Abstract

We demonstrate a tunable gain-switched Dy3+-doped ZBLAN fiber laser around 3 μm, for the first time, to the best of our knowledge. The pump source is a homemade actively Q-switched Yb3+-doped silica fiber laser at 1.1 μm, yielding a repetition rate of 80 kHz and a pulse width of 300 ns. A plane-ruled grating in a Littrow configuration functions as the tuning element. At the launched pump power of 2.78 W, stable gain-switched pulses tunable within a ~300 nm range of 2800~3095 nm are achieved. When tuning the wavelength to 2946.5 nm, a maximum output power of 218.6 mW with a repetition rate of 80 kHz is obtained. The corresponding pulse width and energy are 530 ns and 2.73 μJ, respectively. The results imply that gain-switching of Dy3+-doped ZBLAN fiber laser is an alternative way for mid-infrared nanosecond pulse generation around 3 μm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm

Chen Wei, Hongyu Luo, Hongxia Shi, YanJia Lyu, Han Zhang, and Yong Liu
Opt. Express 25(8) 8816-8827 (2017)

Watt-level gain-switched fiber laser at 3.46 μm

Hongyu Luo, Jian Yang, Fei Liu, Zhu Hu, Yao Xu, Fei Yan, Hanlin Peng, Francois Ouellette, Jianfeng Li, and Yong Liu
Opt. Express 27(2) 1367-1375 (2019)

State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm

Hongyu Luo, Jianfeng Li, Yongchen Hai, Xue Lai, and Yong Liu
Opt. Express 26(1) 63-79 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Pile, N. Horiuchi, RPCh. Won, and O. Graydon, “Extending opportunities,” Nat. Photonics 6(7), 407 (2012).
    [Crossref]
  2. M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25-3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9(11), 5645–5653 (2018).
    [Crossref] [PubMed]
  3. J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
    [Crossref]
  4. C. Frayssinous, V. Fortin, J. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
    [Crossref]
  5. S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
    [Crossref] [PubMed]
  6. J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in dentistry,” J. Laser Health Acad. 1(1), 1–13 (2012).
  7. J. D. Holcomb, “Versatility of erbium YAG laser: from fractional skin rejuvenation to full-field skin resurfacing,” Facial Plast. Surg. Clin. North Am. 19(2), 261–273 (2011).
    [Crossref] [PubMed]
  8. T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
    [Crossref] [PubMed]
  9. R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89(B7), 6329–6340 (1984).
    [Crossref]
  10. S. Lambert-Girard, M. Allard, M. Piché, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54(7), 1647–1656 (2015).
    [Crossref]
  11. R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photon. 4(2), 020801 (2019).
    [Crossref]
  12. H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  13. N. Sugimoto, N. Sims, K. Chan, and D. K. Killinger, “Eye-safe 2.1-µm Ho lidar for measuring atmospheric density profiles,” Opt. Lett. 15(6), 302–304 (1990).
    [Crossref] [PubMed]
  14. R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
    [Crossref] [PubMed]
  15. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
    [Crossref] [PubMed]
  16. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  17. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 407–423 (2012).
    [Crossref]
  18. K. Krzempek, J. Sotor, and K. Abramski, “Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser,” Opt. Lett. 41(21), 4995–4998 (2016).
    [Crossref] [PubMed]
  19. J. Zhao, D. Ouyang, Z. Zheng, M. Liu, X. Ren, C. Li, S. Ruan, and W. Xie, “100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system,” Opt. Express 24(11), 12072–12081 (2016).
    [Crossref] [PubMed]
  20. J. L. Yang, Y. L. Tang, and J. Q. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1(1), 52–57 (2013).
    [Crossref]
  21. F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
    [Crossref]
  22. X. Cheng, Z. Li, J. Hou, and Z. Liu, “Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm,” Opt. Express 24(25), 29126–29137 (2016).
    [Crossref] [PubMed]
  23. S. D. Chowdhury, A. Pal, D. Pal, S. Chatterjee, M. C. Paul, R. Sen, and M. Pal, “High repetition rate gain-switched 1.94 μm fiber laser pumped by 1.56 μm dissipative soliton resonance fiber laser,” Opt. Lett. 42(13), 2471–2474 (2017).
    [Crossref] [PubMed]
  24. Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
    [Crossref] [PubMed]
  25. M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
    [Crossref] [PubMed]
  26. C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
    [Crossref] [PubMed]
  27. Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
    [Crossref]
  28. P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
    [Crossref] [PubMed]
  29. H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
    [Crossref] [PubMed]
  30. H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm,” Opt. Express 26(1), 63–79 (2018).
    [Crossref] [PubMed]
  31. F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 μm,” Opt. Lett. 43(8), 1770–1773 (2018).
    [Crossref] [PubMed]
  32. H. Luo, J. Yang, F. Liu, Z. Hu, Y. Xu, F. Yan, H. Peng, F. Ouellette, J. Li, and Y. Liu, “Watt-level gain-switched fiber laser at 3.46 μm,” Opt. Express 27(2), 1367–1375 (2019).
    [Crossref] [PubMed]
  33. S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
    [Crossref]
  34. Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
    [Crossref]
  35. L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
    [Crossref]
  36. Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 μm,” Opt. Express 14(2), 678–685 (2006).
    [Crossref] [PubMed]
  37. M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm,” Opt. Lett. 43(5), 971–974 (2018).
    [Crossref] [PubMed]
  38. M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
    [Crossref] [PubMed]
  39. M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
    [Crossref] [PubMed]
  40. R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
    [Crossref] [PubMed]
  41. V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44(3), 491–494 (2019).
    [Crossref] [PubMed]
  42. R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photon. 3(11), 116106 (2018).
    [Crossref]
  43. Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+:fluoride fiber laser beyond 3 μm,” Opt. Lett. 44(2), 395–398 (2019).
    [Crossref] [PubMed]
  44. H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 μm using PbS nanoparticles,” Opt. Lett. 44(9), 2322–2325 (2019).
    [Crossref] [PubMed]
  45. R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27(10), 15032–15045 (2019).
    [Crossref] [PubMed]
  46. M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+: ZBLAN fiber laser operating in gain switching regime,” J. Lightwave Technol. 36(23), 5327–5333 (2018).
    [Crossref]
  47. J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
    [Crossref] [PubMed]
  48. L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107(5), 053103 (2010).
    [Crossref]

