Abstract

In the present work, the near-field radiative heat transfer of a multilayered graphene system is investigated within the framework of the many-body theory. For the first time, the temperature distribution corresponding to the steady state of the system is investigated. Unique temperature steps are observed near both boundaries of the system, especially in the strong near-field regime. By utilizing the effective radiative thermal conductance, the thermal freedom of heat flux in different regions of the system is analyzed quantitatively, and the cause of various temperature distributions is explained accordingly. To characterize the heat transfer ability of the whole system, we evaluate the system with two heat transfer coefficients (HTC), transient heat transfer coefficient (THTC), and steady heat transfer coefficient (SHTC). A unique many-body enhancement is observed, which causes a red-shift of resonance peak corresponding to graphene surface plasmon polaritons. Furthermore, a three-body enhancement of SHTC emerges thanks to the relay effect and the complexity of the system. The regime of heat transport can be tuned by changing the chemical potentials of graphene and undergoes a transition from diffusive to quasi-ballistic transport in the strong near-field regime.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modulation of near-field radiative heat transfer between graphene sheets by strain engineering

Lixin Ge, Zijun Xu, Yuping Cang, and Ke Gong
Opt. Express 27(16) A1109-A1117 (2019)

Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems

Ognjen Ilic, Marinko Jablan, John D. Joannopoulos, Ivan Celanovic, and Marin Soljačić
Opt. Express 20(S3) A366-A384 (2012)

Dynamic optical control of near-field radiative transfer

Junlong Kou and Austin J. Minnich
Opt. Express 26(18) A729-A736 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref] [PubMed]
  3. F. Rana, “Plasmons get tuned up,” Nat. Nanotechnol. 6(10), 611–612 (2011).
    [Crossref] [PubMed]
  4. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
    [Crossref] [PubMed]
  5. M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
    [Crossref]
  6. E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
    [Crossref]
  7. X. Liu, R. Z. Zhang, and Z. Zhang, “Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes,” ACS Photonics 1(9), 785–789 (2014).
    [Crossref]
  8. S. M. Rytov, “Theory of Electric Fluctuations and Thermal Radiation,” (Air Force Cambridge Research Center, Bedford, MA, 1953).
  9. D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
    [Crossref]
  10. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93(4), 043109 (2008).
    [Crossref]
  11. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84(7), 2250–2262 (2011).
    [Crossref]
  12. A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 212, 075436 (2018).
    [Crossref]
  13. S. A. Biehs, E. Rousseau, and J. J. Greffet, “Mesoscopic Description of Radiative Heat Transfer at the Nanoscale,” Phys. Rev. Lett. 105(23), 234301 (2010).
    [Crossref] [PubMed]
  14. V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
    [Crossref]
  15. Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-Field Radiative Heat Transfer between Black Phosphorus Sheets via Anisotropic Surface Plasmon Polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
    [Crossref]
  16. J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
    [Crossref]
  17. L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
    [Crossref]
  18. M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun. 9(1), 4302 (2018).
    [Crossref] [PubMed]
  19. M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195136 (2015).
    [Crossref]
  20. A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
    [Crossref] [PubMed]
  21. D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
    [Crossref] [PubMed]
  22. A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
    [Crossref] [PubMed]
  23. R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
    [Crossref]
  24. A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B. 83(24), 241407 (2011).
    [Crossref]
  25. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
    [Crossref] [PubMed]
  26. M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
    [Crossref]
  27. B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
    [Crossref]
  28. M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
    [Crossref] [PubMed]
  29. V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B. 85(15), 155418 (2012).
    [Crossref]
  30. M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
    [Crossref] [PubMed]
  31. Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
    [Crossref]
  32. J. Song and Q. Cheng, “Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials,” Phys. Rev. B 94(12), 125419 (2016).
    [Crossref]
  33. J.-Y. Chang, Y. Yang, and L. Wang, “Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate,” J. Quant. Spectrosc. Radiat. Transf. 184, 58–67 (2016).
    [Crossref]
  34. X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
    [Crossref]
  35. B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
    [Crossref]
  36. B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
    [Crossref]
  37. X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
    [Crossref]
  38. J. Shen, X. Liu, and Y. Xuan, “Near-Field Thermal Radiation between Nanostructures of Natural Anisotropic Material,” Phys. Rev. Appl. 10(3), 034029 (2018).
    [Crossref]
  39. M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
    [Crossref]
  40. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
    [Crossref] [PubMed]
  41. V. B. Svetovoy and G. Palasantzas, “Graphene-on-Silicon Near-Field Thermophotovoltaic Cell,” Phys. Rev. Appl. 2(3), 034006 (2014).
    [Crossref]
  42. P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
    [Crossref] [PubMed]
  43. J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
    [Crossref] [PubMed]
  44. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
    [Crossref]
  45. J.-H. Jiang and J.-S. Wang, “Caroli formalism in near-field heat transfer between parallel graphene sheets,” Phys. Rev. B 96(15), 155437 (2017).
    [Crossref]
  46. G. Yin, J. Yang, and Y. Ma, “Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis,” Appl. Phys. Express 9(12), 122001 (2016).
    [Crossref]
  47. X. L. Liu and Z. M. Zhang, “Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons,” Appl. Phys. Lett. 107(14), 143114 (2015).
    [Crossref]
  48. F. V. Ramirez, S. Shen, and A. J. H. McGaughey, “Near-field radiative heat transfer in graphene plasmonic nanodisk dimers,” Phys. Rev. B 96(16), 165427 (2017).
    [Crossref]
  49. P. Ben-Abdallah, A. Belarouci, L. Frechette, and S. A. Biehs, “Heat flux splitter for near-field thermal radiation,” Appl. Phys. Lett. 107(5), 053109 (2015).
    [Crossref]
  50. O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
    [Crossref] [PubMed]
  51. R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
    [Crossref] [PubMed]
  52. Y. Zhang, C.-H. Wang, H.-L. Yi, and H.-P. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transf. 221, 138–146 (2018).
    [Crossref]
  53. K. Shi, F. Bao, and S. He, “Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures,” ACS Photonics 4(4), 971–978 (2017).
    [Crossref]
  54. L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
    [Crossref] [PubMed]
  55. L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
    [Crossref]
  56. I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
    [Crossref]
  57. I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
    [Crossref]
  58. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  59. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter 80(24), 196–206 (2009).
    [Crossref]
  60. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
    [Crossref]
  61. H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
    [Crossref] [PubMed]
  62. R. Messina, M. Antezza, and P. Ben-Abdallah, “Three-body amplification of photon heat tunneling,” Phys. Rev. Lett. 109(24), 244302 (2012).
    [Crossref] [PubMed]

