Abstract

Nonlinear absorption is the key process to generate laser-induced in-volume modifications in transparent dielectrics such as waveguides or three-dimensional data matrix codes. We present a comprehensive parameter study about nonlinear absorption in fused silica using a picosecond laser at various focal lengths. Beginning at a focal length of 100 mm, we measure a strong frequency dependence of the saturation absorption. Reducing the focal length results in a decrease of the saturation absorption. After passing a threshold focal length, the saturation absorption increases drastically and the frequency dependence starts to decrease. At the final focal length of 6 mm we measure almost no frequency dependence. In order to explain our measurements, we used the theory of optical breakdown and filamentation. Nonlinear absorption measurement can become a promising tool for better process control during the generation of in-volume modifications in transparent dielectrics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses

N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée
Opt. Lett. 28(17) 1591-1593 (2003)

Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica

Jonathan B. Ashcom, Rafael R. Gattass, Chris B. Schaffer, and Eric Mazur
J. Opt. Soc. Am. B 23(11) 2317-2322 (2006)

Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser

Daniel Grossmann, Martin Reininghaus, Christian Kalupka, Malte Kumkar, and Reinhart Poprawe
Opt. Express 24(20) 23221-23231 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
    [Crossref]
  2. M. D. Mackenzie and A. K. Kar, “Microfluidic devices and biological lasers for biophotonic applications,” J. Phys.: Conf. Ser. 1151(1), 1–7 (2019).
    [Crossref]
  3. T. Hollister and J. Bovatsek, “Ultrafast lasers for advanced manufacturing of flat panel displays,” Proc. SPIE 10905, 109050I (2019).
    [Crossref]
  4. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
    [Crossref]
  5. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  6. I. Miyamoto, K. Cvecek, and M. Schmitdt, “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19(11), 10714–10727 (2011).
    [Crossref]
  7. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett. 28(17), 1591–1593 (2003).
    [Crossref]
  8. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
    [Crossref]
  9. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
    [Crossref]
  10. M. Sun, U. Eppelt, W. Schulz, and J. Zhu, “Role of thermal ionization in internal modification of bulk borosilicate glass with picosecond laser pulses at high repetition rates,” Opt. Mater. Express 3(10), 1716–1726 (2013).
    [Crossref]
  11. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
    [Crossref]
  12. K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
    [Crossref]

2019 (2)

M. D. Mackenzie and A. K. Kar, “Microfluidic devices and biological lasers for biophotonic applications,” J. Phys.: Conf. Ser. 1151(1), 1–7 (2019).
[Crossref]

T. Hollister and J. Bovatsek, “Ultrafast lasers for advanced manufacturing of flat panel displays,” Proc. SPIE 10905, 109050I (2019).
[Crossref]

2013 (2)

2011 (1)

2007 (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

2005 (1)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

2004 (1)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

2003 (1)

2002 (1)

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

1996 (1)

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Bovatsek, J.

T. Hollister and J. Bovatsek, “Ultrafast lasers for advanced manufacturing of flat panel displays,” Proc. SPIE 10905, 109050I (2019).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Chichkov, B. N.

Chin, S. L.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

Cvecek, K.

Eppelt, U.

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Hollister, T.

T. Hollister and J. Bovatsek, “Ultrafast lasers for advanced manufacturing of flat panel displays,” Proc. SPIE 10905, 109050I (2019).
[Crossref]

Kar, A. K.

M. D. Mackenzie and A. K. Kar, “Microfluidic devices and biological lasers for biophotonic applications,” J. Phys.: Conf. Ser. 1151(1), 1–7 (2019).
[Crossref]

Liu, W.

Mackenzie, M. D.

M. D. Mackenzie and A. K. Kar, “Microfluidic devices and biological lasers for biophotonic applications,” J. Phys.: Conf. Ser. 1151(1), 1–7 (2019).
[Crossref]

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Miyamoto, I.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

Nahen, K.

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

Nguyen, N. T.

Nolte, S.

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

Saliminia, A.

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Schmidt, M.

Schmitdt, M.

Schulz, W.

