Abstract

A Fabry-Perot interferometer (FPI) based on an alumina ceramic derived fiber (CDF) is proposed and demonstrated for high temperature strain sensing. The strain sensor is constructed by splicing a piece of CDF between two standard single-mode fibers (SMFs). The strain properties of the sensor are investigated from room temperature to 1200 °C. Experimental results show that the wavelength shift of the CDF-FPI presents a linear relationship with the tensile strain at both room temperature and high temperature with up to 1000 °C. The strain sensitivity is calculated to be 1.5 pm/µɛ at 900 °C, and the linear response is repeatable within 0–3000 µɛ. Moreover, for each applied force at 1000 °C, the wavelength shift versus time shows the stability of the developed CDF-FPI sensor within 0–2000 µɛ. The obtained results show that such a CDF-FPI has potential application in various engineering areas, such as aeronautics, metallurgy, and gas boiler.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures

Penghao Zhang, Li Zhang, Zhongyu Wang, Xinying Zhang, and Zhendong Shang
Opt. Express 27(19) 27112-27123 (2019)

Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing

H. Liu, F. Pang, L. Hong, Z. Ma, L. Huang, Z. Wang, J. Wen, Z. Chen, and T. Wang
Opt. Express 27(5) 6201-6209 (2019)

Crystallization-sapphire-derived-fiber-based Fabry–Perot interferometer for refractive index and high-temperature measurement

Penghao Zhang, Li Zhang, Zissimos P. Mourelatos, and Zhongyu Wang
Appl. Opt. 57(30) 9016-9021 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In line fiber etalon for strain measurement,” Opt. Lett. 18(22), 1973–1975 (1993).
    [Crossref]
  2. J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
    [Crossref]
  3. C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
    [Crossref]
  4. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
    [Crossref]
  5. C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Perot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
    [Crossref]
  6. F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
    [Crossref]
  7. Y. M. Zhang, X. D. Ding, Y. M. Song, M. L. Dong, and L. Q. Zhu, “Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain,” Meas. Sci. Technol. 29(3), 035102 (2018).
    [Crossref]
  8. Y. Huang, Z. Zhou, Y. N. Zhang, G. D. Chen, and H. Xiao, “A temperature self-compensated LPFG sensor for large strain measurements at high temperature,” IEEE Trans. Instrum. Meas. 59(11), 2997–3004 (2010).
    [Crossref]
  9. C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [Crossref]
  10. L. W. Hua, Y. Song, J. Huang, X. W. Lan, Y. J. Li, and H. Xiao, “Microwave interrogated large core fused silica fiber Michelson interferometer for strain sensing,” Appl. Opt. 54(24), 7181–7187 (2015).
    [Crossref]
  11. Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17(11), 2403–2405 (2005).
    [Crossref]
  12. W. W. Morey, G. Meltz, and J. M. Weiss, “High-temperature capabilities and limitations of fiber grating sensors,” Proc. SPIE 2360, 234–237 (1994).
    [Crossref]
  13. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
    [Crossref]
  14. T. Wang, L. Y. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
    [Crossref]
  15. Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [Crossref]
  16. L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
    [Crossref]
  17. L. Xu, L. Jiang, S. M. Wang, B. Y. Li, and Y. F. Lu, “High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber,” Appl. Opt. 52(10), 2038–2041 (2013).
    [Crossref]
  18. M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
    [Crossref]
  19. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [Crossref]
  20. D. J. Liu, Q. Wu, C. Mei, J. H. Yuan, X. J. Xin, A. K. Mallik, F. F. Wei, W. Han, R. Kumar, C. X. Yu, S. P. Wan, X. D. He, B. Liu, G. D. Peng, Y. Semenova, and G. Farrell, “Hollow core fiber based interferometer for high temperature (1000 °C) measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
    [Crossref]
  21. H. Xiao, J. D. Deng, G. Pickrell, R. G. May, and A. B. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
    [Crossref]
  22. L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
    [Crossref]
  23. T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22(22), 26825–26839 (2014).
    [Crossref]
  24. H. Liu, F. Pang, L. Hong, Z. Ma, L. Huang, Z. Wang, J. Wen, Z. Chen, and T. Wang, “Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing,” Opt. Express 27(5), 6201–6209 (2019).
    [Crossref]
  25. W. H. Taylor, “Structure of sillimanite and mullite,” Z. Krist. 68(6), 503–521 (1928).
  26. G. Y. Li and B. O. Guan, “The strain response of chemical composition gratings at high temperatures,” Meas. Sci. Technol. 20(2), 025204 (2009).
    [Crossref]
  27. T. T. Yang, X. G. Qiao, Q. Z. Rong, and W. J. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
    [Crossref]
  28. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
    [Crossref]
  29. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
    [Crossref]
  30. N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
    [Crossref]
  31. P. C. Chen and X. W. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
    [Crossref]
  32. J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
    [Crossref]
  33. X. D. Li, B. Bhushan, and P. B. McGinnis, “Nanoscale mechanical characterization of glass fibers,” Mater. Lett. 29(4–6), 215–220 (1996).
    [Crossref]
  34. A. A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Exploring the non-elastic compression deformation of dry glass fibre reinforcements,” Compos. Sci. Technol. 67(2), 183–200 (2007).
    [Crossref]
  35. D. Grobnic, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313–322 (2015).
    [Crossref]