2019 (1)

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

2018 (15)

V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
[Crossref]

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-Field Radiative Heat Transfer between Black Phosphorus Sheets via Anisotropic Surface Plasmon Polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun. 9(1), 4302 (2018).
[Crossref] [PubMed]

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 212, 075436 (2018).
[Crossref]

J. Shen, X. Liu, and Y. Xuan, “Near-Field Thermal Radiation between Nanostructures of Natural Anisotropic Material,” Phys. Rev. Appl. 10(3), 034029 (2018).
[Crossref]

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

Y. Zhang, C.-H. Wang, H.-L. Yi, and H.-P. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transf. 221, 138–146 (2018).
[Crossref]

I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
[Crossref]

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

2017 (9)

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
[Crossref]

K. Shi, F. Bao, and S. He, “Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref] [PubMed]

J.-H. Jiang and J.-S. Wang, “Caroli formalism in near-field heat transfer between parallel graphene sheets,” Phys. Rev. B 96(15), 155437 (2017).
[Crossref]

F. V. Ramirez, S. Shen, and A. J. H. McGaughey, “Near-field radiative heat transfer in graphene plasmonic nanodisk dimers,” Phys. Rev. B 96(16), 165427 (2017).
[Crossref]

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

2016 (3)

J. Song and Q. Cheng, “Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials,” Phys. Rev. B 94(12), 125419 (2016).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate,” J. Quant. Spectrosc. Radiat. Transf. 184, 58–67 (2016).
[Crossref]

G. Yin, J. Yang, and Y. Ma, “Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis,” Appl. Phys. Express 9(12), 122001 (2016).
[Crossref]

2015 (8)

X. L. Liu and Z. M. Zhang, “Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons,” Appl. Phys. Lett. 107(14), 143114 (2015).
[Crossref]

P. Ben-Abdallah, A. Belarouci, L. Frechette, and S. A. Biehs, “Heat flux splitter for near-field thermal radiation,” Appl. Phys. Lett. 107(5), 053109 (2015).
[Crossref]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
[Crossref] [PubMed]

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195136 (2015).
[Crossref]

2014 (5)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

V. B. Svetovoy and G. Palasantzas, “Graphene-on-Silicon Near-Field Thermophotovoltaic Cell,” Phys. Rev. Appl. 2(3), 034006 (2014).
[Crossref]

2013 (3)

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
[Crossref] [PubMed]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

2012 (7)

E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B. 85(15), 155418 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
[Crossref] [PubMed]

R. Messina, M. Antezza, and P. Ben-Abdallah, “Three-body amplification of photon heat tunneling,” Phys. Rev. Lett. 109(24), 244302 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

