Abstract

In this paper, a nematic liquid crystal (NLC)-based tunable terahertz (THz) plasmonic metamaterials (MMs) with large modulation depth (MD) and low insertion loss (IL) is designed and experimentally verified at THz frequencies. The proposed structure includes two-layered MM that is immersed in LC. The metal MM is used directly as electrode. The tunable device with a 46×46 array of sub-wavelength circular air loops was fabricated on a quartz glass substrate, with 2×2 cm2 area and 220 µm thickness. The obtained results show that the amplitude MD and IL for normally incident electromagnetic (EM) waves are about 96% and 1.19 dB at 421.2 GHz, respectively, when the bias voltage applied to the NLC layer varies from 0 to 16 V. Meanwhile, the transmission peak frequency gradually decreases from 421.2 to 381.8 GHz, and the frequency tunability (FT) of the proposed structure is greater than 9.35%. This study provides a potential solution for THz modulators, filters, and switches.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Proposal of an electrically controlled terahertz switch based on liquid-crystal-filled dual-metallic grating structures

Yinghao Yuan, Jian He, Jinsong Liu, and Jianquan Yao
Appl. Opt. 49(31) 6092-6097 (2010)

Investigation of graphene-supported tunable asymmetric terahertz metamaterials

Chenyuyi Shi, Xiaoyong He, Feng Liu, Fangting Lin, and Hao Zhang
J. Opt. Soc. Am. B 35(3) 575-581 (2018)

Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field

Jian-Ping Yu, Sai Chen, Fei Fan, Jie-Rong Cheng, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 26(2) 663-673 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
    [Crossref]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  3. C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
    [Crossref]
  4. M. Hangyo, “Development and future prospects of terahertz technology,” Jpn. J. Appl. Phys. 54(12), 120101 (2015).
    [Crossref]
  5. J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
    [Crossref]
  6. Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
    [Crossref]
  7. H. B. Wang and Y. J. Cheng, “140 GHz frequency selective surface based on hexagon substrate integrated waveguide cavity using normal PCB process,” IEEE Antennas Wirel. Propag. Lett. 17(3), 489–492 (2018).
    [Crossref]
  8. T. A. P. Tran and P. H. Bolivar, “Terahertz modulator based on vertically coupled fano metamaterial,” IEEE Trans. Terahertz Sci. Technol. 8(5), 502–508 (2018).
    [Crossref]
  9. L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref]
  10. M. Amin, R. Ramzan, and O. Siddiqui, “Fano resonance based ultra high-contrast electromagnetic switch,” Appl. Phys. Lett. 110(18), 181904 (2017).
    [Crossref]
  11. Z. X. Shen, S. H. Zhou, S. J. Ge, W. Duan, L. L. Ma, Y. Q. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
    [Crossref]
  12. C. F. Hsieh, C. S. Yang, F. C. Shih, R. P. Pan, and C. L. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019).
    [Crossref]
  13. B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
    [Crossref]
  14. M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34(1), 1–27 (2013).
    [Crossref]
  15. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  16. P. B. Nagy, “An introduction to metamaterials and waves in composites,” J. Acoust. Soc. Am. 131(2), 1665–1666 (2012).
    [Crossref]
  17. J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
    [Crossref]
  18. P. Y. Wang, T. Jin, F. Y. Meng, Y. L. Lyu, D. Erni, Q. Wu, and L. Zhu, “Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor,” Opt. Express 26(9), 12318–12329 (2018).
    [Crossref]
  19. Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
    [Crossref]
  20. D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2019).
    [Crossref]
  21. R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
    [Crossref]
  22. Z. X. Shen, S. H. Zhou, S. J. Ge, W. Duan, P. Chen, L. Wang, W. Hu, and Y. Q. Lu, “Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations,” Opt. Lett. 43(19), 4695–4698 (2018).
    [Crossref]
  23. R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
    [Crossref]
  24. J. Wang, H. Tian, Y. Wang, X. Y. Li, Y. J. Cao, L. Li, J. L. Liu, and Z. X. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
    [Crossref]
  25. D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
    [Crossref]
  26. Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
    [Crossref]
  27. S. T. Xu, F. Fan, Y. Y. Ji, J. R. Cheng, and S. J. Chang, “Terahertz resonance switch induced by the polarization conversion of liquid crystal in compound metasurface,” Opt. Lett. 44(10), 2450–2453 (2019).
    [Crossref]
  28. S. Xia, D. X. Yang, T. Li, X. Liu, and J. Wang, “Role of surface plasmon resonant modes in anomalous terahertz transmission through double-layer metal loop arrays,” Opt. Lett. 39(5), 1270–1273 (2014).
    [Crossref]
  29. Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
    [Crossref]

