepage, G.

Li, S.

Li, Y.

Lin, C.

Lin, F.

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

Liu, A.

Liu, Y.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Ma, M.

M. Ma, Z. Chen, H. Yun, Y. Wang, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Apodized Spiral Bragg Grating Waveguides in Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 30(1), 111–114 (2018).
[Crossref]

Malka, D.

D. Malka, Y. Sintov, and Z. Zalevsky, “Design of a 1× 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures,” J. Opt. 17(12), 125702 (2015).
[Crossref]

Mashanovich, G. Z.

Melati, D.

Melloni, A.

Mu, D.

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, and X. Jiang, “Silicon lateral-apodized add-drop filter for on-chip optical interconnection,” Appl. Opt. 56(30), 8425–8429 (2017).
[Crossref] [PubMed]

Offrein, B. J.

Oku, S.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Painchaud, Y.

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of Sidewall Roughness on Integrated Bragg Gratings,” J. Lightwave Technol. 29(24), 3693–3704 (2011).
[Crossref]

Pantouvaki, M.

Peserico, N.

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Pond, J.

Qiu, H.

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
[Crossref] [PubMed]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, and X. Jiang, “Silicon lateral-apodized add-drop filter for on-chip optical interconnection,” Appl. Opt. 56(30), 8425–8429 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
[Crossref] [PubMed]

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

Reed, G. T.

Reid, A.

Shank, S. M.

Shao, H.

Shi, W.

Shi, Y.

Shibata, Y.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Simard, A. D.

Sintov, Y.

D. Malka, Y. Sintov, and Z. Zalevsky, “Design of a 1× 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures,” J. Opt. 17(12), 125702 (2015).
[Crossref]

Sorel, M.

M. J. Strain and M. Sorel, “Integrated III–V Bragg Gratings for Arbitrary Control Over Chirp and Coupling Coefficient,” IEEE Photonics Technol. Lett. 20(22), 1863–1865 (2008).
[Crossref]

Strain, M. J.

M. J. Strain and M. Sorel, “Integrated III–V Bragg Gratings for Arbitrary Control Over Chirp and Coupling Coefficient,” IEEE Photonics Technol. Lett. 20(22), 1863–1865 (2008).
[Crossref]

Su, Y.

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

Sun, J.

Tamamura, T.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Tsang, H.-K.

Van Campenhout, J.

Van Thourhout, D.

Verheyen, P.

Vlasov, Y. A.

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Wang, G.

Wang, J.

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

S. Chen, X. Fu, J. Wang, Y. Shi, S. He, and D. Dai, “Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach-Zehnder interferometer,” J. Lightwave Technol. 33(11), 2279–2285 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Wang, S.

S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H.-K. Tsang, and D. Dai, “On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems,” Opt. Lett. 42(14), 2802–2805 (2017).
[Crossref] [PubMed]

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

Wang, X.

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

M. Ma, Z. Chen, H. Yun, Y. Wang, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Apodized Spiral Bragg Grating Waveguides in Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 30(1), 111–114 (2018).
[Crossref]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
[Crossref] [PubMed]

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

Wang, Y.

Xia, J.

Yang, C.

Yang, J.

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
[Crossref] [PubMed]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, and X. Jiang, “Silicon lateral-apodized add-drop filter for on-chip optical interconnection,” Appl. Opt. 56(30), 8425–8429 (2017).
[Crossref] [PubMed]

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

Yu, H.

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
[Crossref] [PubMed]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, D. Mu, H. Yu, J. Yang, and X. Jiang, “Silicon lateral-apodized add-drop filter for on-chip optical interconnection,” Appl. Opt. 56(30), 8425–8429 (2017).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
[Crossref] [PubMed]

S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H.-K. Tsang, and D. Dai, “On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems,” Opt. Lett. 42(14), 2802–2805 (2017).
[Crossref] [PubMed]

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

Yu, P.

Yu, Y.

Z. Zhang, Y. Yu, and S. Fu, “Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

Yun, H.

Zalevsky, Z.

D. Malka, Y. Sintov, and Z. Zalevsky, “Design of a 1× 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures,” J. Opt. 17(12), 125702 (2015).
[Crossref]

Zhang, X.