2011 (3)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84(7), 2250–2262 (2011).
[Crossref]

F. Rana, “Plasmons get tuned up,” Nat. Nanotechnol. 6(10), 611–612 (2011).
[Crossref] [PubMed]

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B. 83(24), 241407 (2011).
[Crossref]

2010 (2)

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

S. A. Biehs, E. Rousseau, and J. J. Greffet, “Mesoscopic Description of Radiative Heat Transfer at the Nanoscale,” Phys. Rev. Lett. 105(23), 234301 (2010).
[Crossref] [PubMed]

2009 (1)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter 80(24), 196–206 (2009).
[Crossref]

2008 (2)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93(4), 043109 (2008).
[Crossref]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1971 (1)

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Antezza, M.

B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
[Crossref]

R. Messina, M. Antezza, and P. Ben-Abdallah, “Three-body amplification of photon heat tunneling,” Phys. Rev. Lett. 109(24), 244302 (2012).
[Crossref] [PubMed]

Atwater, H. A.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

Avouris, P.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

Bansropun, S.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

Bao, F.

K. Shi, F. Bao, and S. He, “Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Belarouci, A.

P. Ben-Abdallah, A. Belarouci, L. Frechette, and S. A. Biehs, “Heat flux splitter for near-field thermal radiation,” Appl. Phys. Lett. 107(5), 053109 (2015).
[Crossref]

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

Benabdallah, P.

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

Ben-Abdallah, P.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
[Crossref]

P. Ben-Abdallah, A. Belarouci, L. Frechette, and S. A. Biehs, “Heat flux splitter for near-field thermal radiation,” Appl. Phys. Lett. 107(5), 053109 (2015).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

R. Messina, M. Antezza, and P. Ben-Abdallah, “Three-body amplification of photon heat tunneling,” Phys. Rev. Lett. 109(24), 244302 (2012).
[Crossref] [PubMed]

Berger, C.

P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
[Crossref] [PubMed]

Bezencenet, O.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

Biehs, S. A.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

P. Ben-Abdallah, A. Belarouci, L. Frechette, and S. A. Biehs, “Heat flux splitter for near-field thermal radiation,” Appl. Phys. Lett. 107(5), 053109 (2015).
[Crossref]

S. A. Biehs, E. Rousseau, and J. J. Greffet, “Mesoscopic Description of Radiative Heat Transfer at the Nanoscale,” Phys. Rev. Lett. 105(23), 234301 (2010).
[Crossref] [PubMed]

Biehs, S.-A.

I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
[Crossref]

Buljan, H.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter 80(24), 196–206 (2009).
[Crossref]

Cai, W.-H.

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

Cang, Y.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Celanovic, I.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
[Crossref] [PubMed]

Chan, C. T.

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

Chang, J.-Y.

J.-Y. Chang, Y. Yang, and L. Wang, “Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate,” J. Quant. Spectrosc. Radiat. Transf. 184, 58–67 (2016).
[Crossref]

Cheng, Q.

J. Song and Q. Cheng, “Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials,” Phys. Rev. B 94(12), 125419 (2016).
[Crossref]

Chevrier, J.

P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
[Crossref] [PubMed]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B. 85(15), 155418 (2012).
[Crossref]

Christensen, T.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

Cordier, Y.

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

Cuevas, J. C.

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
[Crossref]

de Heer, W. A.

P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
[Crossref] [PubMed]

Didari, A.

A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 212, 075436 (2018).
[Crossref]

Du, G.

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

Du, W.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

El-Bondry, N.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

Elçioglu, E. B.

A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 212, 075436 (2018).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Fan, S.

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

Fang, N. X.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref] [PubMed]

Feist, J.

V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
[Crossref]

Fernández-Domínguez, A. I.

V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
[Crossref]

Fernández-Hurtado, V.

V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
[Crossref]

Fiorino, A.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Francoeur, M.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84(7), 2250–2262 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93(4), 043109 (2008).
[Crossref]

Frechette, L.

P. Ben-Abdallah, A. Belarouci, L. Frechette, and S. A. Biehs, “Heat flux splitter for near-field thermal radiation,” Appl. Phys. Lett. 107(5), 053109 (2015).
[Crossref]

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

Fu, Y.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

Fung, K. H.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref] [PubMed]

García de Abajo, F. J.

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref] [PubMed]

García-Vidal, F. J.

V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
[Crossref]

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

Ge, L.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gong, K.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Gong, S.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

Greffet, J. J.

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

S. A. Biehs, E. Rousseau, and J. J. Greffet, “Mesoscopic Description of Radiative Heat Transfer at the Nanoscale,” Phys. Rev. Lett. 105(23), 234301 (2010).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guizal, B.