2019 (6)

2018 (10)

H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm,” Opt. Express 26(1), 63–79 (2018).
[Crossref] [PubMed]

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm,” Opt. Lett. 43(5), 971–974 (2018).
[Crossref] [PubMed]

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
[Crossref] [PubMed]

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 μm,” Opt. Lett. 43(8), 1770–1773 (2018).
[Crossref] [PubMed]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
[Crossref] [PubMed]

M. Yumoto, N. Saito, T. Lin, R. Kawamura, A. Aoki, Y. Izumi, and S. Wada, “High-energy, nanosecond pulsed Cr:CdSe laser with a 2.25-3.08 μm tuning range for laser biomaterial processing,” Biomed. Opt. Express 9(11), 5645–5653 (2018).
[Crossref] [PubMed]

M. C. Falconi, D. Laneve, M. Bozzetti, T. T. Fernandez, G. Galzerano, and F. Prudenzano, “Design of an efficient pulsed Dy3+: ZBLAN fiber laser operating in gain switching regime,” J. Lightwave Technol. 36(23), 5327–5333 (2018).
[Crossref]

C. Frayssinous, V. Fortin, J. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photon. 3(11), 116106 (2018).
[Crossref]

2017 (4)

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

S. D. Chowdhury, A. Pal, D. Pal, S. Chatterjee, M. C. Paul, R. Sen, and M. Pal, “High repetition rate gain-switched 1.94 μm fiber laser pumped by 1.56 μm dissipative soliton resonance fiber laser,” Opt. Lett. 42(13), 2471–2474 (2017).
[Crossref] [PubMed]

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
[Crossref] [PubMed]

2016 (6)

2015 (2)

2014 (1)

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

2013 (1)

2012 (3)

D. Pile, N. Horiuchi, RPCh. Won, and O. Graydon, “Extending opportunities,” Nat. Photonics 6(7), 407 (2012).
[Crossref]

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in dentistry,” J. Laser Health Acad. 1(1), 1–13 (2012).

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 407–423 (2012).
[Crossref]

2011 (3)

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

J. D. Holcomb, “Versatility of erbium YAG laser: from fractional skin rejuvenation to full-field skin resurfacing,” Facial Plast. Surg. Clin. North Am. 19(2), 261–273 (2011).
[Crossref] [PubMed]

M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
[Crossref] [PubMed]

2010 (4)

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
[Crossref] [PubMed]

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107(5), 053103 (2010).
[Crossref]

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
[Crossref] [PubMed]

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

2008 (1)

T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
[Crossref] [PubMed]

2006 (1)

2004 (2)

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

2003 (1)

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

1994 (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

1990 (1)

1984 (1)

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89(B7), 6329–6340 (1984).
[Crossref]

Abramski, K.

