Abstract

We experimentally demonstrate a means to selectively enhance wavelength conversion of WDM channels on a 100 GHz grid exploiting nonlinear effects between the spatial modes of a few mode fiber. The selectivity of parametric gain is obtained by dispersion design of the fiber such that the inverse group velocity curves of the participating modes are parallel and their dispersion is suitably large. We describe both theoretically and experimentally the observed dependence of the idler gain profile on pump mode (quasi) degeneracy.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers

Sun Hyok Chang, Hwan Seok Chung, Roland Ryf, Nicolas K. Fontaine, Changyo Han, Kyung Jun Park, Kwangjoon Kim, Jyung Chan Lee, Jong Hyun Lee, Byoung Yoon Kim, and Young Kie Kim
Opt. Express 23(6) 7164-7172 (2015)

Wavelength-selective switch with direct few mode fiber integration

D. M. Marom, J. Dunayevsky, D. Sinefeld, M. Blau, R. Ryf, N. K. Fontaine, M. Montoliu, S. Randel, C. Liu, B. Ercan, M. Esmaeelpour, S. Chandrasekhar, A. H. Gnauck, S. G. Leon-Saval, J. Bland-Hawthorn, J. R. Salazar-Gil, Y. Sun, L. Grüner-Nielsen, and R. Lingle
Opt. Express 23(5) 5723-5737 (2015)

Mode-selective wavelength conversion of OFDM-QPSK signals in a multimode silicon waveguide

Ying Qiu, Xiang Li, Ming Luo, Daigao Chen, Jiamin Wang, Jing Xu, Qi Yang, and Shaohua Yu
Opt. Express 25(4) 4493-4499 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).
    [Crossref]
  2. K. K. Chow, C. Shu, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626 (2005).
    [Crossref]
  3. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
    [Crossref] [PubMed]
  4. M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
    [Crossref]
  5. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Selective fwm-based wavelength conversion realized by highly nonlinear fiber,” in 2006 European Conference on Optical Communications, 4, 21–22 (2006).
  6. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
    [Crossref]
  7. L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
    [Crossref] [PubMed]
  8. L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
    [Crossref]
  9. M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse field dispersion in the generalized nonlinear schrödinger equation: Four wave mixing in a higher order mode fiber,” J. Light. Technol. 31, 3425–3431 (2013).
    [Crossref]
  10. M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. S. J. Russell, “Intermodal stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” J. Opt. Soc. Am. B 29, 1563–1568 (2012).
    [Crossref]
  11. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat Photon 7, 354–362 (2013). Review.
    [Crossref]
  12. S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the manakov equations,” J. Light. Technol. 31, 398–406 (2013).
    [Crossref]
  13. G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
    [Crossref]
  14. G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
    [Crossref]
  15. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
    [Crossref] [PubMed]
  16. S. Signorini, S. Piccione, M. Ghulinyan, G. Pucker, and L. Pavesi, “Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?” in SPIE Proceedings Volume 10733, Quantum Photonic Devices, 10733 (2018).
  17. K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
    [Crossref]
  18. R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
    [Crossref]
  19. S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
    [Crossref]
  20. C. J. McKinstrie and S. Radic, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27, 1138–1140 (2002).
    [Crossref]
  21. F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
    [Crossref]
  22. C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
    [Crossref]
  23. O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
    [Crossref]
  24. C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
    [Crossref]
  25. O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
    [Crossref]
  26. L. Palmieri and A. Galtarossa, “Coupling effects among degenerate modes in multimode optical fibers,” IEEE Photonics J. 6, 1–8 (2014).
    [Crossref]
  27. J. N. Damask, Polarization optics in telecommunications, vol. 101 (Springer Science & Business Media, 2004).
  28. M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
    [Crossref]
  29. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 mimo equalization,” Opt. Express 19, 16697–16707 (2011).
    [Crossref] [PubMed]
  30. R. Ryf, C. Bolle, and J. von Hoyningen-Huene, “Optical coupling components for spatial multiplexing in multi-mode fibers,” in 37th European Conference and Exposition on Optical Communications, (Optical Society of America, 2011), p. Th.12.B.1.
    [Crossref]
  31. O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
    [Crossref]

