Abstract

We investigate the effects of pump laser power density on the hybrid optically pumped comagnetometer operated in the spin-exchange relaxation-free (SERF) regime. The analytic steady-state output model for the comagnetometer considering two alkali metal species and one nuclear species is presented for the first time. And the effects of pump laser power density on the rotation sensitivity, suppression of low-frequency magnetic noise and long-term stability of the comagnetometer are studied experimentally. The results indicate that when the product of pumping rate and density ratio of pumped atom to probed atom is equal to the spin relaxation rate of the probed atom, the maximum response and highest sensitivity of the comagnetometer are achieved. However, the suppression of low-frequency magnetic noise and long-term stability improve with the increasing of pump laser power density due to the increasing of nuclear spin polarization. Our focus is to optimize the performance of the comagnetometer for rotation sensing, but the theory and method presented here are relevant to all applications of the hybrid optical pumping technique.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts

Kai Wei, Tian Zhao, Xiujie Fang, Yueyang Zhai, Hairong Li, and Wei Quan
Opt. Express 27(11) 16169-16183 (2019)

Rotation sensing decoupling of a dual-axis K-Rb-21Ne atomic comagnetometer

Lihong Duan, Wei Quan, Yao Chen, Liwei Jiang, Wenfeng Fan, Ming Ding, Zhuo Wang, and Jiancheng Fang
Appl. Opt. 57(7) 1611-1616 (2018)

Temperature characteristics of K-Rb hybrid optically pumped magnetometers with different density ratios

Sho Ito, Yosuke Ito, and Tetsuo Kobayashi
Opt. Express 27(6) 8037-8047 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31, 273–276 (1973).
    [Crossref]
  2. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
    [Crossref] [PubMed]
  3. T. W. Kornack and M. V. Romalis, “Dynamics of two overlapping spin ensembles interacting by spin exchange,” Phys. Rev. Lett. 89, 253002 (2002).
    [Crossref] [PubMed]
  4. T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
    [Crossref] [PubMed]
  5. C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
    [Crossref]
  6. L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
    [Crossref]
  7. M. E. Limes, D. Sheng, and M. V. Romalis, “3He−129Xe comagnetometery using 87Rb detection and decoupling,” Phys. Rev. Lett. 120, 033401 (2018).
    [Crossref]
  8. V. V. Flambaum and M. V. Romalis, “Limits on Lorentz invariance violation from coulomb interactions in nuclei and atoms,” Phys. Rev. Lett. 118, 142501 (2017).
    [Crossref] [PubMed]
  9. V. A. Kostelecky and N. Russell, “Data tables for Lorentz and CPT violation,” Rev. Mod. Phys. 83, 11 (2011).
    [Crossref]
  10. G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K- 3He comagnetometer,” Phys. Rev. Lett. 103, 261801 (2009).
    [Crossref]
  11. M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
    [Crossref]
  12. J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52, 7220–7227 (2013).
    [Crossref] [PubMed]
  13. G. Renon, N. Zahzam, Y. Bidel, A. Bresson, and P.-J. Nacher, “A nuclear-electronic spin gyro-comagnetometer,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 1 (2013), p. 1135.
  14. M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
    [Crossref]
  15. E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
    [Crossref]
  16. Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
    [Crossref]
  17. R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
    [Crossref]
  18. L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
    [Crossref]
  19. R. K. Ghosh and M. V. Romalis, “Measurement of spin-exchange and relaxation parameters for polarizing 21Ne with K and Rb,” Phys. Rev. A 81, 043415 (2010).
    [Crossref]
  20. T. W. Kornack, “A test of CPT and Lorentz symmetry using a K-3He co-magnetometer,” Ph.D. thesis, Princeton University (2005).
  21. J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. thesis, Princeton University (2011).
  22. H. Yao, Y. Li, D. Ma, J. Cai, J. Zhao, and M. Ding, “Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method,” Opt. Express 26, 28682–28692 (2018).
    [Crossref] [PubMed]
  23. S. Ito, Y. Ito, and T. Kobayashi, “Temperature characteristics of K-Rb hybrid optically pumped magnetometers with different density ratios,” Opt. Express 27, 8037–8047 (2019).
    [Crossref] [PubMed]
  24. Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
    [Crossref]
  25. Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
    [Crossref] [PubMed]
  26. S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
    [Crossref]
  27. S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
    [Crossref]
  28. O. Katz, O. Peleg, and O. Firstenberg, “Coherent coupling of alkali atoms by random collisions,” Phys. Rev. Lett. 115, 113003 (2015).
    [Crossref] [PubMed]
  29. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
    [Crossref]
  30. W. Quan, K. Shen, Y. Zhai, X. Wang, L. Jiang, W. Fan, F. Liu, J. Qin, and S. Wan, “Precision measurements of optically thick alkali metal number density within a hybrid alkali metal cell,” Appl. Opt. 57, 5714–5719 (2018).
    [Crossref] [PubMed]
  31. L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23, 32481–32489 (2015).
    [Crossref] [PubMed]
  32. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
    [Crossref]
  33. G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
    [Crossref]
  34. T. G. Walker, “Estimates of spin-exchange parameters for alkali-metal–noble-gas pairs,” Phys. Rev. A 40, 4959–4964 (1989).
    [Crossref]
  35. L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
    [Crossref]
  36. J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
    [Crossref]