2019 (1)

2018 (3)

2017 (2)

T. T. Yang, X. G. Qiao, Q. Z. Rong, and W. J. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

2016 (1)

2015 (4)

2014 (1)

2013 (5)

2012 (2)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

2011 (3)

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
[Crossref]

J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
[Crossref]

2010 (1)

Y. Huang, Z. Zhou, Y. N. Zhang, G. D. Chen, and H. Xiao, “A temperature self-compensated LPFG sensor for large strain measurements at high temperature,” IEEE Trans. Instrum. Meas. 59(11), 2997–3004 (2010).
[Crossref]

2009 (1)

G. Y. Li and B. O. Guan, “The strain response of chemical composition gratings at high temperatures,” Meas. Sci. Technol. 20(2), 025204 (2009).
[Crossref]

2008 (2)

Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

2007 (1)

A. A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Exploring the non-elastic compression deformation of dry glass fibre reinforcements,” Compos. Sci. Technol. 67(2), 183–200 (2007).
[Crossref]

2005 (1)

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17(11), 2403–2405 (2005).
[Crossref]

2003 (2)

1996 (1)

X. D. Li, B. Bhushan, and P. B. McGinnis, “Nanoscale mechanical characterization of glass fibers,” Mater. Lett. 29(4–6), 215–220 (1996).
[Crossref]

1994 (1)

W. W. Morey, G. Meltz, and J. M. Weiss, “High-temperature capabilities and limitations of fiber grating sensors,” Proc. SPIE 2360, 234–237 (1994).
[Crossref]

1993 (1)

1974 (1)

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

1928 (1)

W. H. Taylor, “Structure of sillimanite and mullite,” Z. Krist. 68(6), 503–521 (1928).

Aichele, C.

Araujo, F. M.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Bai, Y.

J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
[Crossref]

Ballato, J.

Bandyopadhyay, S.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

Bao, W. J.

T. T. Yang, X. G. Qiao, Q. Z. Rong, and W. J. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Bao, X. Y.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Bartelt, H.

Berkoff, T. A.

Bhattacharyya, D.

A. A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Exploring the non-elastic compression deformation of dry glass fibre reinforcements,” Compos. Sci. Technol. 67(2), 183–200 (2007).
[Crossref]

Bhushan, B.

X. D. Li, B. Bhushan, and P. B. McGinnis, “Nanoscale mechanical characterization of glass fibers,” Mater. Lett. 29(4–6), 215–220 (1996).
[Crossref]

Bickerton, S.

A. A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Exploring the non-elastic compression deformation of dry glass fibre reinforcements,” Compos. Sci. Technol. 67(2), 183–200 (2007).
[Crossref]

Bierlich, J.