2019 (3)

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

2018 (1)

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

2017 (3)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref] [PubMed]

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

2016 (3)

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

2015 (2)

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
[Crossref] [PubMed]

2014 (1)

L. Palmieri and A. Galtarossa, “Coupling effects among degenerate modes in multimode optical fibers,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

2013 (4)

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse field dispersion in the generalized nonlinear schrödinger equation: Four wave mixing in a higher order mode fiber,” J. Light. Technol. 31, 3425–3431 (2013).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat Photon 7, 354–362 (2013). Review.
[Crossref]

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the manakov equations,” J. Light. Technol. 31, 398–406 (2013).
[Crossref]

2012 (1)

2011 (1)

2006 (1)

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Selective fwm-based wavelength conversion realized by highly nonlinear fiber,” in 2006 European Conference on Optical Communications, 4, 21–22 (2006).

2005 (1)

K. K. Chow, C. Shu, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626 (2005).
[Crossref]

2002 (1)

1974 (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Abdolvand, A.

Agrawal, G. P.

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the manakov equations,” J. Light. Technol. 31, 398–406 (2013).
[Crossref]

Aikawa, K.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

Andrekson, P. A.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

Anjum, O. F.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Awaji, Y.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

Begleris, I.

Bjarklev, A.

K. K. Chow, C. Shu, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626 (2005).
[Crossref]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Bolle, C.

R. Ryf, C. Bolle, and J. von Hoyningen-Huene, “Optical coupling components for spatial multiplexing in multi-mode fibers,” in 37th European Conference and Exposition on Optical Communications, (Optical Society of America, 2011), p. Th.12.B.1.
[Crossref]

Bolle, C. A.

Bottrill, K.

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

Bucio, T. D.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

Cheng, J.

M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse field dispersion in the generalized nonlinear schrödinger equation: Four wave mixing in a higher order mode fiber,” J. Light. Technol. 31, 3425–3431 (2013).
[Crossref]

Chow, K. K.

K. K. Chow, C. Shu, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626 (2005).
[Crossref]

Chraplyvy, A. R.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref] [PubMed]

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
[Crossref] [PubMed]

Cruz-Delgado, D.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Cruz-Ramirez, H.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Damask, J. N.

J. N. Damask, Polarization optics in telecommunications, vol. 101 (Springer Science & Business Media, 2004).

Dominguez-Serna, F.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Essiambre, R. J.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

Essiambre, R.-J.

Ettabib, M. A.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

Fatome, J.

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
[Crossref]

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat Photon 7, 354–362 (2013). Review.
[Crossref]

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
[Crossref] [PubMed]

Friis, S. M. M.

Furukawa, H.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
[Crossref] [PubMed]

Galtarossa, A.

L. Palmieri and A. Galtarossa, “Coupling effects among degenerate modes in multimode optical fibers,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Garay-Palmett, K.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Gardes, F.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

Gardes, F. Y.

Geisler, T.

Ghulinyan, M.

S. Signorini, S. Piccione, M. Ghulinyan, G. Pucker, and L. Pavesi, “Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?” in SPIE Proceedings Volume 10733, Quantum Photonic Devices, 10733 (2018).

Gnauck, A. H.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 mimo equalization,” Opt. Express 19, 16697–16707 (2011).
[Crossref] [PubMed]

Grüner-Nielsen, L.

Guasoni, M.

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

Hasegawa, T.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

Hirano, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Selective fwm-based wavelength conversion realized by highly nonlinear fiber,” in 2006 European Conference on Optical Communications, 4, 21–22 (2006).

Horak, P.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

Jazayerifar, M.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

Jiang, X.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

Jung, Y.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

Khokhar, A. Z.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

Lacava, C.