2019 (2)

S. Ito, Y. Ito, and T. Kobayashi, “Temperature characteristics of K-Rb hybrid optically pumped magnetometers with different density ratios,” Opt. Express 27, 8037–8047 (2019).
[Crossref] [PubMed]

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

2018 (4)

2017 (2)

V. V. Flambaum and M. V. Romalis, “Limits on Lorentz invariance violation from coulomb interactions in nuclei and atoms,” Phys. Rev. Lett. 118, 142501 (2017).
[Crossref] [PubMed]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

2016 (6)

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

Y. Ito, D. Sato, K. Kamada, and T. Kobayashi, “Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization,” Opt. Express 24, 15391–15402 (2016).
[Crossref] [PubMed]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

2015 (2)

2013 (2)

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52, 7220–7227 (2013).
[Crossref] [PubMed]

2012 (1)

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
[Crossref]

2011 (2)

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
[Crossref]

V. A. Kostelecky and N. Russell, “Data tables for Lorentz and CPT violation,” Rev. Mod. Phys. 83, 11 (2011).
[Crossref]

2010 (1)

R. K. Ghosh and M. V. Romalis, “Measurement of spin-exchange and relaxation parameters for polarizing 21Ne with K and Rb,” Phys. Rev. A 81, 043415 (2010).
[Crossref]

2009 (1)

G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K- 3He comagnetometer,” Phys. Rev. Lett. 103, 261801 (2009).
[Crossref]

2008 (1)

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

2005 (1)

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

2003 (1)

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

2002 (3)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

T. W. Kornack and M. V. Romalis, “Dynamics of two overlapping spin ensembles interacting by spin exchange,” Phys. Rev. Lett. 89, 253002 (2002).
[Crossref] [PubMed]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

1998 (1)

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

1989 (2)

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

T. G. Walker, “Estimates of spin-exchange parameters for alkali-metal–noble-gas pairs,” Phys. Rev. A 40, 4959–4964 (1989).
[Crossref]

1973 (1)

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31, 273–276 (1973).
[Crossref]

Acosta, V. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

Allred, J. C.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Anderson, L. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

Appelt, S.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Babcock, E.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

Baranga, A. B.-A.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Bidel, Y.

G. Renon, N. Zahzam, Y. Bidel, A. Bresson, and P.-J. Nacher, “A nuclear-electronic spin gyro-comagnetometer,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 1 (2013), p. 1135.

Bresson, A.

G. Renon, N. Zahzam, Y. Bidel, A. Bresson, and P.-J. Nacher, “A nuclear-electronic spin gyro-comagnetometer,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 1 (2013), p. 1135.

Brown, J. M.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
[Crossref]

G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K- 3He comagnetometer,” Phys. Rev. Lett. 103, 261801 (2009).
[Crossref]

J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. thesis, Princeton University (2011).

Budker, D.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Bulatowicz, M.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Cai, J.

Cates, G. D.

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

Chen, Y.

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

Cheuk, L. W.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
[Crossref]

Chien, T.-R.

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

Ding, M.

H. Yao, Y. Li, D. Ma, J. Cai, J. Zhao, and M. Ding, “Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method,” Opt. Express 26, 28682–28692 (2018).
[Crossref] [PubMed]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23, 32481–32489 (2015).
[Crossref] [PubMed]

Driehuys, B.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

Duan, L.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23, 32481–32489 (2015).
[Crossref] [PubMed]

Erickson, C. J.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Fan, W.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

W. Quan, K. Shen, Y. Zhai, X. Wang, L. Jiang, W. Fan, F. Liu, J. Qin, and S. Wan, “Precision measurements of optically thick alkali metal number density within a hybrid alkali metal cell,” Appl. Opt. 57, 5714–5719 (2018).
[Crossref] [PubMed]

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

Fang, J.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23, 32481–32489 (2015).
[Crossref] [PubMed]

J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52, 7220–7227 (2013).
[Crossref] [PubMed]

Firstenberg, O.

