Abstract

In this paper, a broadband low-scattering metasurface is proposed by using a combination of phase cancellation and absorption mechanisms. The metasurface is composed of two structural layers. One layer adopts the geometric phase cell that can obtain a different reflection phase by changing its orientation. Through the random phase distribution design, electromagnetic diffusion can be realized to reduce the backward scattering energy. The other layer is made of a resistive frequency selective surface (RFSS) that can absorb the incident wave by converting it into Ohmic loss. The above two physical mechanisms respectively play the great roles at two distinct frequency bands, and finally make our metasurface achieve the RCS reduction over a wide frequency band ranging from 13 to 31.5 GHz. Both simulation and experimental results are in good agreement, which fully demonstrates our design method. The analysis of the scattering patterns, electric-field distribution and power loss density are given to explain the hybrid RCS-reduction mechanism of our metasurface.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband, polarization insensitive low-scattering metasurface based on lossy Pancharatnam-Berry phase particles

Lina Qiu, Gaobiao Xiao, Xianghong Kong, and Can Xiong
Opt. Express 27(15) 21226-21238 (2019)

Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements

Junming Zhao, Boyu Sima, Nan Jia, Cheng Wang, Bo Zhu, Tian Jiang, and Yijun Feng
Opt. Express 24(24) 27849-27857 (2016)

Coding metasurface for broadband microwave scattering reduction with optical transparency

Ke Chen, Li Cui, Yijun Feng, Junming Zhao, Tian Jiang, and Bo Zhu
Opt. Express 25(5) 5571-5579 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  3. X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
    [Crossref]
  4. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
    [Crossref] [PubMed]
  5. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref] [PubMed]
  6. C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
    [Crossref]
  7. J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
    [Crossref]
  8. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
    [Crossref]
  9. C. Ji, J. Song, C. Huang, X. Wu, and X. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
    [Crossref] [PubMed]
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  11. Z. Zhou, K. Chen, J. Zhao, P. Chen, T. Jiang, B. Zhu, Y. Feng, and Y. Li, “Metasurface Salisbury screen: achieving ultra-wideband microwave absorption,” Opt. Express 25(24), 30241–30252 (2017).
    [Crossref] [PubMed]
  12. M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
    [Crossref]
  13. A. Kazemzadeh and A. Karlsson, “Multilayered wideband absorbers for oblique angle of incidence,” IEEE Trans. Antenn. Propag. 58(11), 3637–3646 (2010).
    [Crossref]
  14. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  15. Y. Shang, Z. Shen, and S. Xiao, “On the Design of Single-Layer Circuit Analog Absorber Using Double-Square-Loop Array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
    [Crossref]
  16. M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
    [Crossref]
  17. Y. Fu, Y. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
    [Crossref]
  18. J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
    [Crossref]
  19. A. Edalati and K. Sarabandi, “Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
    [Crossref]
  20. W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
    [Crossref]
  21. A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors,” IEEE Trans. Antenn. Propag. 65(10), 5406–5417 (2017).
    [Crossref]
  22. A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory,” IEEE Trans. Antenn. Propag. 67(1), 298–308 (2019).
    [Crossref]
  23. H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
    [Crossref] [PubMed]
  24. C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
    [Crossref]
  25. C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
    [Crossref]
  26. J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
    [Crossref] [PubMed]
  27. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  28. K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
    [Crossref] [PubMed]
  29. X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
    [Crossref] [PubMed]
  30. Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
    [Crossref]
  31. J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
    [Crossref]
  32. S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
    [Crossref]
  33. Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
    [Crossref] [PubMed]
  34. J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
    [Crossref]
  35. F. F. Li, Q. Lou, P. Chen, Y. Poo, and R. X. Wu, “Broadband backscattering reduction realized by array of lossy scatterers,” Opt. Express 26(26), 34711–34718 (2018).
    [Crossref] [PubMed]
  36. Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
    [Crossref]
  37. W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
    [Crossref] [PubMed]
  38. Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
    [Crossref]
  39. NRL, Procedure for arch test, MIL-A-1716D (NAVY), 1985.