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

Li, M.-J.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

Lingle, R.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 mimo equalization,” Opt. Express 19, 16697–16707 (2011).
[Crossref] [PubMed]

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
[Crossref] [PubMed]

Liu, Z.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

Luís, R. S.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

Marhic, M.

M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).
[Crossref]

Marhic, M. E.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

Maruyama, R.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

McCurdy, A.

McKinstrie, C. J.

Mestre, M. A.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

Monroy-Ruz, J.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Mumtaz, S.

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the manakov equations,” J. Light. Technol. 31, 398–406 (2013).
[Crossref]

Nakanishi, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Selective fwm-based wavelength conversion realized by highly nonlinear fiber,” in 2006 European Conference on Optical Communications, 4, 21–22 (2006).

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat Photon 7, 354–362 (2013). Review.
[Crossref]

Nolan, D. A.

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

Okuno, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Selective fwm-based wavelength conversion realized by highly nonlinear fiber,” in 2006 European Conference on Optical Communications, 4, 21–22 (2006).

Onishi, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Selective fwm-based wavelength conversion realized by highly nonlinear fiber,” in 2006 European Conference on Optical Communications, 4, 21–22 (2006).

Ortiz-Ricardo, E.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Palmieri, L.

L. Palmieri and A. Galtarossa, “Coupling effects among degenerate modes in multimode optical fibers,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

Parmigiani, F.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

Pavesi, L.

S. Signorini, S. Piccione, M. Ghulinyan, G. Pucker, and L. Pavesi, “Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?” in SPIE Proceedings Volume 10733, Quantum Photonic Devices, 10733 (2018).

Peckham, D. W.

Pedersen, M. E. V.

M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse field dispersion in the generalized nonlinear schrödinger equation: Four wave mixing in a higher order mode fiber,” J. Light. Technol. 31, 3425–3431 (2013).
[Crossref]

Petropoulos, P.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

Peucheret, C.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

Piccione, S.

S. Signorini, S. Piccione, M. Ghulinyan, G. Pucker, and L. Pavesi, “Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?” in SPIE Proceedings Volume 10733, Quantum Photonic Devices, 10733 (2018).

Pucker, G.

S. Signorini, S. Piccione, M. Ghulinyan, G. Pucker, and L. Pavesi, “Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?” in SPIE Proceedings Volume 10733, Quantum Photonic Devices, 10733 (2018).

Puttnam, B. J.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

Rademacher, G.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

Radic, S.

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

C. J. McKinstrie and S. Radic, “Parametric amplifiers driven by two pump waves with dissimilar frequencies,” Opt. Lett. 27, 1138–1140 (2002).
[Crossref]

Ramirez-Alarcon, R.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Randel, S.

Renninger, W. H.

Richardson, D. J.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

C. Lacava, T. D. Bucio, A. Z. Khokhar, P. Horak, Y. Jung, F. Y. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal frequency generation in silicon-rich silicon nitride waveguides,” Photon. Res. 7, 615–621 (2019).
[Crossref]

F. Parmigiani, P. Horak, Y. Jung, L. Grüner-Nielsen, T. Geisler, P. Petropoulos, and D. J. Richardson, “All-optical mode and wavelength converter based on parametric processes in a three-mode fiber,” Opt. Express 25, 33602–33609 (2017).
[Crossref]

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
[Crossref]

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat Photon 7, 354–362 (2013). Review.
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

Rottwitt, K.

S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, and F. Parmigiani, “Inter-modal four-wave mixing study in a two-mode fiber,” Opt. Express 24, 30338–30349 (2016).
[Crossref]

M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse field dispersion in the generalized nonlinear schrödinger equation: Four wave mixing in a higher order mode fiber,” J. Light. Technol. 31, 3425–3431 (2013).
[Crossref]

Russell, P. S. J.