O. Katz, O. Peleg, and O. Firstenberg, “Coherent coupling of alkali atoms by random collisions,” Phys. Rev. Lett. 115, 113003 (2015).
[Crossref] [PubMed]

Flambaum, V. V.

V. V. Flambaum and M. V. Romalis, “Limits on Lorentz invariance violation from coulomb interactions in nuclei and atoms,” Phys. Rev. Lett. 118, 142501 (2017).
[Crossref] [PubMed]

Fu, C. B.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Ghosh, R. K.

R. K. Ghosh and M. V. Romalis, “Measurement of spin-exchange and relaxation parameters for polarizing 21Ne with K and Rb,” Phys. Rev. A 81, 043415 (2010).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

Gonatas, D.

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

Griffith, R.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Happer, W.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31, 273–276 (1973).
[Crossref]

Hersman, F. W.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

Hostutler, D. A.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
[Crossref]

Hu, Z.

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

Ito, S.

Ito, Y.

Jiang, L.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

W. Quan, K. Shen, Y. Zhai, X. Wang, L. Jiang, W. Fan, F. Liu, J. Qin, and S. Wan, “Precision measurements of optically thick alkali metal number density within a hybrid alkali metal cell,” Appl. Opt. 57, 5714–5719 (2018).
[Crossref] [PubMed]

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23, 32481–32489 (2015).
[Crossref] [PubMed]

Kadlecek, S.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

Kamada, K.

Katz, O.

O. Katz, O. Peleg, and O. Firstenberg, “Coherent coupling of alkali atoms by random collisions,” Phys. Rev. Lett. 115, 113003 (2015).
[Crossref] [PubMed]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Klennert, W. L.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
[Crossref]

Kobayashi, T.

Kornack, T. W.

G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K- 3He comagnetometer,” Phys. Rev. Lett. 103, 261801 (2009).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

T. W. Kornack and M. V. Romalis, “Dynamics of two overlapping spin ensembles interacting by spin exchange,” Phys. Rev. Lett. 89, 253002 (2002).
[Crossref] [PubMed]

T. W. Kornack, “A test of CPT and Lorentz symmetry using a K-3He co-magnetometer,” Ph.D. thesis, Princeton University (2005).

Kostelecky, V. A.

V. A. Kostelecky and N. Russell, “Data tables for Lorentz and CPT violation,” Rev. Mod. Phys. 83, 11 (2011).
[Crossref]

Larsen, M.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

Li, R.

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

L. Duan, J. Fang, R. Li, L. Jiang, M. Ding, and W. Wang, “Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer,” Opt. Express 23, 32481–32489 (2015).
[Crossref] [PubMed]

Li, Y.

H. Yao, Y. Li, D. Ma, J. Cai, J. Zhao, and M. Ding, “Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method,” Opt. Express 26, 28682–28692 (2018).
[Crossref] [PubMed]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

Limes, M. E.

M. E. Limes, D. Sheng, and M. V. Romalis, “3He−129Xe comagnetometery using 87Rb detection and decoupling,” Phys. Rev. Lett. 120, 033401 (2018).
[Crossref]

Liu, F.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

W. Quan, K. Shen, Y. Zhai, X. Wang, L. Jiang, W. Fan, F. Liu, J. Qin, and S. Wan, “Precision measurements of optically thick alkali metal number density within a hybrid alkali metal cell,” Appl. Opt. 57, 5714–5719 (2018).
[Crossref] [PubMed]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

Liu, W.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

Liu, X.

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

Lu, Y.

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

Ma, D.

Mirijanian, J.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Nacher, P.-J.

G. Renon, N. Zahzam, Y. Bidel, A. Bresson, and P.-J. Nacher, “A nuclear-electronic spin gyro-comagnetometer,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 1 (2013), p. 1135.

Nelson, I.

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

Peleg, O.

O. Katz, O. Peleg, and O. Firstenberg, “Coherent coupling of alkali atoms by random collisions,” Phys. Rev. Lett. 115, 113003 (2015).
[Crossref] [PubMed]

Pitz, G. A.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
[Crossref]

Qin, J.

