Abstract

In this paper, a sensitive chirality selective metamaterial absorber (CSMA) is constructed by using 'I-shaped' resonator with asymmetric twisted metallic wires. Absorption of 95.18% and 91.77% at two resonant frequencies can be achieved for left-handed circularly polarized (LCP) incident wave, with little loss of right-handed circularly polarized (RCP) incident wave, which results in significant absorptive circular dichroism. Not only can the CSMA intensely absorb LCP illumination with dual bands, but also circularly polarized (CP) conversion for RCP wave is achieved over a broad bandwidth. The spin-dependent absorption, closely linked to chiral symmetry breaking, is investigated through oblique incidence, power loss distribution and scanning parameters optimization. The proposed strategy is further demonstrated in mid-infrared band which could advance the applications in polarization manipulation to circularly polarized detectors/lasers, chiral sensing/bolometers, and molecular spectroscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves

Yongzhi Cheng, Haoran Chen, Jingcheng Zhao, Xuesong Mao, and Zhengze Cheng
Opt. Mater. Express 8(5) 1399-1409 (2018)

Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays

Meiyan Pan, Qiang Li, Yu Hong, Lu Cai, Jun Lu, and Min Qiu
Opt. Express 26(14) 17772-17780 (2018)

Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial

He-Xiu Xu, Guang-Ming Wang, Mei Qing Qi, Tong Cai, and Tie Jun Cui
Opt. Express 21(21) 24912-24921 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253–5263 (2019).
    [Crossref] [PubMed]
  3. M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
    [Crossref] [PubMed]
  4. V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
    [Crossref]
  5. G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
    [Crossref] [PubMed]
  6. S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
    [Crossref]
  7. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
    [Crossref] [PubMed]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  9. Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
    [Crossref]
  10. Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
    [Crossref]
  11. H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
    [Crossref]
  12. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  13. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
    [Crossref]
  14. J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
    [Crossref] [PubMed]
  15. T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
    [Crossref]
  16. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
    [Crossref] [PubMed]
  17. T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
    [Crossref] [PubMed]
  18. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
    [Crossref]
  19. E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
    [Crossref]
  20. T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
    [Crossref] [PubMed]
  21. A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
    [Crossref]
  22. A. Rashidi, A. Namdar, and R. Abdi-Ghaleh, “Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals,” Appl. Opt. 56(21), 5914–5919 (2017).
    [Crossref] [PubMed]
  23. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
    [Crossref] [PubMed]
  24. M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
    [Crossref]
  25. Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
    [Crossref]
  26. S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
    [Crossref]
  27. Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  28. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
    [Crossref] [PubMed]
  29. L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
    [Crossref]
  30. L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).
  31. X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
    [Crossref] [PubMed]
  32. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  33. B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
    [Crossref]
  34. T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
    [Crossref] [PubMed]
  35. M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
    [Crossref] [PubMed]
  36. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [Crossref] [PubMed]
  37. P. Yeh, “Extended Jones matrix method,” J. Opt. Soc. Am. 72(4), 507–513 (1982).
    [Crossref]
  38. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  39. B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
    [Crossref]
  40. M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
    [Crossref]
  41. K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
    [Crossref]
  42. W. R. Zhu and X. P. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26(12), 2382–2385 (2009).
    [Crossref]
  43. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
    [Crossref] [PubMed]
  44. J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
    [Crossref]
  45. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
    [Crossref] [PubMed]

2019 (4)

Y. M. Qing, H. F. Ma, Y. Z. Ren, S. Yu, and T. J. Cui, “Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial,” Opt. Express 27(4), 5253–5263 (2019).
[Crossref] [PubMed]

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

2018 (5)

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

2017 (5)

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

A. Rashidi, A. Namdar, and R. Abdi-Ghaleh, “Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals,” Appl. Opt. 56(21), 5914–5919 (2017).
[Crossref] [PubMed]

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

2016 (9)

M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
[Crossref]

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

2015 (3)

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

2014 (4)

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

2013 (1)

2012 (3)

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal N-helices,” Opt. Express 20(23), 26012–26020 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

2010 (3)

2009 (6)

W. R. Zhu and X. P. Zhao, “Metamaterial absorber with dendritic cells at infrared frequencies,” J. Opt. Soc. Am. B 26(12), 2382–2385 (2009).
[Crossref]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

1982 (1)

Abdi-Ghaleh, R.