Albrow-Owen, T.

Allard, M.

Aoki, A.

Aydin, Y. O.

Babin, F.

Bekman, H. H. P. T.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Benson, T. M.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Beres-Pawlik, E.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Bernier, M.

Bérubé, J.

C. Frayssinous, V. Fortin, J. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Bharathan, G.

Bozzetti, M.

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Chan, K.

Chatterjee, S.

Chen, H. W.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Cheng, X.

Chowdhury, S. D.

Clark, R. N.

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89(B7), 6329–6340 (1984).
[Crossref]

Copic, M.

Diaci, J.

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in dentistry,” J. Laser Health Acad. 1(1), 1–13 (2012).

Duval, S.

El-Taher, A. E.

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 μm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

Falconi, M. C.

Fernandez, T. T.

Fortin, V.

Fraser, A.

C. Frayssinous, V. Fortin, J. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Frayssinous, C.

C. Frayssinous, V. Fortin, J. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Fuerbach, A.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Galzerano, G.

Gao, Y.

Gaspirc, B.

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in dentistry,” J. Laser Health Acad. 1(1), 1–13 (2012).

Geng, J.

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

Gomes, L.

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107(5), 053103 (2010).
[Crossref]

Gorjan, M.

Graydon, O.

D. Pile, N. Horiuchi, RPCh. Won, and O. Graydon, “Extending opportunities,” Nat. Photonics 6(7), 407 (2012).
[Crossref]

Grehn, F.

T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
[Crossref] [PubMed]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Guo, G.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Hai, Y.

Hartmann, A.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Hasan, T.

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hibst, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Holcomb, J. D.

J. D. Holcomb, “Versatility of erbium YAG laser: from fractional skin rejuvenation to full-field skin resurfacing,” Facial Plast. Surg. Clin. North Am. 19(2), 261–273 (2011).
[Crossref] [PubMed]

Horiuchi, N.

D. Pile, N. Horiuchi, RPCh. Won, and O. Graydon, “Extending opportunities,” Nat. Photonics 6(7), 407 (2012).
[Crossref]

Hou, J.

Hu, G.

Hu, Z.

Hudson, D. D.

R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photon. 4(2), 020801 (2019).
[Crossref]

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
[Crossref] [PubMed]

Izumi, Y.

Jackson, S. D.

R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27(10), 15032–15045 (2019).
[Crossref] [PubMed]

R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photon. 4(2), 020801 (2019).
[Crossref]

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photon. 3(11), 116106 (2018).
[Crossref]

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm,” Opt. Lett. 43(5), 971–974 (2018).
[Crossref] [PubMed]

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 407–423 (2012).
[Crossref]

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107(5), 053103 (2010).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 μm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

Jiang, S.

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

Jobin, F.

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Kaufmann, R.

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

Kawamura, R.

Kelleher, E.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Killinger, D. K.

King, T. A.

Klink, J.

T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
[Crossref] [PubMed]

Klink, T.

T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
[Crossref] [PubMed]

Krzempek, K.

Lai, X.

Lambert-Girard, S.

Lamrini, S.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Laneve, D.

Laporta, P.

Larose, M.

Li, C.

Li, H.

Li, J.

Li, X.

Li, Y.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Li, Z.

Librantz, A. F. H.

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107(5), 053103 (2010).
[Crossref]

Lieb, W. E.

T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
[Crossref] [PubMed]

Lin, T.

Liu, F.

Liu, M.

Liu, Y.

Liu, Z.

Luan, K. P.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Luo, H.

Lyu, Y.

Macadam, N.

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Maes, F.

Majewski, M. R.

Marincek, M.

Markowski, K.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Meng, Y.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Osuch, T.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Ouellette, F.

Ouyang, D.

Pajewski, L.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Pal, A.

Pal, D.

Pal, M.

Paradis, P.

Paul, M. C.

Peng, H.

Petkovšek, R.

Piché, M.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Pile, D.

D. Pile, N. Horiuchi, RPCh. Won, and O. Graydon, “Extending opportunities,” Nat. Photonics 6(7), 407 (2012).
[Crossref]

Popenda, M.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Prudenzano, F.

Ren, X.

Roush, T. L.

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89(B7), 6329–6340 (1984).
[Crossref]

Ruan, S.

Saito, N.

Schleijpen, R.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Schlunck, G.

T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
[Crossref] [PubMed]

Seddon, A. B.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Sen, R.

Shen, Y. L.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Shi, H.

Si, J. H.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Sims, N.

