Abstract

We constructed a system that can generate phase-controlled terahertz (THz) pulses using a fan-out periodically poled lithium tantalate crystal and an optical pulse shaper containing a spatial light modulator. The phase of each THz frequency components could be controlled by manipulating the delay time of the corresponding optical pulses. Using the system, we generated arbitrarily group-velocity-dispersion-controlled THz pulses, where the chirp parameter was 2.53 ps2/rad between 0.6 and 1.5 THz. In addition, we generated arbitrarily carrier-envelope-phase-controlled THz pulses in the same system. Phase-controlled THz pulses may be useful for applications such as dispersion compensation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses

W. C. Hurlbut, B. J. Norton, N. Amer, and Yun-Shik Lee
J. Opt. Soc. Am. B 23(1) 90-93 (2006)

Terahertz wave generation in nitrogen gas using shaped optical pulses

Masashi Yamaguchi and Jayashis Das
J. Opt. Soc. Am. B 26(9) A90-A94 (2009)

Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals

Yun-Shik Lee and Theodore B. Norris
J. Opt. Soc. Am. B 19(11) 2791-2794 (2002)

References

  • View by:
  • |
  • |
  • |

  1. J. Anthony, R. Leohardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28(5), 1013–1018 (2011).
    [Crossref]
  2. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  3. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  4. K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
    [Crossref]
  5. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pair of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [Crossref]
  6. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, floating-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
    [Crossref]
  7. Y. Kawada, T. Yasuda, and H. Takahashi, “Carrier envelope phase shifter for broadband terahertz pulses,” Opt. Lett. 41(5), 986–989 (2016).
    [Crossref]
  8. T. Fobbe, S. Markmann, F. Fobbe, N. Hekmat, H. Nong, S. Pal, P. Balzerwoski, J. Savolainen, M. Havenith, A. D. Wieck, and N. Jukam, “Broadband terahertz dispersion control in hybrid waveguides,” Opt. Express 24(19), 22319–22333 (2016).
    [Crossref]
  9. M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
    [Crossref]
  10. J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).
  11. L. Gingras, W. Cui, A. W. Schiff-kearn, J.-M. Ménard, and D. G. Cooke, “Active phase control of terahertz pulses using a dynamic waveguide,” Opt. Express 26(11), 13876–13882 (2018).
    [Crossref]
  12. J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
    [Crossref]
  13. K. Takahashi, K. Watanabe, T. Inoue, and T. Konishi, “Multifunctional wavelength-selective switch for Nyquist pulse generation and multiplexing,” IEEE Photonics Technol. Lett. 30(18), 1641–1644 (2018).
    [Crossref]
  14. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
    [Crossref]
  15. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
    [Crossref]
  16. N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
    [Crossref]
  17. W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
    [Crossref]
  18. T. Feurer, J. C. Vaughan, R. M. Koehl, and K. A. Nelson, “Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix,” Opt. Lett. 27(8), 652–654 (2002).
    [Crossref]
  19. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulator,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
    [Crossref]
  20. N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
    [Crossref]
  21. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
    [Crossref]
  22. Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
    [Crossref]

2018 (2)

L. Gingras, W. Cui, A. W. Schiff-kearn, J.-M. Ménard, and D. G. Cooke, “Active phase control of terahertz pulses using a dynamic waveguide,” Opt. Express 26(11), 13876–13882 (2018).
[Crossref]

K. Takahashi, K. Watanabe, T. Inoue, and T. Konishi, “Multifunctional wavelength-selective switch for Nyquist pulse generation and multiplexing,” IEEE Photonics Technol. Lett. 30(18), 1641–1644 (2018).
[Crossref]

2016 (4)

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

Y. Kawada, T. Yasuda, and H. Takahashi, “Carrier envelope phase shifter for broadband terahertz pulses,” Opt. Lett. 41(5), 986–989 (2016).
[Crossref]