Bonnefont, G.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Brennan, D. D.

Bucaro, J. A.

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Canning, J.

T. Wang, L. Y. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

Chen, G. D.

Y. Huang, Z. Zhou, Y. N. Zhang, G. D. Chen, and H. Xiao, “A temperature self-compensated LPFG sensor for large strain measurements at high temperature,” IEEE Trans. Instrum. Meas. 59(11), 2997–3004 (2010).
[Crossref]

Chen, P. C.

Chen, X. P.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17(11), 2403–2405 (2005).
[Crossref]

Chen, Z.

Chen, Z. Y.

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

Ching, J. Y. C.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Cleland, D. J.

J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
[Crossref]

Cook, K.

T. Wang, L. Y. Shao, J. Canning, and K. Cook, “Temperature and strain characterization of regenerated gratings,” Opt. Lett. 38(3), 247–249 (2013).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

Dardy, H. D.

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

Dellith, J.

Deng, J. D.

Ding, X. D.

Y. M. Zhang, X. D. Ding, Y. M. Song, M. L. Dong, and L. Q. Zhu, “Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain,” Meas. Sci. Technol. 29(3), 035102 (2018).
[Crossref]

Dong, M. L.

Y. M. Zhang, X. D. Ding, Y. M. Song, M. L. Dong, and L. Q. Zhu, “Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain,” Meas. Sci. Technol. 29(3), 035102 (2018).
[Crossref]

Dragic, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Dragic, P. D.

Duan, L.

Durand, B.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Elsmann, T.

Fantozzi, G.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Farrell, G.

Favero, F. C.

Ferreira, M. S.

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Frazao, O.

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref]

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Friebele, E. J.

Fu, H. Y.

Fu, S. N.

Gan, L.

Garnier, V.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Ghandehari, M.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Grobnic, D.

Guan, B. O.

Guillemet, S.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Habel, W.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Habisreuther, T.

Han, W.

Hawkins, T.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

He, X. D.

He, Y.

J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
[Crossref]

Hong, L.

H. Liu, F. Pang, L. Hong, Z. Ma, L. Huang, Z. Wang, J. Wen, Z. Chen, and T. Wang, “Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing,” Opt. Express 27(5), 6201–6209 (2019).
[Crossref]

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

Horng, J. S.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Perot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Hsu, J. M.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Perot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Hua, L. W.

Huang, J.

Huang, L.

Huang, M.

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

Huang, Y.

Y. Huang, Z. Zhou, Y. N. Zhang, G. D. Chen, and H. Xiao, “A temperature self-compensated LPFG sensor for large strain measurements at high temperature,” IEEE Trans. Instrum. Meas. 59(11), 2997–3004 (2010).
[Crossref]

Huang, Z. Y.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17(11), 2403–2405 (2005).
[Crossref]

Imai, M.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Inaudi, D.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Jiang, L.

Jin, W. L.

J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
[Crossref]

Jorge, P. A. S.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Just, F.

Kersey, A. D.

Kido, L.

Kobelke, J.

Kumar, R.

Lallemant, L.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Lan, X. W.

Lee, C. L.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Perot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Leung, C. K. Y.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Li, B. Y.

Li, C. M.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Perot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Li, G. Y.

G. Y. Li and B. O. Guan, “The strain response of chemical composition gratings at high temperatures,” Meas. Sci. Technol. 20(2), 025204 (2009).
[Crossref]

Li, X. D.

X. D. Li, B. Bhushan, and P. B. McGinnis, “Nanoscale mechanical characterization of glass fibers,” Mater. Lett. 29(4–6), 215–220 (1996).
[Crossref]

Li, Y. J.

Liao, C. R.

Liu, B.

Liu, D. J.

Liu, D. M.

Liu, H.

Liu, H. H.

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

Loock, H. P.

Lorenz, A.

Lu, Y. F.

Ma, Z.

Mallik, A. K.

Mao, J. H.

J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
[Crossref]

May, R. G.

McGinnis, P. B.