B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

Han, D.

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

He, M.-J.

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

He, S.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

K. Shi, F. Bao, and S. He, “Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Hugonin, J. P.

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

Iizuka, H.

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

Ilic, O.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
[Crossref] [PubMed]

Jablan, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter 80(24), 196–206 (2009).
[Crossref]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, J.-H.

J.-H. Jiang and J.-S. Wang, “Caroli formalism in near-field heat transfer between parallel graphene sheets,” Phys. Rev. B 96(15), 155437 (2017).
[Crossref]

Jin, S.

Joannopoulos, J. D.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

Kim, J.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

Kumar, A.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref] [PubMed]

Latella, I.

I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
[Crossref]

Lee, B. J.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun. 9(1), 4302 (2018).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195136 (2015).
[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
[Crossref] [PubMed]

Lee, I.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

Lee, S. S.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun. 9(1), 4302 (2018).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195136 (2015).
[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
[Crossref] [PubMed]

Li, Y.

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

Lim, M.

M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun. 9(1), 4302 (2018).
[Crossref] [PubMed]

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195136 (2015).
[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications,” Opt. Express 23(7), A240–A253 (2015).
[Crossref] [PubMed]

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between graphene-covered doped silicon plates,” Opt. Express 21(19), 22173–22185 (2013).
[Crossref] [PubMed]

Liu, L.

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

Liu, X.

J. Shen, X. Liu, and Y. Xuan, “Near-Field Thermal Radiation between Nanostructures of Natural Anisotropic Material,” Phys. Rev. Appl. 10(3), 034029 (2018).
[Crossref]

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
[Crossref]

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Liu, X. L.

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

X. L. Liu and Z. M. Zhang, “Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons,” Appl. Phys. Lett. 107(14), 143114 (2015).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

Low, T.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

Luo, Y.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Ma, Y.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

G. Yin, J. Yang, and Y. Ma, “Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis,” Appl. Phys. Express 9(12), 122001 (2016).
[Crossref]

Manjavacas, A.

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref] [PubMed]

Marquier, F.

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

McArdle, P.

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

McGaughey, A. J. H.

F. V. Ramirez, S. Shen, and A. J. H. McGaughey, “Near-field radiative heat transfer in graphene plasmonic nanodisk dimers,” Phys. Rev. B 96(16), 165427 (2017).
[Crossref]

Mengüç, M. P.

A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 212, 075436 (2018).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84(7), 2250–2262 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93(4), 043109 (2008).
[Crossref]

Messina, R.

I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
[Crossref]

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

R. Messina, M. Antezza, and P. Ben-Abdallah, “Three-body amplification of photon heat tunneling,” Phys. Rev. Lett. 109(24), 244302 (2012).
[Crossref] [PubMed]

Meyhofer, E.

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

Miller, O. D.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

Minnich, A. J.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

Mittapally, R.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Okutucu-Özyurt, T.

A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 212, 075436 (2018).
[Crossref]

Palasantzas, G.

V. B. Svetovoy and G. Palasantzas, “Graphene-on-Silicon Near-Field Thermophotovoltaic Cell,” Phys. Rev. Appl. 2(3), 034006 (2014).
[Crossref]

Persson, B. N. J.

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B. 83(24), 241407 (2011).
[Crossref]

Polder, D.

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Pop, E.

E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Qazilbash, M. M.

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

Qi, H.

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

Ramirez, F. V.

F. V. Ramirez, S. Shen, and A. J. H. McGaughey, “Near-field radiative heat transfer in graphene plasmonic nanodisk dimers,” Phys. Rev. B 96(16), 165427 (2017).
[Crossref]

Rana, F.

F. Rana, “Plasmons get tuned up,” Nat. Nanotechnol. 6(10), 611–612 (2011).
[Crossref] [PubMed]

Reddy, P.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

Ren, Y.-T.

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

Rodriguez, A. W.

I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
[Crossref]

Rousseau, E.

S. A. Biehs, E. Rousseau, and J. J. Greffet, “Mesoscopic Description of Radiative Heat Transfer at the Nanoscale,” Phys. Rev. Lett. 105(23), 234301 (2010).
[Crossref] [PubMed]

Roy, A. K.

E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Ruan, L.-M.

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

Sadat, S.

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

Shen, J.

J. Shen, X. Liu, and Y. Xuan, “Near-Field Thermal Radiation between Nanostructures of Natural Anisotropic Material,” Phys. Rev. Appl. 10(3), 034029 (2018).
[Crossref]

Shen, S.

F. V. Ramirez, S. Shen, and A. J. H. McGaughey, “Near-field radiative heat transfer in graphene plasmonic nanodisk dimers,” Phys. Rev. B 96(16), 165427 (2017).
[Crossref]

Sherrott, M. C.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

Shi, K.