Asadchy, V. S.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Aydin, K.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Basmanov, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Burger, S.

Butun, S.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Cai, W.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Cai, W. S.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Cao, H. L.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Cao, T.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
[Crossref] [PubMed]

Chen, H. R.

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Chen, H. S.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Chen, H. T.

Chen, W. T.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Chen, X.

Cheng, Y. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Cheng, Z. Z.

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Cryan, M. J.

Cui, T. J.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Dong, J. F.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Eidelshtein, G.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Eledlebi, K.

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

Faniayeu, I. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Fardian-Melamed, N.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Feng, Q.

Gansel, J. K.

Gong, R. Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Gordon, O.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Govorov, A. O.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Guo, J. X.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Guo, L. Y.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Gutkin, V.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

He, X. T.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Hu, C.

Huang, Y. J.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Ishii, A.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Ismail, M.

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

Jia, H.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jing, L. Q.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Kang, L.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Kaschke, J.

Kato, Y. K.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Khakhomov, S. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Khosravi Khorashad, L.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

Kivshar, Y. S.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Klinov, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Kong, X. T.

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Kotlyar, A.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Kuprov, I.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Lan, S.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lapine, M.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Lee, K. T.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Levi-Kalisman, Y.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, M. H.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Li, X.

Li, Y.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

Li, Z. Y.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Lin, B. Q.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, B. Y.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Liu, J.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Liu, M.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Liu, Y.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Liu, Y. M.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Liu, Z. H.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Luo, X.

Lv, L. T.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Ma, H. F.

Ma, Y. H.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Mao, L.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

Mao, X. S.

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Namdar, A.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palacios, E.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Papaioannou, M.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

Papasimakis, N.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Park, Q. H.

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Plum, E.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Porath, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Powell, D. A.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Qian, K. F.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Qian, L. B.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Qing, Y. M.

Ra’di, Y.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Rashidi, A.

Raybould, T. A.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Ren, Y. Z.

Rezeq, M.

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Rodrigues, S. P.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Rogers, E. T. F.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

Rotem, D.

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Savinov, V.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Semchenko, I. V.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Shadrivov, I. V.

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

Shan, M.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Shang, S.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Simpson, R. E.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soukoulis, C.

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Sun, H. B.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Taghinejad, M.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Tang, B.

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tretyakov, S. A.

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

Tsai, D. P.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Urbas, A.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, J.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Wang, P.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Wang, R.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Wang, Z.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

Wang, Z. J.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Wegener, M.

Wei, C.

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, C. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express 21(23), 27841–27851 (2013).
[Crossref] [PubMed]

Wen, G. J.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Werner, D. H.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Wu, J.

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

Wu, T.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

Xia, Y. S.

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

Yang, H. L.

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Yang, S. Z.

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

Yang, Y. H.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Yang, Y. L.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Yao, K.

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Yeh, P.

Yokoyama, A.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Yoo, S.

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

Yoshida, M.

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Youngs, I. J.

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Yu, S.

Zhang, L.

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, Z.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhao, J. C.

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399–1409 (2018).
[Crossref]

Zhao, X. P.

Zhao, Z.

Zheludev, N. I.

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Zheng, B.

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Zhong, J. P.

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express 17(16), 14172–14179 (2009).
[Crossref] [PubMed]

Zhou, Y. J.

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

Zhu, W. R.

