Abstract

Although free space optical (FSO) communication is a promising technique for deep space communication and it can help in the rapid development of space exploration missions, it encounters coronal turbulence during superior solar conjunction. To improve the bit error rate (BER) performance of FSO communication system under the influence of coronal turbulence, a hybrid modulation scheme, L-PPM-MSK-SIM–which is a combination of pulse position modulation (PPM), minimum shift keying (MSK), and sub-carrier intensity modulation (SIM) techniques–is proposed in this study. Considering various noise sources, both the BER and channel capacity of the communication system are evaluated under the lognormal (LN) turbulence channel. Our simulation results demonstrate that the BER performance with the L-PPM-MSK-SIM scheme is superior to that with L-PPM and BPSK-SIM schemes. In addition, the parameters of the coronal turbulence and FSO communication system have a tremendous influence on the link BER and channel capacity. Moreover, our results also revel that thermal noise is more predominant than the short noise and background noise for the BER performance of deep space FSO communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel

Monire Faridzadeh, Asghar Gholami, Zabih Ghassemlooy, and Sujan Rajbhandari
J. Opt. Soc. Am. A 29(8) 1680-1685 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Zhao and Q. Zhang, “Network protocol architectures for future deep-space internetworking,” Sci. China-Inf. Sci. 61(4), 040303 (2018).
    [Crossref]
  2. H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017).
    [Crossref]
  3. H. H. Benzon and P. Hoeg, “Wave optics-based LEO-LEO radio occultation retrieval,” Radio Sci. 51(6), 589–602 (2016).
    [Crossref]
  4. G. Xu and Z Song, “Effects of Solar Scintillation on Deep Space Communications: Challenges and Prediction Techniques,” IEEE Wirel. Commun. 26(2), 10–16 (2019).
    [Crossref]
  5. D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
    [Crossref]
  6. A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).
  7. D. E. Smith, M. T. Zuber, and H. V. Herbert, “Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars,” J. Geophys. Res.-Planet. 106(E10), 23689–23722 (2001).
    [Crossref]
  8. N. Mosavi, H. B. Sequeira, D. J. Copeland, and C. R. Menyuk, “Solar scintillation study during planetary conjunction,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–7.
  9. G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17(8), 1505–1509 (2018).
    [Crossref]
  10. Q. Li, L. Yin, and J. Lu, “Performance study of a deep space communications system with low-density parity-check coding under solar scintillation,” Int. J. Commun. 6(1), 1–9 (2012).
  11. S. Enserink and M. P. Fitz, “Mitigation of scintillation using antenna receive diversity for Ka band satellite signals,” in Proceedings of IEEE Radio and Wireless Symposium (IEEE, 2008), pp. 89–92.
  12. A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
    [Crossref]
  13. B. B. Yousif, E. E. Elsayed, and M. M. Alzalabani, “Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system,” Opt. Commun. 436, 197–208 (2019).
    [Crossref]
  14. X. Huang, Z. Deng, X. Shi, Y. Bai, and X. Fu, “Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy,” Opt. Express 26(4), 4786–4797 (2018).
    [Crossref] [PubMed]
  15. G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26(7), 8566–8580 (2018).
    [Crossref] [PubMed]
  16. M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014).
    [Crossref]
  17. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).
  18. G. Xu and M. Zeng, “Solar scintillation effect for optical waves propagating through Gamma-Gamma coronal turbulence channels,” IEEE Photonics J. 11(4), 7904415 (2019).
    [Crossref]
  19. M. T. Dabiri and S. M. S. Sadough, “Receiver design for OOK modulation over turbulence channels using source transformation,” IEEE Wirel. Commun. Lett. 8(2), 392–395 (2019).
    [Crossref]
  20. W. Lim, C. Yun, and K. Kim, “BER performance analysis of radio over free-space optical systems considering laser phase noise under Gamma-Gamma turbulence channels,” Opt. Express 17(6), 4479–4484 (2009).
    [Crossref] [PubMed]
  21. Y. Ata, Y. Baykal, and M. C. Gokce, “M-ary pulse position modulation performance in non-Kolmogorov turbulent atmosphere,” Appl. Opt. 57(24), 7006–7011 (2018).
    [Crossref] [PubMed]
  22. A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9(18), 2253–2258 (2015).
    [Crossref]
  23. Y. Jiang, K. Tao, Y. Song, and S. Fu, “Packet error rate analysis of OOK, DPIM, and PPM modulation schemes for ground-to-satellite laser uplink communications,” Appl. Opt. 53(7), 1268–1273 (2014).
    [Crossref] [PubMed]
  24. G. Xu, “Error performance of deep space optical communication with M-ary pulse position modulation over coronal turbulence channels,” Opt. Express 27(9), 13344–13356 (2019).
    [Crossref] [PubMed]
  25. B. Smutny and R. Lange, “Homodyne BPSK-based optical inter-satellite communication links,” Proc. SPIE 6457, 6–11 (2007).9
  26. J. H. Sinsky, A. Adamiecki, A. Gnauck, B. Charles, L. Juerg, W. Oliver, and U. Andreas, “A 42.7-Gb/s Integrated Balanced Optical Front End with Record Sensitivity,” J. Lightwave Technol. 22(1),180–1852003.
    [Crossref]
  27. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optical minimum-shift keying with external modulation scheme,” Opt. Express 13(20), 7741–7747 (2005).
    [Crossref] [PubMed]
  28. J. Ding, M. Li, M. Tang, Y. Li, and Y. Song, “BER performance of MSK in ground-to-satellite uplink optical communication under the influence of atmospheric turbulence and detector noise,” Opt. Lett. 38(18), 3488–3491 (2013).
    [Crossref] [PubMed]
  29. A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245(2), 355–367 (2007).
    [Crossref]
  30. C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), RS2003 (2008).
    [Crossref]
  31. D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The Cassini May 2000 Solar Conjunction,” IEEE Trans. Antennas and Propag. 51(2), 201–219 (2003).
    [Crossref]
  32. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
    [Crossref]
  33. R. K. Giri and B. Patnaik, “BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma-gamma channel model,” Opt. Quant. Electron. 50(6), 231 (2018).
    [Crossref]
  34. Y. Feria, M. Belongie, T. McPheeters, and H. Tan, “Solar scintillation effects on telecommunication links at Ka-band and X-band,” JPL’s Telecommunications and Data Acquisition Report, 42–129 (1997).
  35. M. T. Dabiri, S. M. S. Sadough, and M. A. Khalighi, “Channel modeling and parameter optimization for hovering UAV-Based free-space optical links,” IEEE J. Sel. Areas Commun. 36(9), 2104–2113 (2018).
    [Crossref]