T. Fobbe, S. Markmann, F. Fobbe, N. Hekmat, H. Nong, S. Pal, P. Balzerwoski, J. Savolainen, M. Havenith, A. D. Wieck, and N. Jukam, “Broadband terahertz dispersion control in hybrid waveguides,” Opt. Express 24(19), 22319–22333 (2016).
[Crossref]

2014 (1)

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

2013 (1)

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

2011 (2)

2007 (2)

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulator,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
[Crossref]

2006 (2)

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
[Crossref]

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[Crossref]

2004 (1)

2002 (1)

2000 (3)

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[Crossref]

1999 (1)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

1990 (1)

1984 (1)

Amer, N.

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[Crossref]

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
[Crossref]

Anthony, J.

Argyros, A.

Balzerwoski, P.

Cooke, D. G.

Cui, W.

Dai, J.

Danielson, J. R.

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[Crossref]

Decamp, M.

Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[Crossref]

Feurer, T.

Fobbe, F.

Fobbe, T.

Fork, R. L.

Frumker, E.

Galvanauskas, A.

Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[Crossref]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Gingras, L.

Gordon, J. P.

Grischkowsky, D.

Hamazaki, J.

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Havenith, M.

Hekmat, N.

Helm, H.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

Higuchi, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Hosako, I.

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Hurlbut, W. C.

Inoue, T.

K. Takahashi, K. Watanabe, T. Inoue, and T. Konishi, “Multifunctional wavelength-selective switch for Nyquist pulse generation and multiplexing,” IEEE Photonics Technol. Lett. 30(18), 1641–1644 (2018).
[Crossref]

Jukam, N.

Jung, C.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Kanda, N.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Kang, H.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Kanno, A.

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Kasamatsu, A.

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Katayama, I.

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

Kawada, Y.

Kee, C.-S.

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Keiding, S. R.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

K-Gonokami, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Kim, B. H.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Kitajima, M.

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

Kitamura, K.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Ko, D.-K.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Koehl, R. M.

Konishi, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Konishi, T.

K. Takahashi, K. Watanabe, T. Inoue, and T. Konishi, “Multifunctional wavelength-selective switch for Nyquist pulse generation and multiplexing,” IEEE Photonics Technol. Lett. 30(18), 1641–1644 (2018).
[Crossref]

Large, M. C. J.

Leaird, D. E.

Lee, J.

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Lee, K.-S.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Lee, Y. L.

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Lee, Y.-S.

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[Crossref]

W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006).
[Crossref]

Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[Crossref]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Leohardt, R.

Markmann, S.

Martinez, O. E.

Meade, T.

Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[Crossref]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Ménard, J.-M.

Minami, Y.

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

Misawa, K.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Nelson, K. A.

Nong, H.

Norris, T. B.

Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[Crossref]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Norton, B. J.

Ogawa, Y.

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Oh, M.-K.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Pal, S.

Patel, J. S.

Perlin, V.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Sato, M.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Savolainen, J.

Schall, M.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

Schiff-kearn, A. W.

Sekine, N.

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Shigekawa, H.

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

Silberberg, Y.

Suzuki, T.

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Takahashi, H.

Takahashi, K.

K. Takahashi, K. Watanabe, T. Inoue, and T. Konishi, “Multifunctional wavelength-selective switch for Nyquist pulse generation and multiplexing,” IEEE Photonics Technol. Lett. 30(18), 1641–1644 (2018).
[Crossref]

Takeda, J.

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

Takekawa, S.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Vaughan, J. C.

Watanabe, K.

K. Takahashi, K. Watanabe, T. Inoue, and T. Konishi, “Multifunctional wavelength-selective switch for Nyquist pulse generation and multiplexing,” IEEE Photonics Technol. Lett. 30(18), 1641–1644 (2018).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
[Crossref]

Wieck, A. D.

Winful, H.

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Wullert, J. R.

Yamamoto, N.

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Yasuda, T.

Yoshida, S.

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

Yoshioka, K.

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Yu, B.-A.

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Yu, N. E.