K. Shi, F. Bao, and S. He, “Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

Shi, L.

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

Soljacic, M.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, and M. Soljacić, “Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems,” Opt. Express 20(S3), A366–A384 (2012).
[Crossref] [PubMed]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter 80(24), 196–206 (2009).
[Crossref]

Song, J.

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun. 9(1), 4302 (2018).
[Crossref] [PubMed]

J. Song and Q. Cheng, “Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials,” Phys. Rev. B 94(12), 125419 (2016).
[Crossref]

Su, Y.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

Svetovoy, V. B.

V. B. Svetovoy and G. Palasantzas, “Graphene-on-Silicon Near-Field Thermophotovoltaic Cell,” Phys. Rev. Appl. 2(3), 034006 (2014).
[Crossref]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B. 85(15), 155418 (2012).
[Crossref]

Tan, H.-P.

Y. Zhang, C.-H. Wang, H.-L. Yi, and H.-P. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transf. 221, 138–146 (2018).
[Crossref]

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-Field Radiative Heat Transfer between Black Phosphorus Sheets via Anisotropic Surface Plasmon Polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

Teng, J.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Thiele, S.

P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
[Crossref] [PubMed]

Thomas, N. H.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

Thompson, D.

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84(7), 2250–2262 (2011).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93(4), 043109 (2008).
[Crossref]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

van Zwol, P. J.

P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
[Crossref] [PubMed]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B. 85(15), 155418 (2012).
[Crossref]

Varshney, V.

E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Volokitin, A. I.

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B. 83(24), 241407 (2011).
[Crossref]

Wang, A.

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
[Crossref]

Wang, B.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Wang, C.-H.

Y. Zhang, C.-H. Wang, H.-L. Yi, and H.-P. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transf. 221, 138–146 (2018).
[Crossref]

Wang, J.-S.

J.-H. Jiang and J.-S. Wang, “Caroli formalism in near-field heat transfer between parallel graphene sheets,” Phys. Rev. B 96(15), 155437 (2017).
[Crossref]

Wang, L.

J.-Y. Chang, Y. Yang, and L. Wang, “Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate,” J. Quant. Spectrosc. Radiat. Transf. 184, 58–67 (2016).
[Crossref]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

Wen, W.

Wilde, Y. D.

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

Xiao, M.

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

L. Ge, L. Wang, M. Xiao, W. Wen, C. T. Chan, and D. Han, “Topological edge modes in multilayer graphene systems,” Opt. Express 23(17), 21585–21595 (2015).
[Crossref] [PubMed]

Xing, Z.

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

Xuan, Y.

J. Shen, X. Liu, and Y. Xuan, “Near-Field Thermal Radiation between Nanostructures of Natural Anisotropic Material,” Phys. Rev. Appl. 10(3), 034029 (2018).
[Crossref]

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
[Crossref]

Yang, J.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

G. Yin, J. Yang, and Y. Ma, “Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis,” Appl. Phys. Express 9(12), 122001 (2016).
[Crossref]

Yang, Y.

J.-Y. Chang, Y. Yang, and L. Wang, “Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate,” J. Quant. Spectrosc. Radiat. Transf. 184, 58–67 (2016).
[Crossref]

Yi, H.-L.

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-Field Radiative Heat Transfer between Black Phosphorus Sheets via Anisotropic Surface Plasmon Polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

Y. Zhang, C.-H. Wang, H.-L. Yi, and H.-P. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transf. 221, 138–146 (2018).
[Crossref]

Yin, G.

G. Yin, J. Yang, and Y. Ma, “Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis,” Appl. Phys. Express 9(12), 122001 (2016).
[Crossref]

Yu, D.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Yu, R.

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref] [PubMed]

Yuan, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Zhang, R. Z.

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Zhang, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, C.-H. Wang, H.-L. Yi, and H.-P. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transf. 221, 138–146 (2018).
[Crossref]

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-Field Radiative Heat Transfer between Black Phosphorus Sheets via Anisotropic Surface Plasmon Polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z.

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Zhang, Z. M.

B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

X. L. Liu and Z. M. Zhang, “Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons,” Appl. Phys. Lett. 107(14), 143114 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

Zhao, B.

B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zhao, J. M.

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

Zheng, Z.

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
[Crossref]

Zhou, L.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Zhu, L.

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

Zi, J.