W. Quan, K. Shen, Y. Zhai, X. Wang, L. Jiang, W. Fan, F. Liu, J. Qin, and S. Wan, “Precision measurements of optically thick alkali metal number density within a hybrid alkali metal cell,” Appl. Opt. 57, 5714–5719 (2018).
[Crossref] [PubMed]

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

Quan, W.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

W. Quan, K. Shen, Y. Zhai, X. Wang, L. Jiang, W. Fan, F. Liu, J. Qin, and S. Wan, “Precision measurements of optically thick alkali metal number density within a hybrid alkali metal cell,” Appl. Opt. 57, 5714–5719 (2018).
[Crossref] [PubMed]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
[Crossref]

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

Renon, G.

G. Renon, N. Zahzam, Y. Bidel, A. Bresson, and P.-J. Nacher, “A nuclear-electronic spin gyro-comagnetometer,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 1 (2013), p. 1135.

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Romalis, M. V.

M. E. Limes, D. Sheng, and M. V. Romalis, “3He−129Xe comagnetometery using 87Rb detection and decoupling,” Phys. Rev. Lett. 120, 033401 (2018).
[Crossref]

V. V. Flambaum and M. V. Romalis, “Limits on Lorentz invariance violation from coulomb interactions in nuclei and atoms,” Phys. Rev. Lett. 118, 142501 (2017).
[Crossref] [PubMed]

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
[Crossref]

R. K. Ghosh and M. V. Romalis, “Measurement of spin-exchange and relaxation parameters for polarizing 21Ne with K and Rb,” Phys. Rev. A 81, 043415 (2010).
[Crossref]

G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K- 3He comagnetometer,” Phys. Rev. Lett. 103, 261801 (2009).
[Crossref]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

T. W. Kornack and M. V. Romalis, “Dynamics of two overlapping spin ensembles interacting by spin exchange,” Phys. Rev. Lett. 89, 253002 (2002).
[Crossref] [PubMed]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Russell, N.

V. A. Kostelecky and N. Russell, “Data tables for Lorentz and CPT violation,” Rev. Mod. Phys. 83, 11 (2011).
[Crossref]

Sandoval, A. J.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
[Crossref]

Sato, D.

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

Schaefer, S. R.

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

Shen, K.

Sheng, D.

M. E. Limes, D. Sheng, and M. V. Romalis, “3He−129Xe comagnetometery using 87Rb detection and decoupling,” Phys. Rev. Lett. 120, 033401 (2018).
[Crossref]

Smiciklas, M.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
[Crossref]

Smith, E.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Smullin, S. J.

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
[Crossref]

Snow, W. M.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Tang, H.

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31, 273–276 (1973).
[Crossref]

Tang, Z.

C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
[Crossref]

Vasilakis, G.

G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K- 3He comagnetometer,” Phys. Rev. Lett. 103, 261801 (2009).
[Crossref]

Walker, T. G.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

T. G. Walker, “Estimates of spin-exchange parameters for alkali-metal–noble-gas pairs,” Phys. Rev. A 40, 4959–4964 (1989).
[Crossref]

Wan, S.

Wang, W.

Wang, X.

Wang, Z.

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Xing, L.

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

Yan, H.

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

Yao, H.

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Young, A. R.

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

Yuan, H.

C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

J. Fang, S. Wan, and H. Yuan, “Dynamics of an all-optical atomic spin gyroscope,” Appl. Opt. 52, 7220–7227 (2013).
[Crossref] [PubMed]

Zahzam, N.

G. Renon, N. Zahzam, Y. Bidel, A. Bresson, and P.-J. Nacher, “A nuclear-electronic spin gyro-comagnetometer,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 1 (2013), p. 1135.

Zameroski, N. D.

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
[Crossref]

Zhai, Y.

Zhang, C.

C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
[Crossref]

Zhang, H.

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

Zhao, J.

Zou, S.

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. Jiang, W. Quan, R. Li, W. Fan, F. Liu, J. Qin, S. Wan, and J. Fang, “A parametrically modulated dual-axis atomic spin gyroscope,” Appl. Phys. Lett. 112, 054103 (2018).
[Crossref]

Appl. Phys. Rev. (1)

C. Zhang, H. Yuan, Z. Tang, W. Quan, and J. Fang, “Inertial rotation measurement with atomic spins: from angular momentum conservation to quantum phase theory,” Appl. Phys. Rev. 3, 041305 (2016).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

J. Fang, Y. Chen, S. Zou, X. Liu, Z. Hu, W. Quan, H. Yuan, and M. Ding, “Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field,” J. Phys. B: At. Mol. Opt. Phys. 49, 065006 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