2019 (6)

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2019).
[Crossref]

Z. X. Shen, S. H. Zhou, S. J. Ge, W. Duan, L. L. Ma, Y. Q. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
[Crossref]

C. F. Hsieh, C. S. Yang, F. C. Shih, R. P. Pan, and C. L. Pan, “Liquid-crystal-based magnetically tunable terahertz achromatic quarter-wave plate,” Opt. Express 27(7), 9933–9940 (2019).
[Crossref]

S. T. Xu, F. Fan, Y. Y. Ji, J. R. Cheng, and S. J. Chang, “Terahertz resonance switch induced by the polarization conversion of liquid crystal in compound metasurface,” Opt. Lett. 44(10), 2450–2453 (2019).
[Crossref]

2018 (10)

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

J. Wang, H. Tian, Y. Wang, X. Y. Li, Y. J. Cao, L. Li, J. L. Liu, and Z. X. Zhou, “Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial,” Opt. Express 26(5), 5769–5776 (2018).
[Crossref]

P. Y. Wang, T. Jin, F. Y. Meng, Y. L. Lyu, D. Erni, Q. Wu, and L. Zhu, “Numerical investigation of nematic liquid crystals in the THz band based on EIT sensor,” Opt. Express 26(9), 12318–12329 (2018).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

Z. X. Shen, S. H. Zhou, S. J. Ge, W. Duan, P. Chen, L. Wang, W. Hu, and Y. Q. Lu, “Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations,” Opt. Lett. 43(19), 4695–4698 (2018).
[Crossref]

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

H. B. Wang and Y. J. Cheng, “140 GHz frequency selective surface based on hexagon substrate integrated waveguide cavity using normal PCB process,” IEEE Antennas Wirel. Propag. Lett. 17(3), 489–492 (2018).
[Crossref]

T. A. P. Tran and P. H. Bolivar, “Terahertz modulator based on vertically coupled fano metamaterial,” IEEE Trans. Terahertz Sci. Technol. 8(5), 502–508 (2018).
[Crossref]

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

2017 (4)

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

M. Amin, R. Ramzan, and O. Siddiqui, “Fano resonance based ultra high-contrast electromagnetic switch,” Appl. Phys. Lett. 110(18), 181904 (2017).
[Crossref]

L. Wang, S. J. Ge, W. Hu, M. Nakajima, and Y. Q. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref]

2015 (3)

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref]

M. Hangyo, “Development and future prospects of terahertz technology,” Jpn. J. Appl. Phys. 54(12), 120101 (2015).
[Crossref]

2014 (2)

S. Xia, D. X. Yang, T. Li, X. Liu, and J. Wang, “Role of surface plasmon resonant modes in anomalous terahertz transmission through double-layer metal loop arrays,” Opt. Lett. 39(5), 1270–1273 (2014).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

2013 (1)

M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

2012 (1)

P. B. Nagy, “An introduction to metamaterials and waves in composites,” J. Acoust. Soc. Am. 131(2), 1665–1666 (2012).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Amin, M.

M. Amin, R. Ramzan, and O. Siddiqui, “Fano resonance based ultra high-contrast electromagnetic switch,” Appl. Phys. Lett. 110(18), 181904 (2017).
[Crossref]

Baniya, S.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

Beccherelli, R.

D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2019).
[Crossref]

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref]

Bolivar, P. H.

T. A. P. Tran and P. H. Bolivar, “Terahertz modulator based on vertically coupled fano metamaterial,” IEEE Trans. Terahertz Sci. Technol. 8(5), 502–508 (2018).
[Crossref]

Cai, C. G.

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

Cai, F.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Cao, Y. J.

Chanana, A.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

Chang, S. J.

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

S. T. Xu, F. Fan, Y. Y. Ji, J. R. Cheng, and S. J. Chang, “Terahertz resonance switch induced by the polarization conversion of liquid crystal in compound metasurface,” Opt. Lett. 44(10), 2450–2453 (2019).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

Chen, M.

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

Chen, P.

Cheng, J. R.

Cheng, Y. J.

H. B. Wang and Y. J. Cheng, “140 GHz frequency selective surface based on hexagon substrate integrated waveguide cavity using normal PCB process,” IEEE Antennas Wirel. Propag. Lett. 17(3), 489–492 (2018).
[Crossref]

Deng, G. S.