2019 (3)

C. Ji, J. Song, C. Huang, X. Wu, and X. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref] [PubMed]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory,” IEEE Trans. Antenn. Propag. 67(1), 298–308 (2019).
[Crossref]

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

2018 (7)

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

F. F. Li, Q. Lou, P. Chen, Y. Poo, and R. X. Wu, “Broadband backscattering reduction realized by array of lossy scatterers,” Opt. Express 26(26), 34711–34718 (2018).
[Crossref] [PubMed]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
[Crossref]

2017 (7)

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Z. Zhou, K. Chen, J. Zhao, P. Chen, T. Jiang, B. Zhu, Y. Feng, and Y. Li, “Metasurface Salisbury screen: achieving ultra-wideband microwave absorption,” Opt. Express 25(24), 30241–30252 (2017).
[Crossref] [PubMed]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors,” IEEE Trans. Antenn. Propag. 65(10), 5406–5417 (2017).
[Crossref]

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
[Crossref]

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

2016 (2)

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
[Crossref] [PubMed]

2015 (3)

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
[Crossref] [PubMed]

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

2014 (5)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

A. Edalati and K. Sarabandi, “Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

2013 (3)

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Y. Shang, Z. Shen, and S. Xiao, “On the Design of Single-Layer Circuit Analog Absorber Using Double-Square-Loop Array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

2012 (3)

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Y. Fu, Y. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

2010 (1)

A. Kazemzadeh and A. Karlsson, “Multilayered wideband absorbers for oblique angle of incidence,” IEEE Trans. Antenn. Propag. 58(11), 3637–3646 (2010).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Bai, Y. Y.

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Balanis, C. A.

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory,” IEEE Trans. Antenn. Propag. 67(1), 298–308 (2019).
[Crossref]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors,” IEEE Trans. Antenn. Propag. 65(10), 5406–5417 (2017).
[Crossref]

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Birtcher, C. R.

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory,” IEEE Trans. Antenn. Propag. 67(1), 298–308 (2019).
[Crossref]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors,” IEEE Trans. Antenn. Propag. 65(10), 5406–5417 (2017).
[Crossref]

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Boyd, R. W.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chen, K.

Chen, P.

Chen, W.

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

Chen, X.

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Cheng, Q.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Cui, J.

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

Cui, T.

Cui, T. J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Cui, Y. X.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

de Falcón, J. L. M.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

De Leon, I.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

de Maagt, P.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Ding, F.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ding, X.

Dong, D. S.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Edalati, A.

A. Edalati and K. Sarabandi, “Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

Ederra, I.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Feng, M.

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Feng, Y.

Fu, Y.

Y. Fu, Y. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ge, X. C.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gong, S. X.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
[Crossref]

Gonzalo, R.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Gu, C.

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

Gu, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Guo, Y. J.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
[Crossref]

Han, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

He, S. L.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Huang, C.

C. Ji, J. Song, C. Huang, X. Wu, and X. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref] [PubMed]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
[Crossref]

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

Huang, L.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Iriarte, J.

M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Iriarte Galarregui, J. C.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

Ji, C.

C. Ji, J. Song, C. Huang, X. Wu, and X. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref] [PubMed]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

Jia, N.

Jia, Y. T.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
[Crossref]

Jiang, T.

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Jin, Y.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Karimi, E.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Karlsson, A.

A. Kazemzadeh and A. Karlsson, “Multilayered wideband absorbers for oblique angle of incidence,” IEEE Trans. Antenn. Propag. 58(11), 3637–3646 (2010).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kazemzadeh, A.

A. Kazemzadeh and A. Karlsson, “Multilayered wideband absorbers for oblique angle of incidence,” IEEE Trans. Antenn. Propag. 58(11), 3637–3646 (2010).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Li, F. F.