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

ACS Nano (3)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref] [PubMed]

A. Fiorino, D. Thompson, L. Zhu, R. Mittapally, S. A. Biehs, O. Bezencenet, N. El-Bondry, S. Bansropun, P. Ben-Abdallah, E. Meyhofer, and P. Reddy, “A Thermal Diode Based on Nanoscale Thermal Radiation,” ACS Nano 12(6), 5774–5779 (2018).
[Crossref] [PubMed]

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačić, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active Radiative Thermal Switching with Graphene Plasmon Resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref] [PubMed]

ACS Photonics (6)

B. Zhao and Z. M. Zhang, “Strong Plasmonic Coupling between Graphene Ribbon Array and Metal Gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]

K. Shi, F. Bao, and S. He, “Enhanced Near-Field Thermal Radiation Based on Multilayer Graphene-hBN Heterostructures,” ACS Photonics 4(4), 971–978 (2017).
[Crossref]

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-Perfect Photon Tunneling by Hybridizing Graphene Plasmons and Hyperbolic Modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

V. Fernández-Hurtado, A. I. Fernández-Domínguez, J. Feist, F. J. García-Vidal, and J. C. Cuevas, “Exploring the Limits of Super-Planckian Far-Field Radiative Heat Transfer Using 2D Materials,” ACS Photonics 5(8), 3082–3088 (2018).
[Crossref]

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-Field Radiative Heat Transfer between Black Phosphorus Sheets via Anisotropic Surface Plasmon Polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

J. C. Cuevas and F. J. García-Vidal, “Radiative Heat Transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

AIP Adv. (1)

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Appl. Phys. Express (1)

G. Yin, J. Yang, and Y. Ma, “Near-field heat transfer between graphene monolayers: Dispersion relation and parametric analysis,” Appl. Phys. Express 9(12), 122001 (2016).
[Crossref]

Appl. Phys. Lett. (6)

X. L. Liu and Z. M. Zhang, “Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons,” Appl. Phys. Lett. 107(14), 143114 (2015).
[Crossref]

B. Zhao, J. M. Zhao, and Z. M. Zhang, “Enhancement of near-infrared absorption in graphene with metal gratings,” Appl. Phys. Lett. 105(3), 031905 (2014).
[Crossref]

P. Ben-Abdallah, A. Belarouci, L. Frechette, and S. A. Biehs, “Heat flux splitter for near-field thermal radiation,” Appl. Phys. Lett. 107(5), 053109 (2015).
[Crossref]

X. L. Liu and Z. M. Zhang, “Graphene-assisted near-field radiative heat transfer between corrugated polar materials,” Appl. Phys. Lett. 104(25), 251911 (2014).
[Crossref]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films,” Appl. Phys. Lett. 93(4), 043109 (2008).
[Crossref]

Int. J. Heat Mass Transfer (2)

M.-J. He, H. Qi, Y. Li, Y.-T. Ren, W.-H. Cai, and L.-M. Ruan, “Graphene-mediated near field thermostat based on three-body photon tunneling,” Int. J. Heat Mass Transfer 137, 12–19 (2019).
[Crossref]

Z. Zheng, X. Liu, A. Wang, and Y. Xuan, “Graphene-assisted near-field radiative thermal rectifier based on phase transition of vanadium dioxide (VO2),” Int. J. Heat Mass Transfer 109, 63–72 (2017).
[Crossref]

J. Opt. (2)

X. L. Liu, B. Zhao, and Z. M. Zhang, “Blocking-assisted infrared transmission of subwavelength metallic gratings by graphene,” J. Opt. 17(3), 035004 (2015).
[Crossref]

L. Ge, L. Liu, M. Xiao, G. Du, L. Shi, D. Han, C. T. Chan, and J. Zi, “Topological phase transition and interface states in hybrid plasmonic-photonic systems,” J. Opt. 19(6), 06LT02 (2017).
[Crossref]

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (5)

M. Lim, J. Song, J. Kim, S. S. Lee, I. Lee, and B. J. Lee, “Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap,” J. Quant. Spectrosc. Radiat. Transf. 210, 35–43 (2018).
[Crossref]

Y. Zhang, C.-H. Wang, H.-L. Yi, and H.-P. Tan, “Multiple surface plasmon polaritons mediated near-field radiative heat transfer between graphene/vacuum multilayers,” J. Quant. Spectrosc. Radiat. Transf. 221, 138–146 (2018).
[Crossref]

J.-Y. Chang, Y. Yang, and L. Wang, “Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate,” J. Quant. Spectrosc. Radiat. Transf. 184, 58–67 (2016).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transf. 197, 84–94 (2017).
[Crossref]

A. Didari, E. B. Elçioğlu, T. Okutucu-Özyurt, and M. P. Mengüç, “Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials,” J. Quant. Spectrosc. Radiat. Transf. 212, 075436 (2018).
[Crossref]

MRS Bull. (1)