2019 (5)

G. Xu and Z Song, “Effects of Solar Scintillation on Deep Space Communications: Challenges and Prediction Techniques,” IEEE Wirel. Commun. 26(2), 10–16 (2019).
[Crossref]

B. B. Yousif, E. E. Elsayed, and M. M. Alzalabani, “Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system,” Opt. Commun. 436, 197–208 (2019).
[Crossref]

G. Xu and M. Zeng, “Solar scintillation effect for optical waves propagating through Gamma-Gamma coronal turbulence channels,” IEEE Photonics J. 11(4), 7904415 (2019).
[Crossref]

M. T. Dabiri and S. M. S. Sadough, “Receiver design for OOK modulation over turbulence channels using source transformation,” IEEE Wirel. Commun. Lett. 8(2), 392–395 (2019).
[Crossref]

G. Xu, “Error performance of deep space optical communication with M-ary pulse position modulation over coronal turbulence channels,” Opt. Express 27(9), 13344–13356 (2019).
[Crossref] [PubMed]

2018 (7)

X. Huang, Z. Deng, X. Shi, Y. Bai, and X. Fu, “Average intensity and beam quality of optical coherence lattices in oceanic turbulence with anisotropy,” Opt. Express 26(4), 4786–4797 (2018).
[Crossref] [PubMed]

G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26(7), 8566–8580 (2018).
[Crossref] [PubMed]