X. D. Li, B. Bhushan, and P. B. McGinnis, “Nanoscale mechanical characterization of glass fibers,” Mater. Lett. 29(4–6), 215–220 (1996).
[Crossref]

Mei, C.

Meltz, G.

W. W. Morey, G. Meltz, and J. M. Weiss, “High-temperature capabilities and limitations of fiber grating sensors,” Proc. SPIE 2360, 234–237 (1994).
[Crossref]

Mihailov, S. J.

Morey, W. W.

W. W. Morey, G. Meltz, and J. M. Weiss, “High-temperature capabilities and limitations of fiber grating sensors,” Proc. SPIE 2360, 234–237 (1994).
[Crossref]

Morris, S.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Ou, J. P.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Pang, F.

Pang, F. F.

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

Peng, G. D.

Pickrell, G.

Putman, M. A.

Qiao, X. G.

T. T. Yang, X. G. Qiao, Q. Z. Rong, and W. J. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Qureshi, K. K.

Rong, Q. Z.

T. T. Yang, X. G. Qiao, Q. Z. Rong, and W. J. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Roriz, P.

Rothhardt, M.

Roussel, N.

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Santos, J. L.

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref]

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Schuster, K.

Schwuchow, A.

Semenova, Y.

Shao, L. Y.

Shu, X. W.

Shum, P. P.

Sirkis, J. S.

Somashekar, A. A.

A. A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Exploring the non-elastic compression deformation of dry glass fibre reinforcements,” Compos. Sci. Technol. 67(2), 183–200 (2007).
[Crossref]

Song, Y.

Song, Y. M.

Y. M. Zhang, X. D. Ding, Y. M. Song, M. L. Dong, and L. Q. Zhu, “Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain,” Meas. Sci. Technol. 29(3), 035102 (2018).
[Crossref]

Spittel, R.

Stevenson, M.

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

Sung, W. Y.

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Perot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Tafulo, P. A. R.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

Tam, H. Y.

Tang, M.

Taylor, W. H.

W. H. Taylor, “Structure of sillimanite and mullite,” Z. Krist. 68(6), 503–521 (1928).

Tian, Z. B.

Tong, W. J.

Wan, K. T.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Wan, S. P.

Wang, A. B.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17(11), 2403–2405 (2005).
[Crossref]

H. Xiao, J. D. Deng, G. Pickrell, R. G. May, and A. B. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

Wang, D. N.

Wang, R. X.

Wang, S. M.

Wang, T.

Wang, T. Y.

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

Wang, Y.

Wang, Z.

Wei, F. F.

Weiss, J. M.

W. W. Morey, G. Meltz, and J. M. Weiss, “High-temperature capabilities and limitations of fiber grating sensors,” Proc. SPIE 2360, 234–237 (1994).
[Crossref]

Wen, J.

Wondraczek, K.

Wu, C.

Wu, H. C.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Wu, Q.

Xiao, H.

Xin, X. J.

Xu, J.

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

Xu, L.

Yam, S. S. H.

Yang, T. T.

T. T. Yang, X. G. Qiao, Q. Z. Rong, and W. J. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Yazd, N. S.

Yu, C. X.

Yuan, J. H.

Zhang, P.

Zhang, Y. M.

Y. M. Zhang, X. D. Ding, Y. M. Song, M. L. Dong, and L. Q. Zhu, “Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain,” Meas. Sci. Technol. 29(3), 035102 (2018).
[Crossref]

Zhang, Y. N.

Y. Huang, Z. Zhou, Y. N. Zhang, G. D. Chen, and H. Xiao, “A temperature self-compensated LPFG sensor for large strain measurements at high temperature,” IEEE Trans. Instrum. Meas. 59(11), 2997–3004 (2010).
[Crossref]

Zhao, Z. W.

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

Zhao, Z. Y.

Zhou, Z.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Y. Huang, Z. Zhou, Y. N. Zhang, G. D. Chen, and H. Xiao, “A temperature self-compensated LPFG sensor for large strain measurements at high temperature,” IEEE Trans. Instrum. Meas. 59(11), 2997–3004 (2010).
[Crossref]

Zhu, B. P.