E. Pop, V. Varshney, and A. K. Roy, “Thermal properties of graphene: Fundamentals and applications,” MRS Bull. 37(12), 1273–1281 (2012).
[Crossref]

Nano Lett. (2)

P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett. 10(11), 4285–4294 (2010).
[Crossref] [PubMed]

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System,” Nano Lett. 15(5), 3172–3180 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

M. Lim, J. Song, S. S. Lee, and B. J. Lee, “Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons,” Nat. Commun. 9(1), 4302 (2018).
[Crossref] [PubMed]

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref] [PubMed]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-Planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Rana, “Plasmons get tuned up,” Nat. Nanotechnol. 6(10), 611–612 (2011).
[Crossref] [PubMed]

Nature (1)

D. Thompson, L. Zhu, R. Mittapally, S. Sadat, Z. Xing, P. McArdle, M. M. Qazilbash, P. Reddy, and E. Meyhofer, “Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit,” Nature 561(7722), 216–221 (2018).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. Appl. (2)

V. B. Svetovoy and G. Palasantzas, “Graphene-on-Silicon Near-Field Thermophotovoltaic Cell,” Phys. Rev. Appl. 2(3), 034006 (2014).
[Crossref]

J. Shen, X. Liu, and Y. Xuan, “Near-Field Thermal Radiation between Nanostructures of Natural Anisotropic Material,” Phys. Rev. Appl. 10(3), 034029 (2018).
[Crossref]

Phys. Rev. B (8)

J.-H. Jiang and J.-S. Wang, “Caroli formalism in near-field heat transfer between parallel graphene sheets,” Phys. Rev. B 96(15), 155437 (2017).
[Crossref]

F. V. Ramirez, S. Shen, and A. J. H. McGaughey, “Near-field radiative heat transfer in graphene plasmonic nanodisk dimers,” Phys. Rev. B 96(16), 165427 (2017).
[Crossref]

I. Latella, P. Ben-Abdallah, S.-A. Biehs, M. Antezza, and R. Messina, “Radiative heat transfer and nonequilibrium Casimir-Lifshitz force in many-body systems with planar geometry,” Phys. Rev. B 95(20), 205404 (2017).
[Crossref]

I. Latella, S.-A. Biehs, R. Messina, A. W. Rodriguez, and P. Ben-Abdallah, “Ballistic near-field heat transport in dense many-body systems,” Phys. Rev. B 97(3), 035423 (2018).
[Crossref]

D. Polder and M. Van Hove, “Theory of Radiative Heat Transfer between Closely Spaced Bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

J. Song and Q. Cheng, “Near-field radiative heat transfer between graphene and anisotropic magneto-dielectric hyperbolic metamaterials,” Phys. Rev. B 94(12), 125419 (2016).
[Crossref]

B. Zhao, B. Guizal, Z. M. Zhang, S. Fan, and M. Antezza, “Near-field heat transfer between graphene/hBN multilayers,” Phys. Rev. B 95(24), 245437 (2017).
[Crossref]

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Coexistence of multiple regimes for near-field thermal radiation between two layers supporting surface phonon polaritons in the infrared,” Phys. Rev. B 84(7), 2250–2262 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter 80(24), 196–206 (2009).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

M. Lim, S. S. Lee, and B. J. Lee, “Near-field thermal radiation between doped silicon plates at nanoscale gaps,” Phys. Rev. B Condens. Matter Mater. Phys. 91(19), 195136 (2015).
[Crossref]

Phys. Rev. B. (4)

R. Messina, J. P. Hugonin, J. J. Greffet, F. Marquier, Y. D. Wilde, A. Belarouci, L. Frechette, Y. Cordier, and P. Benabdallah, “Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons,” Phys. Rev. B. 87(8), 085421 (2013).
[Crossref]

A. I. Volokitin and B. N. J. Persson, “Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B. 83(24), 241407 (2011).
[Crossref]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B. 85(15), 155418 (2012).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B. 85(15), 155422 (2012).
[Crossref]

Phys. Rev. Lett. (4)

P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, “Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon,” Phys. Rev. Lett. 109(26), 264301 (2012).
[Crossref] [PubMed]

H. Iizuka and S. Fan, “Significant Enhancement of Near-Field Electromagnetic Heat Transfer in a Multilayer Structure through Multiple Surface-States Coupling,” Phys. Rev. Lett. 120(6), 063901 (2018).
[Crossref] [PubMed]

R. Messina, M. Antezza, and P. Ben-Abdallah, “Three-body amplification of photon heat tunneling,” Phys. Rev. Lett. 109(24), 244302 (2012).
[Crossref] [PubMed]