Y. Ata, Y. Baykal, and M. C. Gokce, “M-ary pulse position modulation performance in non-Kolmogorov turbulent atmosphere,” Appl. Opt. 57(24), 7006–7011 (2018).
[Crossref] [PubMed]

R. K. Giri and B. Patnaik, “BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma-gamma channel model,” Opt. Quant. Electron. 50(6), 231 (2018).
[Crossref]

M. T. Dabiri, S. M. S. Sadough, and M. A. Khalighi, “Channel modeling and parameter optimization for hovering UAV-Based free-space optical links,” IEEE J. Sel. Areas Commun. 36(9), 2104–2113 (2018).
[Crossref]

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17(8), 1505–1509 (2018).
[Crossref]

K. Zhao and Q. Zhang, “Network protocol architectures for future deep-space internetworking,” Sci. China-Inf. Sci. 61(4), 040303 (2018).
[Crossref]

2017 (1)

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017).
[Crossref]

2016 (1)

H. H. Benzon and P. Hoeg, “Wave optics-based LEO-LEO radio occultation retrieval,” Radio Sci. 51(6), 589–602 (2016).
[Crossref]

2015 (1)

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9(18), 2253–2258 (2015).
[Crossref]

2014 (3)

Y. Jiang, K. Tao, Y. Song, and S. Fu, “Packet error rate analysis of OOK, DPIM, and PPM modulation schemes for ground-to-satellite laser uplink communications,” Appl. Opt. 53(7), 1268–1273 (2014).
[Crossref] [PubMed]

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014).
[Crossref]

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

2013 (1)

2012 (1)

Q. Li, L. Yin, and J. Lu, “Performance study of a deep space communications system with low-density parity-check coding under solar scintillation,” Int. J. Commun. 6(1), 1–9 (2012).

2009 (1)

2008 (1)

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), RS2003 (2008).
[Crossref]

2007 (2)

B. Smutny and R. Lange, “Homodyne BPSK-based optical inter-satellite communication links,” Proc. SPIE 6457, 6–11 (2007).9

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245(2), 355–367 (2007).
[Crossref]

2005 (2)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optical minimum-shift keying with external modulation scheme,” Opt. Express 13(20), 7741–7747 (2005).
[Crossref] [PubMed]

2004 (1)

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

2003 (2)

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The Cassini May 2000 Solar Conjunction,” IEEE Trans. Antennas and Propag. 51(2), 201–219 (2003).
[Crossref]

J. H. Sinsky, A. Adamiecki, A. Gnauck, B. Charles, L. Juerg, W. Oliver, and U. Andreas, “A 42.7-Gb/s Integrated Balanced Optical Front End with Record Sensitivity,” J. Lightwave Technol. 22(1),180–1852003.
[Crossref]

2001 (1)

D. E. Smith, M. T. Zuber, and H. V. Herbert, “Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars,” J. Geophys. Res.-Planet. 106(E10), 23689–23722 (2001).
[Crossref]

Adamiecki, A.

Afanasiev, A.

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245(2), 355–367 (2007).
[Crossref]

Afanasiev, N.

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245(2), 355–367 (2007).
[Crossref]

Albee, A.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Alzalabani, M. M.

B. B. Yousif, E. E. Elsayed, and M. M. Alzalabani, “Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system,” Opt. Commun. 436, 197–208 (2019).
[Crossref]

Andreas, U.

Ata, Y.

Bai, Y.

Battel, S.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Baykal, Y.

Belongie, M.

Y. Feria, M. Belongie, T. McPheeters, and H. Tan, “Solar scintillation effects on telecommunication links at Ka-band and X-band,” JPL’s Telecommunications and Data Acquisition Report, 42–129 (1997).

Benzon, H. H.

H. H. Benzon and P. Hoeg, “Wave optics-based LEO-LEO radio occultation retrieval,” Radio Sci. 51(6), 589–602 (2016).
[Crossref]

Bird, M. K.

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

Biswas, A.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

Boroson, D. M.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

Brace, R.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Burdick, G.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Burr, P.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Casani, J.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Charles, B.