Zhu, L. Q.

Y. M. Zhang, X. D. Ding, Y. M. Song, M. L. Dong, and L. Q. Zhu, “Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain,” Meas. Sci. Technol. 29(3), 035102 (2018).
[Crossref]

Zhu, Y. Z.

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17(11), 2403–2405 (2005).
[Crossref]

Appl. Opt. (2)

Ceram. Int. (1)

N. Roussel, L. Lallemant, B. Durand, S. Guillemet, J. Y. C. Ching, G. Fantozzi, V. Garnier, and G. Bonnefont, “Effects of the nature of the doping salt and of the thermal pre- treatment and sintering temperature on Spark Plasma Sintering of transparent alumina,” Ceram. Int. 37(8), 3565–3573 (2011).
[Crossref]

Compos. Sci. Technol. (1)

A. A. Somashekar, S. Bickerton, and D. Bhattacharyya, “Exploring the non-elastic compression deformation of dry glass fibre reinforcements,” Compos. Sci. Technol. 67(2), 183–200 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. Hong, F. F. Pang, H. H. Liu, J. Xu, Z. Y. Chen, Z. W. Zhao, and T. Y. Wang, “Refractive index modulation by crystallization in sapphire-derived fiber,” IEEE Photonics Technol. Lett. 29(9), 723–726 (2017).
[Crossref]

C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Perot interferometer with an embedded golden thin film,” IEEE Photonics Technol. Lett. 25(9), 833–836 (2013).
[Crossref]

Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photonics Technol. Lett. 17(11), 2403–2405 (2005).
[Crossref]

IEEE Sens. J. (1)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, F. M. Araujo, and O. Frazao, “Intrinsic Fabry-Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement,” IEEE Sens. J. 12(1), 8–12 (2012).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

Y. Huang, Z. Zhou, Y. N. Zhang, G. D. Chen, and H. Xiao, “A temperature self-compensated LPFG sensor for large strain measurements at high temperature,” IEEE Trans. Instrum. Meas. 59(11), 2997–3004 (2010).
[Crossref]

Int. J. Solids Struct. (1)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

J. Appl. Phys. (1)

J. A. Bucaro and H. D. Dardy, “High-temperature Brillouin scattering in fused quartz,” J. Appl. Phys. 45(12), 5324–5329 (1974).
[Crossref]

J. Lightwave Technol. (2)

Mater. Lett. (1)

X. D. Li, B. Bhushan, and P. B. McGinnis, “Nanoscale mechanical characterization of glass fibers,” Mater. Lett. 29(4–6), 215–220 (1996).
[Crossref]

Mater. Struct. (1)

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Y. Bao, W. Habel, Z. Zhou, J. P. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48(4), 871–906 (2015).
[Crossref]

Meas. Sci. Technol. (2)

Y. M. Zhang, X. D. Ding, Y. M. Song, M. L. Dong, and L. Q. Zhu, “Characterization of a fiber Bragg grating in pure-silica-core and Ge-doped-core optical fiber under high-temperature strain,” Meas. Sci. Technol. 29(3), 035102 (2018).
[Crossref]

G. Y. Li and B. O. Guan, “The strain response of chemical composition gratings at high temperatures,” Meas. Sci. Technol. 20(2), 025204 (2009).
[Crossref]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Opt. Express (6)

F. C. Favero, R. Spittel, F. Just, J. Kobelke, M. Rothhardt, and H. Bartelt, “A miniature temperature high germanium doped PCF interferometer sensor,” Opt. Express 21(25), 30266–30274 (2013).
[Crossref]

T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22(22), 26825–26839 (2014).
[Crossref]

H. Liu, F. Pang, L. Hong, Z. Ma, L. Huang, Z. Wang, J. Wen, Z. Chen, and T. Wang, “Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing,” Opt. Express 27(5), 6201–6209 (2019).
[Crossref]

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref]