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Duan, W.

Erni, D.

Fan, F.

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

S. T. Xu, F. Fan, Y. Y. Ji, J. R. Cheng, and S. J. Chang, “Terahertz resonance switch induced by the polarization conversion of liquid crystal in compound metasurface,” Opt. Lett. 44(10), 2450–2453 (2019).
[Crossref]

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

Fang, Y.

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Ferraro, A.

D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2019).
[Crossref]

Gajic, R.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Gao, S.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Ge, S. J.

Hangyo, M.

M. Hangyo, “Development and future prospects of terahertz technology,” Jpn. J. Appl. Phys. 54(12), 120101 (2015).
[Crossref]

Hsieh, C. F.

Hu, W.

Isic, G.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Jaroszewicz, L.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

Ji, Y. Y.

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

S. T. Xu, F. Fan, Y. Y. Ji, J. R. Cheng, and S. J. Chang, “Terahertz resonance switch induced by the polarization conversion of liquid crystal in compound metasurface,” Opt. Lett. 44(10), 2450–2453 (2019).
[Crossref]

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

Jin, T.

Jing, S. C.

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Kowerdziej, R.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Li, J. S.

M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Li, L.

Li, T.

Li, X. Y.

Li, Z. L.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Liu, J. L.

Liu, X.

Liu, Y.

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Lu, H. B.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Lu, Y. Q.

Lyu, Y. L.

Ma, L. L.

Meng, F. Y.

Nagy, P. B.

P. B. Nagy, “An introduction to metamaterials and waves in composites,” J. Acoust. Soc. Am. 131(2), 1665–1666 (2012).
[Crossref]

Nahata, A.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

Nakajima, M.

Olifierczuk, M.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Padilla, W. J.

M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Pan, C. L.

Pan, R. P.

Parka, J.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Qin, J. Y.

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

Rahm, M.

M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Ramzan, R.

M. Amin, R. Ramzan, and O. Siddiqui, “Fano resonance based ultra high-contrast electromagnetic switch,” Appl. Phys. Lett. 110(18), 181904 (2017).
[Crossref]

Shen, Z. X.

Shih, F. C.

Siddiqui, O.

M. Amin, R. Ramzan, and O. Siddiqui, “Fano resonance based ultra high-contrast electromagnetic switch,” Appl. Phys. Lett. 110(18), 181904 (2017).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Tian, H.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tran, T. A. P.

T. A. P. Tran and P. H. Bolivar, “Terahertz modulator based on vertically coupled fano metamaterial,” IEEE Trans. Terahertz Sci. Technol. 8(5), 502–508 (2018).
[Crossref]

Vardeny, Z. V.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

Vasic, B.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Wan, C. F.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Wang, C.

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

Wang, H. B.

H. B. Wang and Y. J. Cheng, “140 GHz frequency selective surface based on hexagon substrate integrated waveguide cavity using normal PCB process,” IEEE Antennas Wirel. Propag. Lett. 17(3), 489–492 (2018).
[Crossref]

Wang, J.

Wang, L.

Wang, P.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Wang, P. Y.

Wang, X. H.

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Y. Y. Ji, F. Fan, X. H. Wang, and S. J. Chang, “Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals,” Opt. Express 26(10), 12852–12862 (2018).
[Crossref]

Wang, Y.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Wróbel, J.

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Wu, Q.

Xia, S.

Xia, T. Y.

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Xie, L. J.

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

Xu, S. T.

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

S. T. Xu, F. Fan, Y. Y. Ji, J. R. Cheng, and S. J. Chang, “Terahertz resonance switch induced by the polarization conversion of liquid crystal in compound metasurface,” Opt. Lett. 44(10), 2450–2453 (2019).
[Crossref]

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Xu, W. D.

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

Yang, C. S.

Yang, D. X.

Yang, J.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Yang, Y.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Yin, Z. P.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

Ying, Y. B.

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

Yu, J. P.

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

Zhai, Y.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

Zhang, C.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

Zheng, A. D.

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Zhou, S. H.

Zhou, Z. X.

Zhu, L.

Zografopoulos, D. C.