Chashei, I. V.

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

Copeland, D. J.

N. Mosavi, H. B. Sequeira, D. J. Copeland, and C. R. Menyuk, “Solar scintillation study during planetary conjunction,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–7.

Dabiri, M. T.

M. T. Dabiri and S. M. S. Sadough, “Receiver design for OOK modulation over turbulence channels using source transformation,” IEEE Wirel. Commun. Lett. 8(2), 392–395 (2019).
[Crossref]

M. T. Dabiri, S. M. S. Sadough, and M. A. Khalighi, “Channel modeling and parameter optimization for hovering UAV-Based free-space optical links,” IEEE J. Sel. Areas Commun. 36(9), 2104–2113 (2018).
[Crossref]

Deng, Z.

Ding, J.

Edwards, B. L.

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

Efimov, A. I.

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

Elsayed, E. E.

B. B. Yousif, E. E. Elsayed, and M. M. Alzalabani, “Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system,” Opt. Commun. 436, 197–208 (2019).
[Crossref]

Enserink, S.

S. Enserink and M. P. Fitz, “Mitigation of scintillation using antenna receive diversity for Ka band satellite signals,” in Proceedings of IEEE Radio and Wireless Symposium (IEEE, 2008), pp. 89–92.

Feria, Y.

Y. Feria, M. Belongie, T. McPheeters, and H. Tan, “Solar scintillation effects on telecommunication links at Ka-band and X-band,” JPL’s Telecommunications and Data Acquisition Report, 42–129 (1997).

Finley, S.

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The Cassini May 2000 Solar Conjunction,” IEEE Trans. Antennas and Propag. 51(2), 201–219 (2003).
[Crossref]

Fitz, M. P.

S. Enserink and M. P. Fitz, “Mitigation of scintillation using antenna receive diversity for Ka band satellite signals,” in Proceedings of IEEE Radio and Wireless Symposium (IEEE, 2008), pp. 89–92.

Fort, D.

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The Cassini May 2000 Solar Conjunction,” IEEE Trans. Antennas and Propag. 51(2), 201–219 (2003).
[Crossref]

Fu, S.

Fu, X.

Ghassemlooy, Z.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

Giri, R. K.

R. K. Giri and B. Patnaik, “BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma-gamma channel model,” Opt. Quant. Electron. 50(6), 231 (2018).
[Crossref]

Gnauck, A.

Gokce, M. C.

Herbert, H. V.

D. E. Smith, M. T. Zuber, and H. V. Herbert, “Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars,” J. Geophys. Res.-Planet. 106(E10), 23689–23722 (2001).
[Crossref]

Ho, C. M.

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), RS2003 (2008).
[Crossref]

Hoeg, P.

H. H. Benzon and P. Hoeg, “Wave optics-based LEO-LEO radio occultation retrieval,” Radio Sci. 51(6), 589–602 (2016).
[Crossref]

Huang, X.

Izutsu, M.

Jain, V. K.

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9(18), 2253–2258 (2015).
[Crossref]

Jiang, Y.

Juerg, L.

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017).
[Crossref]

Kar, S.

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9(18), 2253–2258 (2015).
[Crossref]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017).
[Crossref]

Kawanishi, T.

Khalighi, M. A.

M. T. Dabiri, S. M. S. Sadough, and M. A. Khalighi, “Channel modeling and parameter optimization for hovering UAV-Based free-space optical links,” IEEE J. Sel. Areas Commun. 36(9), 2104–2113 (2018).
[Crossref]

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014).
[Crossref]

Kiasaleh, K.

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
[Crossref]

Kim, K.

Lange, R.

B. Smutny and R. Lange, “Homodyne BPSK-based optical inter-satellite communication links,” Proc. SPIE 6457, 6–11 (2007).9

Lavell, J.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Leising, C.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

Li, M.

Li, Q.

Q. Li, L. Yin, and J. Lu, “Performance study of a deep space communications system with low-density parity-check coding under solar scintillation,” Int. J. Commun. 6(1), 1–9 (2012).

Li, Y.

Lim, W.