L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, L. Gan, B. P. Zhu, W. J. Tong, D. M. Liu, and P. P. Shum, “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Opt. Express 24(18), 20210–20218 (2016).
[Crossref]

P. C. Chen and X. W. Shu, “Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing,” Opt. Express 26(5), 5292–5299 (2018).
[Crossref]

Opt. Laser Technol. (1)

T. T. Yang, X. G. Qiao, Q. Z. Rong, and W. J. Bao, “Fiber Bragg gratings inscriptions in multimode fiber using 800 nm femtosecond laser for high-temperature strain measurement,” Opt. Laser Technol. 93, 138–142 (2017).
[Crossref]

Opt. Lett. (5)

Optica (1)

Proc. SPIE (1)

W. W. Morey, G. Meltz, and J. M. Weiss, “High-temperature capabilities and limitations of fiber grating sensors,” Proc. SPIE 2360, 234–237 (1994).
[Crossref]

Sensors (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

Smart Mater. Struct. (1)

J. H. Mao, W. L. Jin, Y. He, D. J. Cleland, and Y. Bai, “A novel method of embedding distributed optical fiber sensors for structural health monitoring,” Smart Mater. Struct. 20(12), 125018 (2011).
[Crossref]

Z. Krist. (1)

W. H. Taylor, “Structure of sillimanite and mullite,” Z. Krist. 68(6), 503–521 (1928).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of the CDF-FPI.
Fig. 2.
Fig. 2. The microscopic images of (a) the CDF FPI sensor (cross section of a CDF) and (b) refractive index profile of a CDF (black) and the CDF FPI at typical locations with 1-z:0 µm (red), 2-z:278 µm (blue), 3-z:310 µm (green), 4-z:502 µm (pink).
Fig. 3.
Fig. 3. (a) Reflection spectrum of the CDF-FPI sensor; (b) the corresponding FFT spectrum.
Fig. 4.
Fig. 4. Schematic diagram of a high temperature strain measurement system for the CDF-FPI sensor.
Fig. 5.
Fig. 5. (a) Reflection spectrum of the FPI sensor with length at 32 °C (black), 400 °C (red), 800 °C (blue) and 1200 °C (green); (b) temperature response of the FPI sensor.
Fig. 6.
Fig. 6. (a) Reflection spectrum of the FPI sensor with length of 384 µm at the force of 0 N (green and red solid lines) and 2.1 N (blue and black dash lines); (b) force response of the FPI sensor. Forth (black solid square) and back (red hollow circle) represent increasing and decreasing force, respectively.
Fig. 7.
Fig. 7. (a) Dependence of the force sensitivity of increasing force and decreasing force at different temperatures; (b) strain response at 1000 °C, the inset shows forth and back paths of the tension machine during tensile test at 1000 °C. Forth (black solid square) and back (red hollow circle) represent increasing and decreasing force, respectively.
Fig. 8.
Fig. 8. Strain response at (a) 900 °C and (b) 1000 °C; (c) wavelength shift versus time for each applied force at 1000 °C. Forth (solid) and back (hollow) represent increasing and decreasing force, respectively.
Fig. 9.
Fig. 9. (a) Strain response of the CDF-FPI sensor at 1100 °C, the inset shows forth (black solid square) and back (red hollow circle) paths of the tension machine during tensile test at 1100 °C; (b) reflection spectrum of at 20 °C (red and black), 1200 °C (green and blue). Up (dash lines) and down (solid lines) represent increasing and decreasing temperature, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 n L ,
Δ n e f f = n 3 2 [ ( 1 ν ) p 12 ν p 11 ] ε Z = γ n ε Z ,
ε Z = F S E ,
Δ O P D = 2 ( n + Δ n e f f ) ( L + Δ L ) 2 n L = 2 n Δ L + 2 Δ n e f f L + 2 Δ n e f f Δ L ,
Δ O P D = 2 ( 1 + γ ) n L ε Z .
ε Z = 1 ( 1 + γ ) λ d Δ λ d ,

Metrics