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Sójka, L.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Sotor, J.

Stübinger, S.

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
[Crossref] [PubMed]

Sugimoto, N.

Sujecki, S.

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Tang, Y.

Tang, Y. L.

Tao, M. M.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Tsang, Y. H.

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 μm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

Vallée, R.

van den Heuvel, J. C.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

van Putten, F. J. M.

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Wada, S.

Wang, F.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Wang, L.

Wang, Y.

Wang, Y. S.

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

Wei, C.

Won, RPCh.

D. Pile, N. Horiuchi, RPCh. Won, and O. Graydon, “Extending opportunities,” Nat. Photonics 6(7), 407 (2012).
[Crossref]

Woodward, R. I.

Xie, W.

Xu, J.

Xu, J. Q.

Xu, L.

Xu, Y.

Yan, F.

Yang, J.

Yang, J. L.

Yang, Y.

Yumoto, M.

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Zhai, B.

Zhang, H.

Zhao, J.

Zheng, Z.

Zhu, C.

H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
[Crossref] [PubMed]

Zhu, S.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

APL Photon. (2)

R. I. Woodward, M. R. Majewski, D. D. Hudson, and S. D. Jackson, “Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing,” APL Photon. 4(2), 020801 (2019).
[Crossref]

R. I. Woodward, M. R. Majewski, and S. D. Jackson, “Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm,” APL Photon. 3(11), 116106 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. D. Jackson, “Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

Biomed. Opt. Express (1)

Clin. Cosmet. Investig. Dent. (1)

S. Stübinger, “Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry,” Clin. Cosmet. Investig. Dent. 2, 47–62 (2010).
[Crossref] [PubMed]

Eye (Lond.) (1)

T. Klink, G. Schlunck, W. E. Lieb, J. Klink, and F. Grehn, “Long-term results of Erbium YAG-laser-assisted deep sclerectomy,” Eye (Lond.) 22(3), 370–374 (2008).
[Crossref] [PubMed]

Facial Plast. Surg. Clin. North Am. (1)

J. D. Holcomb, “Versatility of erbium YAG laser: from fractional skin rejuvenation to full-field skin resurfacing,” Facial Plast. Surg. Clin. North Am. 19(2), 261–273 (2011).
[Crossref] [PubMed]

IEEE Photonics J. (1)

Y. L. Shen, Y. S. Wang, K. P. Luan, H. W. Chen, M. M. Tao, and J. H. Si, “Efficient, wavelength tunable gain switching and gain switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser,” IEEE Photonics J. 9(4), 1504510 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Sójka, L. Pajewski, M. Popenda, E. Beres-Pawlik, S. Lamrini, K. Markowski, T. Osuch, T. M. Benson, A. B. Seddon, and S. Sujecki, “Experimental investigation of mid-infrared laser action from Dy3+ doped fluorozirconate fiber,” IEEE Photonics Technol. Lett. 30(12), 1083–1086 (2018).
[Crossref]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140 nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

J. Appl. Phys. (1)

L. Gomes, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass,” J. Appl. Phys. 107(5), 053103 (2010).
[Crossref]

J. Dermatol. Surg. Oncol. (1)

R. Kaufmann, A. Hartmann, and R. Hibst, “Cutting and skin-ablative properties of pulsed mid-infrared laser surgery,” J. Dermatol. Surg. Oncol. 20(2), 112–118 (1994).
[Crossref] [PubMed]

J. Geophys. Res. (1)

R. N. Clark and T. L. Roush, “Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications,” J. Geophys. Res. 89(B7), 6329–6340 (1984).
[Crossref]

J. Laser Health Acad. (1)

J. Diaci and B. Gaspirc, “Comparison of Er:YAG and Er,Cr:YSGG lasers used in dentistry,” J. Laser Health Acad. 1(1), 1–13 (2012).

J. Lightwave Technol. (1)

J. Mater. Process. Technol. (1)

C. Frayssinous, V. Fortin, J. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Laser Phys. Lett. (2)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 μm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 μm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 407–423 (2012).
[Crossref]

D. Pile, N. Horiuchi, RPCh. Won, and O. Graydon, “Extending opportunities,” Nat. Photonics 6(7), 407 (2012).
[Crossref]

Opt. Express (10)

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

X. Cheng, Z. Li, J. Hou, and Z. Liu, “Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm,” Opt. Express 24(25), 29126–29137 (2016).
[Crossref] [PubMed]