Lu, J.

Q. Li, L. Yin, and J. Lu, “Performance study of a deep space communications system with low-density parity-check coding under solar scintillation,” Int. J. Commun. 6(1), 1–9 (2012).

Lukanina, L. A.

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

MacPherson, D.

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

McPheeters, T.

Y. Feria, M. Belongie, T. McPheeters, and H. Tan, “Solar scintillation effects on telecommunication links at Ka-band and X-band,” JPL’s Telecommunications and Data Acquisition Report, 42–129 (1997).

Menyuk, C. R.

N. Mosavi, H. B. Sequeira, D. J. Copeland, and C. R. Menyuk, “Solar scintillation study during planetary conjunction,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–7.

Morabito, D. D.

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), RS2003 (2008).
[Crossref]

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The Cassini May 2000 Solar Conjunction,” IEEE Trans. Antennas and Propag. 51(2), 201–219 (2003).
[Crossref]

Mosavi, N.

N. Mosavi, H. B. Sequeira, D. J. Copeland, and C. R. Menyuk, “Solar scintillation study during planetary conjunction,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–7.

Oliver, W.

Patnaik, B.

R. K. Giri and B. Patnaik, “BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma-gamma channel model,” Opt. Quant. Electron. 50(6), 231 (2018).
[Crossref]

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

Rajbhandari, S.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

Rudash, V. K.

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

Sadough, S. M. S.

M. T. Dabiri and S. M. S. Sadough, “Receiver design for OOK modulation over turbulence channels using source transformation,” IEEE Wirel. Commun. Lett. 8(2), 392–395 (2019).
[Crossref]

M. T. Dabiri, S. M. S. Sadough, and M. A. Khalighi, “Channel modeling and parameter optimization for hovering UAV-Based free-space optical links,” IEEE J. Sel. Areas Commun. 36(9), 2104–2113 (2018).
[Crossref]

Sakamoto, T.

Samoznaev, L. N.

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

Sequeira, H. B.

N. Mosavi, H. B. Sequeira, D. J. Copeland, and C. R. Menyuk, “Solar scintillation study during planetary conjunction,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–7.

Shambayati, S.

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The Cassini May 2000 Solar Conjunction,” IEEE Trans. Antennas and Propag. 51(2), 201–219 (2003).
[Crossref]

Shi, X.

Sinsky, J. H.

Smith, D. E.

D. E. Smith, M. T. Zuber, and H. V. Herbert, “Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars,” J. Geophys. Res.-Planet. 106(E10), 23689–23722 (2001).
[Crossref]

Smutny, B.

B. Smutny and R. Lange, “Homodyne BPSK-based optical inter-satellite communication links,” Proc. SPIE 6457, 6–11 (2007).9

Song, Y.

Song, Z

G. Xu and Z Song, “Effects of Solar Scintillation on Deep Space Communications: Challenges and Prediction Techniques,” IEEE Wirel. Commun. 26(2), 10–16 (2019).
[Crossref]

Song, Z.

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17(8), 1505–1509 (2018).
[Crossref]

G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26(7), 8566–8580 (2018).
[Crossref] [PubMed]

Tan, H.

Y. Feria, M. Belongie, T. McPheeters, and H. Tan, “Solar scintillation effects on telecommunication links at Ka-band and X-band,” JPL’s Telecommunications and Data Acquisition Report, 42–129 (1997).

Tang, M.

Tao, K.

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014).
[Crossref]

Viswanath, A.

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9(18), 2253–2258 (2015).
[Crossref]

Woo, R.

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), RS2003 (2008).
[Crossref]

Xu, G.

G. Xu and M. Zeng, “Solar scintillation effect for optical waves propagating through Gamma-Gamma coronal turbulence channels,” IEEE Photonics J. 11(4), 7904415 (2019).
[Crossref]

G. Xu and Z Song, “Effects of Solar Scintillation on Deep Space Communications: Challenges and Prediction Techniques,” IEEE Wirel. Commun. 26(2), 10–16 (2019).
[Crossref]

G. Xu, “Error performance of deep space optical communication with M-ary pulse position modulation over coronal turbulence channels,” Opt. Express 27(9), 13344–13356 (2019).
[Crossref] [PubMed]

G. Xu and Z. Song, “Amplitude fluctuations for optical waves propagation through non-Kolmogorov coronal solar wind turbulence channels,” Opt. Express 26(7), 8566–8580 (2018).
[Crossref] [PubMed]

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17(8), 1505–1509 (2018).
[Crossref]

Yin, L.