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Sun, M.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

Tünnermann, A.

Vallée, R.

Vogel, A.

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

Will, M.

Zhu, J.

Appl. Opt. (1)

Appl. Phys. A (1)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79(7), 1695–1709 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – part II: transmission, scattering, and reflection,” IEEE J. Sel. Top. Quantum Electron. 2(4), 861–871 (1996).
[Crossref]

J. Appl. Phys. (1)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations,” J. Appl. Phys. 98(1), 013517 (2005).
[Crossref]

J. Phys.: Conf. Ser. (1)

M. D. Mackenzie and A. K. Kar, “Microfluidic devices and biological lasers for biophotonic applications,” J. Phys.: Conf. Ser. 1151(1), 1–7 (2019).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2–4), 47–189 (2007).
[Crossref]

Proc. SPIE (1)

T. Hollister and J. Bovatsek, “Ultrafast lasers for advanced manufacturing of flat panel displays,” Proc. SPIE 10905, 109050I (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. By changing the numerical aperture (NA) of focusing lenses, plasma formation inside the bulk material can be influenced. A weak plasma due to low NA leads to Filamentation (FIL) whereas strong plasma leads to optical breakdown (OB). The different modes of plasma formation can be distinguished by the resulting in-volume modification (indicated by arrows).
Fig. 2.
Fig. 2. Setup for NLA Measurement. A power meter was used to measure the transmitted power through soda-lime samples. The samples were moved with a constant speed through the focal plane by a CNC axis system. Beam expander magnification was adjusted for the particular focusing lens. The picosecond laser system “Duetto” from Time Bandwidth Products AG was used as laser source.
Fig. 3.
Fig. 3. NLA measurement of soda-lime glass with focusing lens VII. (f = 100 mm, vAxis = 20 mms−1). Strong dependency of slope and saturation absorption on PRF.
Fig. 4.
Fig. 4. NLA measurement of soda-lime glass with focusing lenses III to VI. (f = 40, 50, 60 and 75 mm, vAxis = 20 mms−1). Strong dependency of slope and saturation absorption on PRF. Saturation absorption decreases for reduced focal lengths f.
Fig. 5.
Fig. 5. NLA measurement of soda-lime glass with focusing lenses I and II. (f = 25 and 30 mm, vAxis = 20 mms−1). Compared to previous NLA measurements with larger focal lengths (Figs. 3 and 4) the saturation absorption @ 200 kHz increased significantly. This effect can be explained by the transition from FIL to OB (marked with arrows).
Fig. 6.
Fig. 6. NLA measurement of soda-lime glass with microscope objectives 20x and 10x. (f = 6 and 15 mm, vAxis = 20 mms−1). Saturation absorption is above 74% due to strong plasma formation and OB. Dependency of slope is clearly visible at higher pulse energies.
Fig. 7.
Fig. 7. Cross section of continuous laser-induced modifications. (fPulse = 200 kHz, f = 25 mm, vAxis = 20 mms−1). Pulse energy EPulse was increased from left to right. Sample movement perpendicular to image plane. White arrow indicates direction of laser radiation. Dashed black line indicates the transition from FIL to OB between 22.1 and 23.1 µJ.
Fig. 8.
Fig. 8. Saturation absorption ASat for different PRF over various focal lengths f. (vAxis = 20 mms−1). Transition from FIL to OB at short focal lengths f can be detected through deviation from fitted curves.
Fig. 9.
Fig. 9. NLA measurement of soda-lime glass with microscope objective10x at axis feed rates of 20, 40 and 60 mms−1. (f = 6 mm, fPulse = 50 kHz). Increasing the axis feed rate leads to a reduction of saturation absorption.

Tables (2)

Tables Icon

Table 1. Parameters of Laser System Duetto

Tables Icon

Table 2. Parameters of Focusing Optics and Resulting Beam Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 w 0 = M 2 4 λ f π D 0 ,
z R = π ( w 0 ) 2 λ .
A Exp = 1 E T r a n s E P u l s e 1 ( 1 R ) 2 ,
R = ( n S L G n A i r n S L G + n A i r ) 2 ,

Metrics