ACS Photonics (1)

Z. J. Wang, H. Jia, K. Yao, W. S. Cai, H. S. Chen, and Y. M. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (1)

G. Eidelshtein, N. Fardian-Melamed, V. Gutkin, D. Basmanov, D. Klinov, D. Rotem, Y. Levi-Kalisman, D. Porath, and A. Kotlyar, “Synthesis and properties of novel silver-containing DNA molecules,” Adv. Mater. 28(24), 4944 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

E. Plum, “Extrinsic chirality: tunable optically active reflectors and perfect absorbers,” Appl. Phys. Lett. 108(24), 241905 (2016).
[Crossref]

L. Q. Jing, Z. J. Wang, Y. H. Yang, B. Zheng, Y. M. Liu, and H. S. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

B. Q. Lin, J. X. Guo, L. T. Lv, J. Wu, Y. H. Ma, B. Y. Liu, and Z. Wang, “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves,” Appl. Phys., A Mater. Sci. Process. 125(2), 76 (2019).
[Crossref]

J. P. Zhong, Y. J. Huang, G. J. Wen, H. B. Sun, P. Wang, and O. Gordon, “Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs,” Appl. Phys., A Mater. Sci. Process. 108(2), 329–335 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Tang, Z. Y. Li, E. Palacios, Z. H. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photonics Technol. Lett. 29(3), 295–298 (2017).
[Crossref]

IEEE Trans. Compon., Packag., Manuf. Technol. (1)

L. B. Qian, Y. S. Xia, X. T. He, K. F. Qian, and J. Wang, “Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration,” IEEE Trans. Compon., Packag., Manuf. Technol. 8(8), 1336–1343 (2018).

J. Appl. Phys. (1)

S. Shang, S. Z. Yang, J. Liu, M. Shan, and H. L. Cao, “Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves,” J. Appl. Phys. 120(4), 045106 (2016).
[Crossref]

J. Mod. Opt. (1)

Y. Z. Cheng, Y. L. Yang, Y. J. Zhou, Z. Zhang, X. S. Mao, and R. Z. Gong, “Complementary Y-shaped chiral metamaterial with giant optical activity and circular dichroism simultaneously for terahertz waves,” J. Mod. Opt. 63(17), 1675–1680 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. H. Li, L. Y. Guo, J. F. Dong, and H. L. Yang, “An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves,” J. Phys. D Appl. Phys. 47(18), 185102 (2014).
[Crossref]

Light Sci. Appl. (1)

M. Papaioannou, E. Plum, E. T. F. Rogers, and N. I. Zheludev, “All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface,” Light Sci. Appl. 7(3), 17157 (2018).
[Crossref] [PubMed]

Mod. Phys. Lett. B (1)

H. R. Chen, Y. Z. Cheng, J. C. Zhao, and X. S. Mao, “Multi-band terahertz chiral metasurface with giant optical activities and negative refractive index based on T-shaped resonators,” Mod. Phys. Lett. B 32(30), 1850366 (2018).
[Crossref]

Nano Lett. (2)

X. T. Kong, L. Khosravi Khorashad, Z. Wang, and A. O. Govorov, “Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers,” Nano Lett. 18(3), 2001–2008 (2018).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving spin states upon reflection: linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Nanophotonics (1)

S. Yoo and Q. H. Park, “Metamaterials and chiral sensing: a review of fundamentals and applications,” Nanophotonics 8(2), 249–261 (2019).
[Crossref]

Nanoscale (1)

T. Wu, W. Zhang, R. Wang, and X. Zhang, “A giant chiroptical effect caused by the electric quadrupole,” Nanoscale 9(16), 5110–5118 (2017).
[Crossref] [PubMed]

Nanotechnol. Rev. (2)

M. Rezeq, “Special issue: experimental and computational advances in nano-scale fabrication and characterization,” Nanotechnol. Rev. 5(3), 277–278 (2016).
[Crossref]

K. Eledlebi, M. Ismail, and M. Rezeq, “Finite element simulation and analysis of nanometal-semiconductor contacts,” Nanotechnol. Rev. 5(3), 355–362 (2016).
[Crossref]