Q. Li, L. Yin, and J. Lu, “Performance study of a deep space communications system with low-density parity-check coding under solar scintillation,” Int. J. Commun. 6(1), 1–9 (2012).

Yousif, B. B.

B. B. Yousif, E. E. Elsayed, and M. M. Alzalabani, “Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system,” Opt. Commun. 436, 197–208 (2019).
[Crossref]

Yun, C.

Zeng, M.

G. Xu and M. Zeng, “Solar scintillation effect for optical waves propagating through Gamma-Gamma coronal turbulence channels,” IEEE Photonics J. 11(4), 7904415 (2019).
[Crossref]

Zhang, Q.

K. Zhao and Q. Zhang, “Network protocol architectures for future deep-space internetworking,” Sci. China-Inf. Sci. 61(4), 040303 (2018).
[Crossref]

Zhao, K.

K. Zhao and Q. Zhang, “Network protocol architectures for future deep-space internetworking,” Sci. China-Inf. Sci. 61(4), 040303 (2018).
[Crossref]

Zuber, M. T.

D. E. Smith, M. T. Zuber, and H. V. Herbert, “Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars,” J. Geophys. Res.-Planet. 106(E10), 23689–23722 (2001).
[Crossref]

Appl. Opt. (2)

IEEE Antennas Wirel. Propag. Lett. (1)

G. Xu and Z. Song, “Solar Scintillation Effects on the Deep Space Communication Performance for Radio Wave Propagation Through Non-Kolmogorov Turbulence,” IEEE Antennas Wirel. Propag. Lett. 17(8), 1505–1509 (2018).
[Crossref]

IEEE Commun. Surv. Tutor. (2)

H. Kaushal and G. Kaddoum, “Optical Communication in Space: Challenges and Mitigation Techniques,” IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017).
[Crossref]

M. A. Khalighi and M. Uysal, “Survey on Free Space Optical Communication: A Communication Theory Perspective,” IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

M. T. Dabiri, S. M. S. Sadough, and M. A. Khalighi, “Channel modeling and parameter optimization for hovering UAV-Based free-space optical links,” IEEE J. Sel. Areas Commun. 36(9), 2104–2113 (2018).
[Crossref]

IEEE Photonics J. (1)

G. Xu and M. Zeng, “Solar scintillation effect for optical waves propagating through Gamma-Gamma coronal turbulence channels,” IEEE Photonics J. 11(4), 7904415 (2019).
[Crossref]

IEEE Trans. Antennas and Propag. (1)

D. D. Morabito, S. Shambayati, S. Finley, and D. Fort, “The Cassini May 2000 Solar Conjunction,” IEEE Trans. Antennas and Propag. 51(2), 201–219 (2003).
[Crossref]

IEEE Trans. Commun. (1)

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005).
[Crossref]

IEEE Wirel. Commun. (1)

G. Xu and Z Song, “Effects of Solar Scintillation on Deep Space Communications: Challenges and Prediction Techniques,” IEEE Wirel. Commun. 26(2), 10–16 (2019).
[Crossref]

IEEE Wirel. Commun. Lett. (1)

M. T. Dabiri and S. M. S. Sadough, “Receiver design for OOK modulation over turbulence channels using source transformation,” IEEE Wirel. Commun. Lett. 8(2), 392–395 (2019).
[Crossref]

IET Commun. (1)

A. Viswanath, V. K. Jain, and S. Kar, “Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes,” IET Commun. 9(18), 2253–2258 (2015).
[Crossref]

Int. J. Commun. (1)

Q. Li, L. Yin, and J. Lu, “Performance study of a deep space communications system with low-density parity-check coding under solar scintillation,” Int. J. Commun. 6(1), 1–9 (2012).