G. A. Pitz, A. J. Sandoval, N. D. Zameroski, W. L. Klennert, and D. A. Hostutler, “Pressure broadening and shift of the potassium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, C3H8, and n-C4H10 with comparison to other alkali rates,” J. Quant. Spectrosc. Radiat. Transf. 113, 387–395 (2012).
[Crossref]

Opt. Express (4)

Phys. Rev. A (8)

S. Appelt, A. B.-A. Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer, “Theory of spin-exchange optical pumping of 3He and 129Xe,” Phys. Rev. A 58, 1412–1439 (1998).
[Crossref]

S. R. Schaefer, G. D. Cates, T.-R. Chien, D. Gonatas, W. Happer, and T. G. Walker, “Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms,” Phys. Rev. A 39, 5613–5623 (1989).
[Crossref]

Y. Chen, W. Quan, L. Duan, Y. Lu, L. Jiang, and J. Fang, “Spin-exchange collision mixing of the K and Rb ac Stark shifts,” Phys. Rev. A 94, 052705 (2016).
[Crossref]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[Crossref]

T. G. Walker, “Estimates of spin-exchange parameters for alkali-metal–noble-gas pairs,” Phys. Rev. A 40, 4959–4964 (1989).
[Crossref]

R. Li, W. Fan, L. Jiang, L. Duan, W. Quan, and J. Fang, “Rotation sensing using a K-Rb-21Ne comagnetometer,” Phys. Rev. A 94, 032109 (2016).
[Crossref]

L. Jiang, W. Quan, R. Li, L. Duan, W. Fan, Z. Wang, F. Liu, L. Xing, and J. Fang, “Suppression of the cross-talk effect in a dual-axis K- Rb- 21Ne comagnetometer,” Phys. Rev. A 95, 062103 (2017).
[Crossref]

R. K. Ghosh and M. V. Romalis, “Measurement of spin-exchange and relaxation parameters for polarizing 21Ne with K and Rb,” Phys. Rev. A 81, 043415 (2010).
[Crossref]

Phys. Rev. Appl. (1)

L. Jiang, W. Quan, F. Liu, W. Fan, L. Xing, L. Duan, W. Liu, and J. Fang, “Closed-loop control of compensation point in the K-Rb-21Ne comagnetometer,” Phys. Rev. Appl. 12, 024017 (2019).
[Crossref]

Phys. Rev. Lett. (11)

M. Smiciklas, J. M. Brown, L. W. Cheuk, S. J. Smullin, and M. V. Romalis, “New test of local Lorentz invariance using a 21Ne- Rb- K comagnetometer,” Phys. Rev. Lett. 107, 171604 (2011).
[Crossref]

E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, “Hybrid spin-exchange optical pumping of 3He,” Phys. Rev. Lett. 91, 123003 (2003).
[Crossref]

O. Katz, O. Peleg, and O. Firstenberg, “Coherent coupling of alkali atoms by random collisions,” Phys. Rev. Lett. 115, 113003 (2015).
[Crossref] [PubMed]

G. Vasilakis, J. M. Brown, T. W. Kornack, and M. V. Romalis, “Limits on new long range nuclear spin-dependent forces set with a K- 3He comagnetometer,” Phys. Rev. Lett. 103, 261801 (2009).
[Crossref]

M. Bulatowicz, R. Griffith, M. Larsen, J. Mirijanian, C. B. Fu, E. Smith, W. M. Snow, H. Yan, and T. G. Walker, “Laboratory search for a long-range T-odd, P-odd interaction from axionlike particles using dual-species nuclear magnetic resonance with polarized 129Xe and 131Xe gas,” Phys. Rev. Lett. 111, 102001 (2013).
[Crossref]

M. E. Limes, D. Sheng, and M. V. Romalis, “3He−129Xe comagnetometery using 87Rb detection and decoupling,” Phys. Rev. Lett. 120, 033401 (2018).
[Crossref]

V. V. Flambaum and M. V. Romalis, “Limits on Lorentz invariance violation from coulomb interactions in nuclei and atoms,” Phys. Rev. Lett. 118, 142501 (2017).
[Crossref] [PubMed]

W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31, 273–276 (1973).
[Crossref]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[Crossref] [PubMed]

T. W. Kornack and M. V. Romalis, “Dynamics of two overlapping spin ensembles interacting by spin exchange,” Phys. Rev. Lett. 89, 253002 (2002).
[Crossref] [PubMed]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