Zhang, Z.

Z. Zhang, Y. Yu, and S. Fu, “Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

Zhao, X.

Zhou, Y.

Zhu, L.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9(9), 919–933 (1973).
[Crossref]

IEEE Photonics J. (3)

D. Mu, H. Qiu, J. Jiang, X. Wang, Z. Fu, Y. Wang, X. Jiang, H. Yu, and J. Yang, “A Four-Channel DWDM Tunable Add/Drop Demultiplexer Based on Silicon Waveguide Bragg Gratings,” IEEE Photonics J. 11(1), 1–8 (2019).
[Crossref]

Z. Zhang, Y. Yu, and S. Fu, “Broadband on-chip mode-division multiplexer based on adiabatic couplers and symmetric Y-junction,” IEEE Photonics J. 9(2), 1–6 (2017).
[Crossref]

H. Qiu, Y. Su, F. Lin, J. Jiang, P. Yu, H. Yu, J. Yang, and X. Jiang, “Silicon Add-Drop Filter Based on Multimode Grating Assisted Couplers,” IEEE Photonics J. 8(6), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (4)

M. J. Strain and M. Sorel, “Integrated III–V Bragg Gratings for Arbitrary Control Over Chirp and Coupling Coefficient,” IEEE Photonics Technol. Lett. 20(22), 1863–1865 (2008).
[Crossref]

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

M. Ma, Z. Chen, H. Yun, Y. Wang, X. Wang, N. A. F. Jaeger, and L. Chrostowski, “Apodized Spiral Bragg Grating Waveguides in Silicon-on-Insulator,” IEEE Photonics Technol. Lett. 30(1), 111–114 (2018).
[Crossref]

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photonics Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

D. Malka, Y. Sintov, and Z. Zalevsky, “Design of a 1× 4 silicon-alumina wavelength demultiplexer based on multimode interference in slot waveguide structures,” J. Opt. 17(12), 125702 (2015).
[Crossref]

Laser Photonics Rev. (2)

D. Dai, J. Wang, S. Chen, S. Wang, and S. He, “Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing,” Laser Photonics Rev. 9(3), 339–344 (2015).
[Crossref]

J. Wang, S. He, and D. Dai, “On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing,” Laser Photonics Rev. 8(2), 18–22 (2014).
[Crossref]

Nat. Photonics (1)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Opt. Express (8)

F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt. Express 21(10), 11652–11658 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Opt. Express 21(6), 6733–6738 (2013).
[Crossref] [PubMed]

H. Qiu, H. Yu, T. Hu, G. Jiang, H. Shao, P. Yu, J. Yang, and X. Jiang, “Silicon mode multi/demultiplexer based on multimode grating-assisted couplers,” Opt. Express 21(15), 17904–17911 (2013).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
[Crossref] [PubMed]

X. Zhao, Y. Wang, Q. Huang, and J. Xia, “Two-mode contra-directional coupler based on superposed grating,” Opt. Express 25(3), 2654–2665 (2017).
[Crossref] [PubMed]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
[Crossref] [PubMed]

Opt. Lett. (7)

X. Wang, Y. Wang, J. Flueckiger, R. Bojko, A. Liu, A. Reid, J. Pond, N. A. F. Jaeger, and L. Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Opt. Lett. 39(19), 5519–5522 (2014).
[Crossref] [PubMed]

H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Opt. Lett. 38(1), 1–3 (2013).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

H. Qiu, J. Jiang, P. Yu, J. Yang, H. Yu, and X. Jiang, “Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric Bragg sidewall gratings,” Opt. Lett. 42(19), 3912–3915 (2017).
[Crossref] [PubMed]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de)multiplexing based on dispersive self-imaging,” Opt. Lett. 36(23), 4488–4490 (2011).
[Crossref] [PubMed]

D. Melati, A. Alippi, A. Annoni, N. Peserico, and A. Melloni, “Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission,” Opt. Lett. 42(2), 342–345 (2017).
[Crossref] [PubMed]

S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H.-K. Tsang, and D. Dai, “On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems,” Opt. Lett. 42(14), 2802–2805 (2017).
[Crossref] [PubMed]

Optica (1)