J. Geophys. Res.-Planet. (1)

D. E. Smith, M. T. Zuber, and H. V. Herbert, “Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars,” J. Geophys. Res.-Planet. 106(E10), 23689–23722 (2001).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

B. B. Yousif, E. E. Elsayed, and M. M. Alzalabani, “Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system,” Opt. Commun. 436, 197–208 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quant. Electron. (1)

R. K. Giri and B. Patnaik, “BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma-gamma channel model,” Opt. Quant. Electron. 50(6), 231 (2018).
[Crossref]

Proc. SPIE (2)

B. Smutny and R. Lange, “Homodyne BPSK-based optical inter-satellite communication links,” Proc. SPIE 6457, 6–11 (2007).9

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” Proc. SPIE 5338, 16–28 (2004).
[Crossref]

Radio Sci. (2)

H. H. Benzon and P. Hoeg, “Wave optics-based LEO-LEO radio occultation retrieval,” Radio Sci. 51(6), 589–602 (2016).
[Crossref]

C. M. Ho, D. D. Morabito, and R. Woo, “Solar corona effects on angle of arrival fluctuations for microwave telecommunication links during superior solar conjunction,” Radio Sci. 43(2), RS2003 (2008).
[Crossref]

Sci. China-Inf. Sci. (1)

K. Zhao and Q. Zhang, “Network protocol architectures for future deep-space internetworking,” Sci. China-Inf. Sci. 61(4), 040303 (2018).
[Crossref]

Sol. Phys. (2)

A. I. Efimov, L. A. Lukanina, L. N. Samoznaev, V. K. Rudash, I. V. Chashei, and M. K. Bird, “Two-Way Frequency Fluctuations Observed During Coronal Radio Sounding Experiments,” Sol. Phys. 289(5), 1715–1729 (2014).
[Crossref]

A. Afanasiev and N. Afanasiev, “Diagnostics of near-solar plasma turbulence parameters using the radio sounding technique at small heliocentric distances,” Sol. Phys. 245(2), 355–367 (2007).
[Crossref]

Other (5)

Y. Feria, M. Belongie, T. McPheeters, and H. Tan, “Solar scintillation effects on telecommunication links at Ka-band and X-band,” JPL’s Telecommunications and Data Acquisition Report, 42–129 (1997).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (CRC, 2013).

A. Albee, S. Battel, R. Brace, G. Burdick, J. Casani, J. Lavell, C. Leising, D. MacPherson, and P. Burr, “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions,” NASA Sti/recon Technical Report N (2000).

N. Mosavi, H. B. Sequeira, D. J. Copeland, and C. R. Menyuk, “Solar scintillation study during planetary conjunction,” in Proceedings of IEEE Aerospace Conference (IEEE, 2016), pp. 1–7.

S. Enserink and M. P. Fitz, “Mitigation of scintillation using antenna receive diversity for Ka band satellite signals,” in Proceedings of IEEE Radio and Wireless Symposium (IEEE, 2008), pp. 89–92.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of the deep space FSO communication system with the L-PPM-MSK-SIM scheme.
Fig. 2
Fig. 2 BER performance versus the average received irradiance with 2-PPM-MSK, BPSK, and 2PPM under both theory calculation and simulation.
Fig. 3
Fig. 3 BER and channel capacity versus average irradiance of L-PPM-MSK-SIM over the LN channel with different L value.
Fig. 4
Fig. 4 BER and channel capacity versus average irradiance of 2-PPM-MSK-SIM over the LN channel with different heliocentric distance, r.
Fig. 5
Fig. 5 Normalized BER dependence on (a) spectral index, p, for various wavelength, λ, (b) outer scale, Lo, for various fluctuation ratio, η, (c) gain, G, for various responsivity, R, (d) APD load resistance, RL, for various bit rate, Rb.
Fig. 6
Fig. 6 BER performance under the influence of different kind of noise.