Ryf, R.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6×56-gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 mimo equalization,” Opt. Express 19, 16697–16707 (2011).
[Crossref] [PubMed]

R. Ryf, C. Bolle, and J. von Hoyningen-Huene, “Optical coupling components for spatial multiplexing in multi-mode fibers,” in 37th European Conference and Exposition on Optical Communications, (Optical Society of America, 2011), p. Th.12.B.1.
[Crossref]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
[Crossref] [PubMed]

Sharp, G.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
[Crossref] [PubMed]

Shu, C.

K. K. Chow, C. Shu, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626 (2005).
[Crossref]

Sierra, A.

Signorini, S.

S. Signorini, S. Piccione, M. Ghulinyan, G. Pucker, and L. Pavesi, “Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?” in SPIE Proceedings Volume 10733, Quantum Photonic Devices, 10733 (2018).

Sorel, M.

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

Sun, Y.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

Suzuki, M.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

Tkach, R. W.

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
[Crossref] [PubMed]

U’Ren, A. B.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

von Hoyningen-Huene, J.

R. Ryf, C. Bolle, and J. von Hoyningen-Huene, “Optical coupling components for spatial multiplexing in multi-mode fibers,” in 37th European Conference and Exposition on Optical Communications, (Optical Society of America, 2011), p. Th.12.B.1.
[Crossref]

Wada, N.

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

Walser, A. M.

Winzer, P. J.

Wise, F. W.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref] [PubMed]

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
[Crossref] [PubMed]

Wright, L. G.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref] [PubMed]

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

L. G. Wright, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal dynamics of multimode optical solitons,” Opt. Express 23, 3492–3506 (2015).
[Crossref] [PubMed]

Xu, C.

M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse field dispersion in the generalized nonlinear schrödinger equation: Four wave mixing in a higher order mode fiber,” J. Light. Technol. 31, 3425–3431 (2013).
[Crossref]

Yamamoto, Y.

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

Ziemienczuk, M.

APL Photonics (1)

O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Bandwidth enhancement of inter-modal four wave mixing bragg scattering by means of dispersion engineering,” APL Photonics 4, 022902 (2019).
[Crossref]

Appl. Phys. Lett. (1)

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett. 24, 308–310 (1974).
[Crossref]

IEEE Photonics J. (1)

L. Palmieri and A. Galtarossa, “Coupling effects among degenerate modes in multimode optical fibers,” IEEE Photonics J. 6, 1–8 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, and R. Lingle, “Experimental investigation of inter-modal four-wave mixing in few-mode fibers,” IEEE Photonics Technol. Lett. 25, 539–542 (2013).
[Crossref]

K. K. Chow, C. Shu, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photonics Technol. Lett. 17, 624–626 (2005).
[Crossref]

G. Rademacher, R. S. Luís, B. J. Puttnam, H. Furukawa, R. Maruyama, K. Aikawa, Y. Awaji, and N. Wada, “Investigation of intermodal four-wave mixing for nonlinear signal processing in few-mode fibers,” IEEE Photonics Technol. Lett. 30, 1527–1530 (2018).
[Crossref]

in 2006 European Conference on Optical Communications (1)

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Selective fwm-based wavelength conversion realized by highly nonlinear fiber,” in 2006 European Conference on Optical Communications, 4, 21–22 (2006).

J. Light. Technol. (4)

M. E. V. Pedersen, J. Cheng, C. Xu, and K. Rottwitt, “Transverse field dispersion in the generalized nonlinear schrödinger equation: Four wave mixing in a higher order mode fiber,” J. Light. Technol. 31, 3425–3431 (2013).
[Crossref]

S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear propagation in multimode and multicore fibers: Generalization of the manakov equations,” J. Light. Technol. 31, 398–406 (2013).
[Crossref]

C. Lacava, M. A. Ettabib, T. D. Bucio, G. Sharp, A. Z. Khokhar, Y. Jung, M. Sorel, F. Gardes, D. J. Richardson, P. Petropoulos, and F. Parmigiani, “Intermodal bragg-scattering four wave mixing in silicon waveguides,” J. Light. Technol. 37, 1680–1685 (2019).
[Crossref]