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Li, K.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
[Crossref]

Li, M.

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Li, Y.

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

Z. Zhou, K. Chen, J. Zhao, P. Chen, T. Jiang, B. Zhu, Y. Feng, and Y. Li, “Metasurface Salisbury screen: achieving ultra-wideband microwave absorption,” Opt. Express 25(24), 30241–30252 (2017).
[Crossref] [PubMed]

Y. Fu, Y. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Li, Z.

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

Liang, J.

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

Liang, L.

Liu, J.

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

Liu, L.

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

Liu, W.

Liu, Y.

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
[Crossref]

Lou, Q.

Lu, Y.

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

Luo, X.

C. Ji, J. Song, C. Huang, X. Wu, and X. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref] [PubMed]

J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
[Crossref]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

Ma, H.

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Ma, X.

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Modi, A. Y.

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory,” IEEE Trans. Antenn. Propag. 67(1), 298–308 (2019).
[Crossref]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors,” IEEE Trans. Antenn. Propag. 65(10), 5406–5417 (2017).
[Crossref]

Mühlenbernd, H.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, W.

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

Pang, Y.

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Paquay, M.

M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Poo, Y.

Pu, M.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

Qassim, H.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qiu, C. W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Qo, S.

Qu, S.

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sarabandi, K.

A. Edalati and K. Sarabandi, “Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

Schulz, S. A.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Shaman, H. N.

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory,” IEEE Trans. Antenn. Propag. 67(1), 298–308 (2019).
[Crossref]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors,” IEEE Trans. Antenn. Propag. 65(10), 5406–5417 (2017).
[Crossref]

Shang, Y.

Y. Shang, Z. Shen, and S. Xiao, “On the Design of Single-Layer Circuit Analog Absorber Using Double-Square-Loop Array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

Shen, L.

Shen, Y.

Shen, Z.

Y. Shang, Z. Shen, and S. Xiao, “On the Design of Single-Layer Circuit Analog Absorber Using Double-Square-Loop Array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

Sima, B.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Song, J.

C. Ji, J. Song, C. Huang, X. Wu, and X. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref] [PubMed]

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Su, J.

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

Sui, S.

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Sun, B.

J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

Sun, H.

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Tellechea Pereda, A.

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tian, Z.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Upham, J.

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, B. Z.

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Wang, C.

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
[Crossref] [PubMed]

Wang, G.

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

Wang, J.

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Wang, K.

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

Wu, R. X.

Wu, X.

C. Ji, J. Song, C. Huang, X. Wu, and X. Luo, “Dual-band vortex beam generation with different OAM modes using single-layer metasurface,” Opt. Express 27(1), 34–44 (2019).
[Crossref] [PubMed]

J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
[Crossref]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Xia, S.

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

Xiao, S.

Y. Shang, Z. Shen, and S. Xiao, “On the Design of Single-Layer Circuit Analog Absorber Using Double-Square-Loop Array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Xu, B.

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

Xu, D.

Xu, Z.

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Yan, M. B.

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

Yan, X.

Yang, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
[Crossref]

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

X. Yan, L. Liang, J. Yang, W. Liu, X. Ding, D. Xu, Y. Zhang, T. Cui, and J. Yao, “Broadband, wide-angle, low-scattering terahertz wave by a flexible 2-bit coding metasurface,” Opt. Express 23(22), 29128–29137 (2015).
[Crossref] [PubMed]

Yang, Y.

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

Yao, J.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, N.

Y. Fu, Y. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zentgraf, T.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Zhang, C.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

Zhang, J.

Zhang, Q.

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

Zhang, S.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Zhang, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zhang, Y.

Zhao, B.