Tables (3)

Tables Icon

Table 1 Simulation parameters used in the deep space FSO communication systems with L-PPM-MSK-SIM scheme.

Tables Icon

Table 2 The required average irradiance of different schemes under two wavelengths for a standard BER of 10−10.

Tables Icon

Table 3 The channel capacity with 2-PPM-MSK-SIM scheme under different parameters.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = k = 1 L I k [ 1 + m cos ( ω t + π 2 T s c k t + θ k ) h ( t ( k 1 ) T s ) ] .
p ( I ) = 1 I 2 π σ l 2 exp ( ln ( I I 0 ) + σ l 2 2 2 σ l 2 ) ,
χ 2 = r e 2 ( 2 π ) p 3 2 π ( p 3 ) Γ ( p 2 ) 8 Γ ( p 1 2 ) Γ ( p + 2 2 ) η 2 N e 2 ( r ) L o 3 p L link p + 2 2 λ p + 2 2 sec ( p 4 π ) ,
N e ( r ) = 4 × 10 14 ( R sun r ) 10 + 3 × 10 14 ( R sun r ) 6 ,
{ m K = ln N ln { 1 + [ exp ( σ l 2 ) 1 ] / N } / 2 σ K 2 = ln { 1 + [ exp ( σ l 2 ) 1 ] / N } .
p ( K ) = 1 K 2 π σ K 2 exp ( ( ln K m K ) 2 2 σ K 2 ) .
i ( t ) = R G α { k = 1 L I k [ 1 + m cos ( ω t + π 2 T s c k t + θ k ) h ( t ( k 1 ) T s ) ] } + n ( t ) ,
σ th 2 = 4 k B T e F n R L Δ B n ,
σ sh 2 = 2 q R G 2 F A α I Δ B n ,
σ bg 2 = 2 q R [ W ( λ ) Δ λ + 1 4 N ( λ ) Δ λ π ( FOV ) 2 ] Δ B n ,
σ n 2 = σ th 2 + σ sh 2 + σ bg 2 .
i s ( t ) = m R G α 2 k = 1 L I k + n s ( t ) ,
P e c = Q ( log 2 L L m R G α I 0 K 2 σ L PPM 2 ) ,
P e = 0 P ec p ( K ) d K = 0 Q ( log 2 L L log G α I 0 K 2 σ L PPM 2 ) 1 K 2 π σ K 2 exp ( ( ln K m K ) 2 2 σ K 2 ) d k ,
P e = 1 π 0 Q ( log 2 L L m R G α I 0 2 σ L PPM 2 exp ( 2 σ K 2 x + m K ) ) exp ( x 2 ) d x ,
f ( x ) exp ( x 2 ) d x = i = 1 n w i f ( x i ) ,
P e = 1 π i = 1 n w i Q ( m R G α I 0 log 2 L σ n , i 2 exp ( 2 σ K x i + m K ) ) ,
σ n , i 2 = 4 k B T e F n R L Δ B n + 2 q R G 2 F A α I 0 exp ( 2 σ K x i + m K ) Δ B n + 2 q R [ W ( λ ) Δ λ + 1 4 N ( λ ) Δ π ( FOV ) 2 ] Δ B n .
𝔼 = 0 log 2 ( 1 + γ ) p γ ( γ ) d γ , [ bits / s / Hz ] ,
p ( γ ) = 1 2 γ 2 π σ l 2 exp ( ( ln γ m γ ) 2 8 σ l 2 ) ,
𝔼 = 1 ln 2 ln [ 1 + exp ( x ) ] 1 2 σ l 2 π exp [ ( x μ ) 2 8 σ l 2 ] d x , = 1 ln 2 φ ( x ) f ( x ) d x ,
f ( x ) = 1 6 δ [ x ( μ 2 3 σ l 2 ) ] + 2 3 δ ( x μ ) + 1 6 δ [ x ( μ + 2 3 σ l 2 ) ] ,
𝔼 1 ln 2 [ 1 6 φ ( μ 2 3 σ l 2 ) + 2 3 φ ( μ ) + 1 6 φ ( μ + 2 3 σ l 2 ) ] .

Metrics