D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2019).
[Crossref]

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref]

Adv. Mater. Technol. (1)

D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2019).
[Crossref]

Appl. Phys. Lett. (3)

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

M. Amin, R. Ramzan, and O. Siddiqui, “Fano resonance based ultra high-contrast electromagnetic switch,” Appl. Phys. Lett. 110(18), 181904 (2017).
[Crossref]

Appl. Sci. (1)

Z. P. Yin, C. F. Wan, G. S. Deng, A. D. Zheng, P. Wang, Y. Yang, S. Gao, J. Yang, F. Cai, Z. L. Li, and H. B. Lu, “Fast-tunable terahertz metamaterial absorber based on polymer network liquid crystal,” Appl. Sci. 8(12), 2454 (2018).
[Crossref]

Carbon (1)

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, Y. Liu, X. H. Wang, and S. J. Chang, “Terahertz dielectric anisotropy enhancement in dual-frequency liquid crystal induced by carbon nanotubes,” Carbon 152, 865–872 (2019).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

H. B. Wang and Y. J. Cheng, “140 GHz frequency selective surface based on hexagon substrate integrated waveguide cavity using normal PCB process,” IEEE Antennas Wirel. Propag. Lett. 17(3), 489–492 (2018).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

T. A. P. Tran and P. H. Bolivar, “Terahertz modulator based on vertically coupled fano metamaterial,” IEEE Trans. Terahertz Sci. Technol. 8(5), 502–508 (2018).
[Crossref]

IET Microw. Antennas Propag. (1)

J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, “Reflective liquid crystal terahertz phase shifter with tuning range of over 360°,” IET Microw. Antennas Propag. 12(9), 1466–1469 (2018).
[Crossref]

J. Acoust. Soc. Am. (1)

P. B. Nagy, “An introduction to metamaterials and waves in composites,” J. Acoust. Soc. Am. 131(2), 1665–1666 (2012).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (2)

M. Rahm, J. S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared, Millimeter, Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

J. Yang, T. Y. Xia, S. C. Jing, G. S. Deng, H. B. Lu, Y. Fang, and Z. P. Yin, “Electrically tunable reflective terahertz phase shifter based on liquid crystal,” J. Infrared, Millimeter, Terahertz Waves 39(5), 439–446 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Hangyo, “Development and future prospects of terahertz technology,” Jpn. J. Appl. Phys. 54(12), 120101 (2015).
[Crossref]

Nanoscale (1)

Y. Y. Ji, F. Fan, S. T. Xu, J. P. Yu, and S. J. Chang, “Manipulation enhancement of terahertz liquid crystal phase shifter magnetically induced by ferromagnetic nanoparticles,” Nanoscale 11(11), 4933–4941 (2019).
[Crossref]

Nanotechnology (1)

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref]

Nat. Commun. (1)

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Sci. Rep. (1)

D. C. Zografopoulos and R. Beccherelli, “Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching,” Sci. Rep. 5(1), 13137 (2015).
[Crossref]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref]

Trans. ASABE (1)

C. Wang, J. Y. Qin, W. D. Xu, M. Chen, L. J. Xie, and Y. B. Ying, “Terahertz imaging applications in agriculture and food engineering: a review,” Trans. ASABE 61(2), 411–424 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) 3D schematic diagram of a unit cell. (b) Top view of the metal resonance unit cell. (c) Side view of the unit cell.
Fig. 2.
Fig. 2. (a) Transmission spectra of the designed MLM structure at different LC dielectric constants. (b) The effects of the LC layer thickness on MD and IL.
Fig. 3.
Fig. 3. (a) Fabricated prototype. (b) Microscopic image of a group of unit cells. (c) Experimental setup for the characterization of the sample.
Fig. 4.
Fig. 4. Transmission spectra of the manufactured sample at different bias voltages.
Fig. 5.
Fig. 5. (a) Transmittance of the fabricated sample at an operating frequency of 421.2 GHz under different applied voltages. The Q factor of the fabricated sample at different applied voltages is shown in the inset. (b) Amplitude modulation depth of the fabricated sample at 421.2 GHz under different applied voltages.
Fig. 6.
Fig. 6. Electric field and surface current distributions at 416.7 GHz while biased and unbiased. (a) Electric field distribution while unbiased (x = p/2). (b) and (e) Surface current distributions in the upper and the lower patterned copper layers, respectively, while unbiased. (d) Electric field distribution while biased (x = p/2). (c) and (f) Surface current distributions in the upper and the lower patterned copper layers, respectively, while biased.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M D = [ T max T min ] / T max .
I L = 10 lg [ T max ] .
F T = [ f H f L ] / f H .
Q = f r / [ f R H f L H ] .

Metrics