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

Z. Zhou, K. Chen, J. Zhao, P. Chen, T. Jiang, B. Zhu, Y. Feng, and Y. Li, “Metasurface Salisbury screen: achieving ultra-wideband microwave absorption,” Opt. Express 25(24), 30241–30252 (2017).
[Crossref] [PubMed]

J. Zhao, B. Sima, N. Jia, C. Wang, B. Zhu, T. Jiang, and Y. Feng, “Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements,” Opt. Express 24(24), 27849–27857 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhou, Z.

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

Z. Zhou, K. Chen, J. Zhao, P. Chen, T. Jiang, B. Zhu, Y. Feng, and Y. Li, “Metasurface Salisbury screen: achieving ultra-wideband microwave absorption,” Opt. Express 25(24), 30241–30252 (2017).
[Crossref] [PubMed]

Zhu, B.

Zhuang, Y.

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

ACS Photonics (1)

C. Huang, J. Yang, X. Wu, J. Song, M. Pu, C. Wang, and X. Luo, “Reconfigurable Metasurface Cloak for Dynamical Electromagnetic Illusions,” ACS Photonics 5(5), 1718–1725 (2017).
[Crossref]

Adv. Mater. (1)

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

J. Yang, C. Huang, X. Wu, B. Sun, and X. Luo, “Dual-wavelength carpet cloak using ultrathin metasurface,” Adv. Opt. Mater. 6(14), 1800073 (2018).
[Crossref]

C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, and X. Luo, “Reconfigurable metasurface for multifunctional control of electromagnetic wave,” Adv. Opt. Mater. 5(22), 1700485 (2017).
[Crossref]

Appl. Phys. Lett. (2)

J. Zhao, C. Zhang, Q. Cheng, J. Yang, and T. J. Cui, “An optically transparent metasurface for broadband microwave antireflection,” Appl. Phys. Lett. 112(7), 073504 (2018).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Carbon (1)

Y. Pang, Y. Li, J. Wang, M. B. Yan, S. Qu, S. Xia, and Z. Xu, “Electromagnetic reflection reduction of carbon composite materials mediated by collaborative mechanisms,” Carbon 147, 112–119 (2019).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Y. Zhuang, G. Wang, J. Liang, and Q. Zhang, “Dual-band low-scattering metasurface based on combination of diffusion and absorption,” IEEE Antennas Wirel. Propag. Lett. 16, 2606–2609 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (11)

A. Kazemzadeh and A. Karlsson, “Multilayered wideband absorbers for oblique angle of incidence,” IEEE Trans. Antenn. Propag. 58(11), 3637–3646 (2010).
[Crossref]

Y. Shang, Z. Shen, and S. Xiao, “On the Design of Single-Layer Circuit Analog Absorber Using Double-Square-Loop Array,” IEEE Trans. Antenn. Propag. 61(12), 6022–6029 (2013).
[Crossref]

M. Paquay, J. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, “Thin AMC Structure for Radar Cross-Section Reduction,” IEEE Trans. Antenn. Propag. 55(12), 3630–3638 (2007).
[Crossref]

Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction,” IEEE Trans. Antenn. Propag. 65(6), 3291–3295 (2017).
[Crossref]

J. Su, Y. Lu, J. Liu, Y. Yang, Z. Li, and J. Song, “A Novel Checkerboard Metasurface Based on Optimized Multielement Phase Cancellation for Superwideband RCS Reduction,” IEEE Trans. Antenn. Propag. 66(12), 7091–7099 (2018).
[Crossref]

C. Huang, C. Ji, X. Wu, J. Song, and X. Luo, “Combining FSS and EBG surface for high-efficiency transmission and low-scattering properties,” IEEE Trans. Antenn. Propag. 66(3), 1628–1632 (2018).
[Crossref]

J. C. Iriarte Galarregui, A. Tellechea Pereda, J. L. M. de Falcón, I. Ederra, R. Gonzalo, and P. de Maagt, “Broadband Radar Cross-Section Reduction Using AMC Technology,” IEEE Trans. Antenn. Propag. 61(12), 6136–6143 (2013).
[Crossref]