S. A. Biehs, E. Rousseau, and J. J. Greffet, “Mesoscopic Description of Radiative Heat Transfer at the Nanoscale,” Phys. Rev. Lett. 105(23), 234301 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (1)

S. M. Rytov, “Theory of Electric Fluctuations and Thermal Radiation,” (Air Force Cambridge Research Center, Bedford, MA, 1953).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic illustration of multilayered graphene system, (b) the energy transmission coefficients contour for N = 5 multilayered graphene system, (c) the flowchart of iterative procedure to calculate local equilibrium temperature profile.
Fig. 2
Fig. 2 Equilibrium temperature profile for a system composed of N = 60 graphene sheets.
Fig. 3
Fig. 3 (a) Sketch of the net radiative flux, Φj,j+1; (b) the ratio of RTC, λj/λ1.
Fig. 4
Fig. 4 (a) The spectral transfer function fp(ω) (a.u.) contour. For μ = 0.5 eV, (b)-(d) the contours for integrand τ(ω,β) and (e) energy transmission coefficients ξ(ω,β) .
Fig. 5
Fig. 5 (a) Sketches for THTC and SHTC, (b) THTC and SHTC as a function of separation distance d. (c) Contours of energy transmission coefficients and many-body dispersion relations.
Fig. 6
Fig. 6 THTC and SHTC as a function of sum number of graphene sheets N.
Fig. 7
Fig. 7 Equilibrium temperature profile for a system composed of N = 60 graphene sheets for different chemical potentials of graphene: (a) d = 10 nm and (b) d = 1000 nm.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

φ j = lj φ l,j = 1 4 π 2 lj 0 ω n l,j dω ω/c βξ ( ω,β ) l,j dβ
ε G (ω)=1+ i σ G ω d G ε 0
σ intra (ω)= 2i e 2 k B T (ω+i τ 1 )π 2 ln[ 2cosh( μ 2 k B T ) ]
σ inter (ω)= e 2 4 [ G( ω 2 )+ 4iω π 0 + G(η)G( ω 2 ) (ω) 2 4 η 2 dη ]
ρ j = r j ( 1 e 2i k zj d G ) 1 r j 2 e 2i k zj d G
τ j = ( 1 r j 2 ) e i k zj d G 1 r j 2 e 2i k zj d G
ρ + jm = ρ ^ + jm e i k z ( d G +2 z m ) ρ jm = ρ ^ jm e i k z ( d G 2 z j ) τ jm = τ ^ jm exp[ (mj+1)i k z d G ]
ρ ^ + jm = ρ m + ( τ m ) 2 ρ ^ + jm1 u jm1,m e 2i k z d ρ ^ jm = ρ j + ( τ j ) 2 ρ ^ j+1m u j,j+1m e 2i k z d τ ^ jm = τ ^ jm1 u jm1,m τ m
u jm1,m = ( 1 ρ ^ + jm1 ρ m e 2i k z d ) 1 u j,j+1m = ( 1 ρ j ρ ^ j+1m e 2i k z d ) 1
ξ l,j = ξ ^ j1 l ξ ^ j1 l1 ξ ^ j l + ξ ^ j l1
ξ ^ γ j = 4 | τ j+1γ | 2 Im( ρ + 0j )Im( ρ γ+1N ) | 1 ρ + 0γ ρ γ+1N | 2 | 1 ρ + 0j ρ j+1γ | 2 ,j<γ ξ ^ γ γ = 4Im( ρ + 0γ )Im( ρ γ+1N ) | 1 ρ + 0γ ρ γ+1N | 2 ξ ^ γ j = 4 | τ γ+1j | 2 Im( ρ + 0γ )Im( ρ j+1N ) | 1 ρ + 0j ρ j+1N | 2 | 1 ρ + 0γ ρ γ+1j | 2 ,j>γ
λ j = Φ j,j+1 d Δ T j,j+1
h m,n = φ m,n ΔT = 1 4 π 2 0 ω n m n n ΔT dω ω/c βξ ( ω,β ) m,n dβ
λ j =d· m=1 j n=j+1 N h m,n
f p (ω)= ω/c τ( ω,β )dβ = ω/c βξ( ω,β )dβ
1+ σ k z0 ω ε 0 =coth( i k z0 d 2 )
1+ σ k z0 ω ε 0 =tanh( i k z0 d 2 )
( ε G k zG 1 k z0 ) 2 cos( k zG d G k z0 d ) ( ε G k zG + 1 k z0 ) 2 cos( k zG d G + k z0 d ) 4 ε G k zG k z0 =0
H t/s := lim ΔT0 φ 1 ΔT = 1 4 π 2 j=2 N 0 ω n 1 n j ΔT dω ω/c β( ω,β ) ξ j,1 dβ

Metrics