J. Zhao, D. Ouyang, Z. Zheng, M. Liu, X. Ren, C. Li, S. Ruan, and W. Xie, “100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system,” Opt. Express 24(11), 12072–12081 (2016).
[Crossref] [PubMed]

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express 18(22), 22964–22972 (2010).
[Crossref] [PubMed]

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

Y. H. Tsang, A. E. El-Taher, T. A. King, and S. D. Jackson, “Efficient 2.96 μm dysprosium-doped fluoride fibre laser pumped with a Nd:YAG laser operating at 1.3 μm,” Opt. Express 14(2), 678–685 (2006).
[Crossref] [PubMed]

H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm,” Opt. Express 26(1), 63–79 (2018).
[Crossref] [PubMed]

J. Li, H. Luo, L. Wang, B. Zhai, H. Li, and Y. Liu, “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express 23(17), 22362–22370 (2015).
[Crossref] [PubMed]

H. Luo, J. Yang, F. Liu, Z. Hu, Y. Xu, F. Yan, H. Peng, F. Ouellette, J. Li, and Y. Liu, “Watt-level gain-switched fiber laser at 3.46 μm,” Opt. Express 27(2), 1367–1375 (2019).
[Crossref] [PubMed]

R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, and S. D. Jackson, “Q-switched Dy:ZBLAN fiber lasers beyond 3 μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus,” Opt. Express 27(10), 15032–15045 (2019).
[Crossref] [PubMed]

Opt. Lett. (13)

Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, and R. Vallée, “Ultrafast Dy3+:fluoride fiber laser beyond 3 μm,” Opt. Lett. 44(2), 395–398 (2019).
[Crossref] [PubMed]

H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, and Y. Liu, “Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 μm using PbS nanoparticles,” Opt. Lett. 44(9), 2322–2325 (2019).
[Crossref] [PubMed]

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 μm,” Opt. Lett. 43(8), 1770–1773 (2018).
[Crossref] [PubMed]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
[Crossref] [PubMed]

M. R. Majewski, R. I. Woodward, and S. D. Jackson, “Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm,” Opt. Lett. 43(5), 971–974 (2018).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Highly efficient mid-infrared dysprosium fiber laser,” Opt. Lett. 41(10), 2173–2176 (2016).
[Crossref] [PubMed]

M. R. Majewski and S. D. Jackson, “Tunable dysprosium laser,” Opt. Lett. 41(19), 4496–4498 (2016).
[Crossref] [PubMed]

R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, and S. D. Jackson, “Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency,” Opt. Lett. 43(7), 1471–1474 (2018).
[Crossref] [PubMed]

V. Fortin, F. Jobin, M. Larose, M. Bernier, and R. Vallée, “10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm,” Opt. Lett. 44(3), 491–494 (2019).
[Crossref] [PubMed]

N. Sugimoto, N. Sims, K. Chan, and D. K. Killinger, “Eye-safe 2.1-µm Ho lidar for measuring atmospheric density profiles,” Opt. Lett. 15(6), 302–304 (1990).
[Crossref] [PubMed]

M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
[Crossref] [PubMed]

S. D. Chowdhury, A. Pal, D. Pal, S. Chatterjee, M. C. Paul, R. Sen, and M. Pal, “High repetition rate gain-switched 1.94 μm fiber laser pumped by 1.56 μm dissipative soliton resonance fiber laser,” Opt. Lett. 42(13), 2471–2474 (2017).
[Crossref] [PubMed]

K. Krzempek, J. Sotor, and K. Abramski, “Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser,” Opt. Lett. 41(21), 4995–4998 (2016).
[Crossref] [PubMed]

Opt. Photonics News (1)

J. Geng and S. Jiang, “Fiber lasers: the 2 μm market heats up,” Opt. Photonics News 25(7), 34–41 (2014).
[Crossref]

Photon. Res. (1)

Proc. SPIE (1)

H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Sci. Rep. (1)

H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the tunable gain-switched Dy3+-doped ZBLAN fiber laser around 3 μm. DM1 and DM2: two dichroic mirrors; L1-L3: three lenses.
Fig. 2
Fig. 2 Temporal pulse trains and single pulse waveforms (inset) at the launched pump power of (a) 1.97 W and (b) 2.78 W.
Fig. 3
Fig. 3 Output spectrum at the launched pump power of 2.78 W.
Fig. 4
Fig. 4 (a) Pulse width and pulse energy, (b) output power as a function of the launched pump power.
Fig. 5
Fig. 5 (a) Optical spectra, (b) pulse width and repetition rate, and (c) output power and pulse energy as a function of the wavelength at the launched pump power of 2.78 W.

Metrics