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Zhang, J.

Zhang, W.

Appl. Phys. Express (1)

N. E. Yu, M.-K. Oh, H. Kang, C. Jung, B. H. Kim, K.-S. Lee, D.-K. Ko, S. Takekawa, and K. Kitamura, “Continuous tuning of a narrow-band terahertz wave in periodically poled stoichiometric LiTaO3 crystal with a fan-out grating structure,” Appl. Phys. Express 7(1), 012101 (2014).
[Crossref]

Appl. Phys. Lett. (3)

J. R. Danielson, N. Amer, and Y.-S. Lee, “Generation of arbitrary terahertz wave forms in fanned-out periodically poled lithium niobate,” Appl. Phys. Lett. 89(21), 211118 (2006).
[Crossref]

Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000).
[Crossref]

Y.-S. Lee, T. Meade, M. Decamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77(9), 1244–1246 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Takahashi, K. Watanabe, T. Inoue, and T. Konishi, “Multifunctional wavelength-selective switch for Nyquist pulse generation and multiplexing,” IEEE Photonics Technol. Lett. 30(18), 1641–1644 (2018).
[Crossref]

Int. J. Infrared Millimeter Waves (1)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20(4), 595–604 (1999).
[Crossref]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

N. E. Yu, C. Jung, C.-S. Kee, Y. L. Lee, B.-A. Yu, D.-K. Ko, and J. Lee, “Backward terahertz generation in periodically poled lithium niobate crystal via difference frequency generation,” Jpn. J. Appl. Phys. 46(4A), 1501–1504 (2007).
[Crossref]

Nat. Photonics (2)

K. Yoshioka, I. Katayama, Y. Minami, M. Kitajima, S. Yoshida, H. Shigekawa, and J. Takeda, “Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields,” Nat. Photonics 10(12), 762–765 (2016).
[Crossref]

M. Sato, T. Higuchi, N. Kanda, K. Konishi, K. Yoshioka, T. Suzuki, K. Misawa, and M. K-Gonokami, “Terahertz polarization pulse shaping with arbitrary field control,” Nat. Photonics 7(9), 724–731 (2013).
[Crossref]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

J. Hamazaki, Y. Ogawa, N. Sekine, A. Kasamatsu, A. Kanno, N. Yamamoto, and I. Hosako, “Broadband frequency-chirped terahertz-wave signal generation using periodically-poled lithium niobate for frequency-modulated continuous-wave rader application,” Proc. SPIE 9747, 97471J (2016).

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. A concept for generating phase-controlled THz pulses. THz-BS: THz beam splitter; SLM: spatial light modulator.
Fig. 2.
Fig. 2. Experimental setup for generation of phase-controlled THz pulses. LCOS-SLM, liquid-crystal-on-silicon spatial light modulator; OAP, off-axis paraboric mirror; PPLT, periodically poled lithium tantalate; BS, bean splitter.
Fig. 3.
Fig. 3. (a) Spectra of THz signals generated by the crystal by changing the position of a partial pump beam. (b) Phase shift as a function of delay time of the pump pulses corresponding to each THz frequency component.
Fig. 4.
Fig. 4. (a) Temporal waveforms of the unshaped, transform-limited, positive and negative chirped THz pulses, respectively. (b) Phase spectra obtained by Fourier transformation of temporal waveforms shown in Fig. 4(a). Broken lines are the calculation value. (c) Amplitude spectra obtained by Fourier transformation of temporal waveforms shown in Fig. 4(a).
Fig. 5.
Fig. 5. (a) Temporal waveforms of THz pulses with CEP equal to 0, +π/2, and -π/2, respectively. Broken line is the envelope of the THz pulses. (b) Phase spectra of corresponding CEP-controlled THz pulses. (c) Amplitude spectra of corresponding CEP-controlled THz pulses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π f Δ t ,
Δ ω = 2 f ( Λ ) N ,
f ( Λ ) = c Λ ( n T H z ± n o p t ) ,

Metrics