Nat. Commun. (2)

M. Liu, D. A. Powell, I. V. Shadrivov, M. Lapine, and Y. S. Kivshar, “Spontaneous chiral symmetry breaking in metamaterials,” Nat. Commun. 5(1), 4441 (2014).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6(1), 8379 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Z. Cheng and Y. Z. Cheng, “A multi-functional polarization convertor based on chiral metamaterial for terahertz waves,” Opt. Commun. 435, 178–182 (2019).
[Crossref]

Opt. Express (8)

Opt. Mater. Express (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. B (1)

T. A. Raybould, V. A. Fedotov, N. Papasimakis, I. Kuprov, I. J. Youngs, W. T. Chen, D. P. Tsai, and N. I. Zheludev, “Toroidal circular dichroism,” Phys. Rev. B 94(3), 035119 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B Condens. Matter Mater. Phys. 79(3), 035407 (2009).
[Crossref]

Phys. Rev. Lett. (2)

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Phys. Rev. X (2)

V. S. Asadchy, I. A. Faniayeu, Y. Ra’di, S. A. Khakhomov, I. V. Semchenko, and S. A. Tretyakov, “Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption,” Phys. Rev. X 5(3), 031005 (2015).
[Crossref]

A. Yokoyama, M. Yoshida, A. Ishii, and Y. K. Kato, “Giant circular dichroism in individual carbon nanotubes induced by extrinsic chirality,” Phys. Rev. X 4(1), 011005 (2014).
[Crossref]

Sci. Rep. (1)

T. Cao, C. Wei, L. Mao, and Y. Li, “Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array,” Sci. Rep. 4(1), 7442 (2014).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the proposed CSMA. (b) The top view of the unit cell. (c) Photograph of a portion of the fabricated sample.
Fig. 2
Fig. 2 (a) Simulated reflectance and (b) absorption spectra of LCP and RCP waves. (c) and (d) are the experimental results corresponding to (a) and (b). Absorptive CD ab spectra corresponds to the right y-coordinate in (b, d) with blue values.
Fig. 3
Fig. 3 Absorption spectra for (a, c) LCP and (b, d) RCP illumination at different incident angles. (e)-(f) PCR curves at different incident angles for RCP illumination. (a, b, e) and (c, d, f) are with the wave vectors confined in the x-z plane and y-z plane, respectively.
Fig. 4
Fig. 4 (a)-(d) The power loss distributions: (a) and (b) are for RCP and LCP illumination at 12.04 GHz; (c) and (d) are for RCP and LCP illumination at 14.22 GHz. (e) and (f) are electric-field components E z for LCP illumination at 12.04 GHz and 14.22 GHz. (a)-(f) Cross section calculated at an x-y plane located in the middle between the front and bottom metallic layers. (g) and (h) are the distributions of the surface current for LCP illumination on the top layer (solid line) and the bottom metallic plate (dashed line).
Fig. 5
Fig. 5 The CD ab spectra of the proposed CSMA with varied parameters of (a) a, (b) b, (c) c, and (d) d.
Fig. 6
Fig. 6 (a) The CD ab spectra of the CSMA with various rotation angles between L2 and L3. (b) Simulated absorption of the chiral structure in mid-infrared band (The insets are power loss distributions of top metallic resonator for the lower and higher resonance, respectively).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( E r + E r )=( r ++ r + r + r )( E i + E i )= R circ ( E i + E i ),
R circ =( r ++ r + r + r )= 1 2 ( ( r xx + r yy )+i( r xy r yx ) ( r xx r yy )i( r xy + r yx ) ( r xx r yy )+i( r xy + r yx ) ( r xx + r yy )i( r xy r yx ) ),
A =1 ( r + ) 2 ( r ) 2 =1 R + R ,
A + =1 ( r + ) 2 ( r ++ ) 2 =1 R + R ++ .
CD ab = A A + .
PCR= r ++ 2 r ++ 2 + r + 2 = R ++ R ++ + R + .

Metrics