M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, and D. J. Richardson, “Intermodal four-wave-mixing and parametric amplification in km-long multi-mode fibers,” J. Light. Technol. 35, 5296–5305 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser & Photonics Rev. (1)

M. E. Marhic, P. A. Andrekson, P. Petropoulos, S. Radic, C. Peucheret, and M. Jazayerifar, “Fiber optical parametric amplifiers in optical communication systems,” Laser & Photonics Rev. 9, 50–74 (2015).
[Crossref]

Nat Photon (2)

L. G. Wright, Z. Liu, D. A. Nolan, M.-J. Li, D. N. Christodoulides, and F. W. Wise, “Self-organized instability in graded-index multimode fibres,” Nat Photon 10, 771–776 (2016). Article.
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat Photon 7, 354–362 (2013). Review.
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. A (1)

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Science (1)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358, 94–97 (2017).
[Crossref] [PubMed]

Other (8)

S. Signorini, S. Piccione, M. Ghulinyan, G. Pucker, and L. Pavesi, “Are on-chip heralded single photon sources possible by intermodal four wave mixing in silicon waveguides?” in SPIE Proceedings Volume 10733, Quantum Photonic Devices, 10733 (2018).

G. Rademacher, R. S. Luís, B. J. Puttnam, Y. Awaji, M. Suzuki, T. Hasegawa, and N. Wada, “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear fmf,” in 2019 Optical Fiber Communications Conference and Exhibition (OFC), (2019), W1C.4.
[Crossref]

M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2007).
[Crossref]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441, 960 EP – (2006).
[Crossref] [PubMed]

O. F. Anjum, K. Bottrill, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, D. J. Richardson, F. Parmigiani, and P. Petropoulos, “Channel selective wavelength conversion by means of inter modal four wave mixing,” in Optical Fiber Communication Conference (OFC) 2019, (Optical Society of America, 2019), p. W4F.4.
[Crossref]

J. N. Damask, Polarization optics in telecommunications, vol. 101 (Springer Science & Business Media, 2004).

R. Ryf, C. Bolle, and J. von Hoyningen-Huene, “Optical coupling components for spatial multiplexing in multi-mode fibers,” in 37th European Conference and Exposition on Optical Communications, (Optical Society of America, 2011), p. Th.12.B.1.
[Crossref]

O. F. Anjum, M. Guasoni, P. Horak, Y. Jung, P. Petropoulos, D. J. Richardson, and F. Parmigiani, “Polarization insensitive four wave mixing based wavelength conversion in few-mode optical fibers,” J. Light. Technol. pp. 3678–3683 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The wave configuration used in the experiment in which the pumps are in a higher order mode and the signal is in the fundamental mode. The modes and wavelengths are shown at the top, whereas the inverse group velocity curves and their relationship with phase matching are shown at the bottom.
Fig. 2
Fig. 2 Experimental setup of the wavelength converter. Also shown are the relative inverse group velocity (or relative β1) curves of modes LP01 and LP11 of the few-mode fiber.
Fig. 3
Fig. 3 Measured dependence of gain profile on input polarization angle.
Fig. 4
Fig. 4 Measured variation of (normalized) idler power with signal wavelength in the case when pump polarization is chosen to give narrow bandwidth peaks.
Fig. 5
Fig. 5 Having slightly different dispersion characteristics for the spatial modes within the group LP11 changes the optimal signal frequency.
Fig. 6
Fig. 6 (a) Simulated gain profiles in which pump energy is contained exclusively in either LP11a or LP11b. (b) Simulated gain profiles in which pump energy is coupled to both subgroups.
Fig. 7
Fig. 7 Change in idler power profile when the mode configuration is switched to having the pumps in the fundamental mode and the signal in the higher order mode.
Fig. 8
Fig. 8 (a)–(c) Spectra at the LP01 port when the pumps are scanned in increments of 100 GHz for conversion to idlers λ′1, λ′2 and λ′3 respectively.

Metrics