OSA Continuum (1)

Prog. Electromagnetics Res. (1)

D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects (invited review),” Prog. Electromagnetics Res. 143, 773–819 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 (a) Schematic structure of WDM based on asymmetric uniform grating-assisted couplers. (b) Top view of the asymmetric uniform grating-assisted coupler.
Fig. 2
Fig. 2 The relationship between the effective refractive index of different modes and the phase matching condition.
Fig. 3
Fig. 3 (a) The relationship between the coupling coefficient and the corrugation width. (b) The relationship between coupling length and power.
Fig. 4
Fig. 4 (a) The spectral responses of the λ 1 , λ 2 ,and λ 3 channels. (b) The relationship between the 3dB bandwidth and the corrugation width.
Fig. 5
Fig. 5 Simulated light propagation of the λ 1 , λ 2 ,and λ 3 channels.
Fig. 6
Fig. 6 Simulated spectral responses of WDM based on asymmetric uniform grating-assisted couplers.
Fig. 7
Fig. 7 (a) Schematic structure of WDM based on asymmetric unilateral amplitude apodization grating-assisted couplers. (b) Top view of the asymmetric unilateral amplitude apodization grating-assisted coupler.
Fig. 8
Fig. 8 (a) The variation ofDalong the propagation direction when a takes different values. (b) The variation of W G along the propagation direction when b takes different values.
Fig. 9
Fig. 9 Reflection spectra of the asymmetric unilateral amplitude apodization grating-assisted coupler in the λ 1 channel when b takes different values.
Fig. 10
Fig. 10 Simulated spectral responses of WDM based on asymmetric unilateral amplitude apodization grating-assisted couplers.
Fig. 11
Fig. 11 (a) Schematic structure of WDM based on asymmetric bilateral amplitude apodization grating-assisted couplers. (b) Top view of the asymmetric bilateral amplitude apodization grating-assisted coupler.
Fig. 12
Fig. 12 (a) The variation of D 1 along the propagation direction when a takes different values. (b) The variation of D 2 along the propagation direction when H 2 takes different values.
Fig. 13
Fig. 13 Reflection spectra of the asymmetric bilateral amplitude apodization grating-assisted coupler in the λ 1 channel when H 2 takes different values.
Fig. 14
Fig. 14 Simulated spectral responses of WDM based on asymmetric bilateral amplitude apodization grating-assisted couplers.
Fig. 15
Fig. 15 SEM pictures of the fabricated (a) wavelength division (de)multiplexer, (b) asymmetric uniform grating-assisted coupler, (c)-(d) asymmetric unilateral amplitude apodization grating-assisted coupler, and (e)-(g) asymmetric bilateral amplitude apodization grating-assisted coupler.
Fig. 16
Fig. 16 Experimental spectral responses of the WDMs based on (a) asymmetric uniform grating-assisted couplers, (b) asymmetric unilateral amplitude apodization grating-assisted couplers, and (c) asymmetric bilateral amplitude apodization grating-assisted couplers.
Fig. 17
Fig. 17 Experimental spectral responses of (a)-(c) asymmetric uniform grating-assisted couplers, (d)-(f) asymmetric unilateral amplitude apodization grating-assisted couplers, and (g)-(i) asymmetric bilateral amplitude apodization grating-assisted couplers.

Tables (4)

Tables Icon

Table 1 Simulation parameters of WDM based on asymmetric uniform grating-assisted couplers.

Tables Icon

Table 2 Simulation parameters of WDM based on asymmetric unilateral amplitude apodization grating-assisted couplers.

Tables Icon

Table 3 Simulation parameters of WDM based on asymmetric bilateral amplitude apodization grating-assisted couplers.

Tables Icon

Table 4 Test results of each wavelength channel of asymmetric grating-assisted couplers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n eff_0 + n eff_i = λ i / Λ i ( i=1,2,3... ),
D=H e a ( z L i /2 ) 2 L i 2 ,
W G = W i +b( 1 e a ( z L i /2 ) 2 L i 2 ),
D 1 = H 1 e a ( z L i /2 ) 2 L i 2 ,
D 2 = H 2 ( 1 e a ( z L i /2 ) 2 L i 2 ),

Metrics