V. A. Kostelecky and N. Russell, “Data tables for Lorentz and CPT violation,” Rev. Mod. Phys. 83, 11 (2011).
[Crossref]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[Crossref]

Sci. Rep. (1)

Y. Chen, W. Quan, S. Zou, Y. Lu, L. Duan, Y. Li, H. Zhang, M. Ding, and J. Fang, “Spin exchange broadening of magnetic resonance lines in a high-sensitivity rotating K-Rb-21Ne co-magnetometer,” Sci. Rep. 6, 12 (2016).
[Crossref]

Other (3)

G. Renon, N. Zahzam, Y. Bidel, A. Bresson, and P.-J. Nacher, “A nuclear-electronic spin gyro-comagnetometer,” in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts, vol. 1 (2013), p. 1135.

T. W. Kornack, “A test of CPT and Lorentz symmetry using a K-3He co-magnetometer,” Ph.D. thesis, Princeton University (2005).

J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. thesis, Princeton University (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of our compact SERF comagnetometer using K-Rb hybrid optical pumping. BE, beam expander; P, linear polarizer; LCVR, liquid crystal variable retarder; GT, Glan-Taylor polarizer; PD, photodiode; M, reflection mirror; PBS, polarizing beamsplitter; LIC, laser intensity controller.
Fig. 2
Fig. 2 Scale factor of Ωy sensing and polarization of the alkali metal atoms as a function of the pump laser power density. The scale factor approaches the maximum at 16.4 mW/cm2 by fitting with the coefficient of Ωy in Eq. (7), while the polarization of the alkali metal atoms increases with the pump laser power density.
Fig. 3
Fig. 3 Rotation sensitivity of the comagnetometer operated at different pump laser power density. The probe background noise obtained in the absence of the pump laser is also shown. Above 0.2 Hz, the highest rotation sensitivity is achieved at the pump laser power density corresponding to the largest scale factor. Below 0.2 Hz, the rotation sensitivity improves with the pump laser power density.
Fig. 4
Fig. 4 Spectral density of pump laser intensity monitored by PD3 at different pump laser power density. Below 2 Hz, the pump laser intensity noises are almost identical. The jitters in the higher frequency domain are mainly introduced by the electronic noise of the homemade laser intensity controller.
Fig. 5
Fig. 5 Suppression factor of the comagnetometer to the low-frequency oscillating fields in the y direction at different pump laser power density. Below 0.2 Hz, the suppression ability increases with pump laser power density.
Fig. 6
Fig. 6 Suppression factor of the comagnetometer to the low-frequency oscillating fields in the x direction at different pump laser power density. Below about 0.1 Hz, the suppression ability increases with pump laser power density.
Fig. 7
Fig. 7 Allan deviation plots of the comagnetometer output. The bias instability improves with the pump laser power density.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P A t = Ω × P A + γ e ( B + λ A M n P n + L A ) × P A Q ( P A ) + R p s p + R se An P n + R se AB P B Γ A P A R se AB P A Q ( P A ) ,
P B t = Ω × P B + γ e ( B + λ B M n P n + L B ) × P B Q ( P B ) + R m s p r + R se Bn P n + R se BA P A Γ B P B R se BA P B Q ( P B ) ,
P n t = Ω × P n + γ n ( B + λ A M A P A + λ B M B P B ) × P n + R s e n A P A + R se n B P B Γ n P n .
P z A = P z B = D r R p Γ B + D r R p ,
P z n = R s e n B Γ n P z B .
P B t = ( 1 + D r ) Ω × P B + γ e [ ( 1 + D r ) B + λ M n P n + L ] × P B Q ( P B ) + D r R p s p + R m s p r + R se en P n Γ e P B Q ( P B ) ,
P x B = γ e P z B ( 1 + D r ) ( Γ B + D r R p ) ( Γ B + D r R p ) 2 + γ e 2 [ ( 1 + D r ) δ B z + L z ] 2 [ Ω y γ + γ e Ω x ( 1 + D r ) δ B z + L z γ ( Γ B + D r R p ) + ( 1 + D r ) δ B z B n B y + γ e ( 1 + D r ) δ B z B x ( 1 + D r ) δ B z + L z B n ( Γ B + D r R p ) ] ,
R p = P c r e f h ν Γ / 2 ( ν ν 0 Δ ν 0 ) 2 + ( Γ / 2 ) 2 ,
Γ Rb = R se RbNe + R sd Rb + R sd RbK + R sd RbNe + R sd RbN 2 .

Metrics