A. Edalati and K. Sarabandi, “Wideband, Wide Angle, Polarization Independent RCS Reduction Using Nonabsorptive Miniaturized-Element Frequency Selective Surfaces,” IEEE Trans. Antenn. Propag. 62(2), 747–754 (2014).
[Crossref]

W. Chen, C. A. Balanis, and C. R. Birtcher, “Checkerboard EBG surfaces for wideband radar cross section reduction,” IEEE Trans. Antenn. Propag. 63(6), 2636–2645 (2015).
[Crossref]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors,” IEEE Trans. Antenn. Propag. 65(10), 5406–5417 (2017).
[Crossref]

A. Y. Modi, C. A. Balanis, C. R. Birtcher, and H. N. Shaman, “New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory,” IEEE Trans. Antenn. Propag. 67(1), 298–308 (2019).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Sui, H. Ma, J. Wang, Y. Pang, M. Feng, Z. Xu, and S. Qu, “Absorptive Coding Metasurface for Further Radar Cross Section Reduction,” J. Phys. D Appl. Phys. 51(6), 1361–6463 (2018).
[Crossref]

Light Sci. Appl. (2)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, “Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,” Light Sci. Appl. 3(5), e167 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. Fu, Y. Li, and N. Yuan, “Wideband composite AMC surfaces for RCS reduction,” Microw. Opt. Technol. Lett. 53(4), 712–715 (2011).
[Crossref]

Nat. Commun. (1)

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3(6), 1198 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. China Phys. Mech. Astron. (1)

X. Luo, “Principles of electromagnetic waves in metasurfaces,” Sci. China Phys. Mech. Astron. 58(9), 594201 (2015).
[Crossref]

Sci. Rep. (3)

W. Pan, C. Huang, M. Pu, X. Ma, J. Cui, B. Zhao, and X. Luo, “Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering,” Sci. Rep. 6(1), 21462 (2016).
[Crossref] [PubMed]

K. Wang, J. Zhao, Q. Cheng, D. S. Dong, and T. J. Cui, “Broadband and broad-angle low-scattering metasurface based on hybrid optimization algorithm,” Sci. Rep. 4(1), 5935 (2014).
[Crossref] [PubMed]

H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, and Z. Zhou, “Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction,” Sci. Rep. 7(1), 40782 (2017).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (1)

NRL, Procedure for arch test, MIL-A-1716D (NAVY), 1985.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed metasurface and its reflection characteristics (a) 3D-view of the metasurface and its meta-atom. (b) Reflection magnitudes of the co- and cross- polarized components for the meta-atom under RCP (LCP) incidence. (c) Cross-polarized reflection magnitudes and phases of the meta-atom with different rotation angles of the CSRR under RCP incidence. (d) Absorptivity of the meta-atom with different rotation angles of the CSRR under LP incidence.
Fig. 2
Fig. 2 (a) Simulated RCS reduction performance of the designed metasurface at three different cases and (b) The ratio of the absorption, diffusion and reflection of our metasurface under normal incidence.
Fig. 3
Fig. 3 Simulated 3D scattering patterns of (a-c) the metallic plate and (d-f) the metasurface at the frequencies of 14 GHz, 20 GHz, and 27 GHz.
Fig. 4
Fig. 4 Simulated electric field distribution of the proposed unit cell on the top metallic layer at (a) 14 GHz, (b) 20 GHz and (c) 27 GHz.
Fig. 5
Fig. 5 Simulated power loss density of the unit cell on xoz plane at (a) 14 GHz, (b) 20 GHz and (c) 27 GHz.
Fig. 6
Fig. 6 (a) Measurement setup in a microwave anechoic chamber and fabricated metasurface sample. (b) Arch measurement system. (c) Measured RCS reduction performance of the metasurface under normal incidence. (d) Measured Reflection of the metasurface for TE and TM polarizations under oblique incidence.

Tables (1)

Tables Icon

Table 1 comparison of our work and previous researches

Metrics