Abstract

Transparent conductive oxide (TCO) films showing epsilon near zero (ENZ) properties have attracted great research interest due to their unique property of electrically tunable permittivity. In this work, we report the effect of oxygen stoichiometry on the structure, optical and ENZ properties of indium tin oxide (ITO) films fabricated under different oxygen partial pressures. By using spectroscopic ellipsometry (SE) with fast data acquisition capabilities, we observed modulation of the material index and ENZ wavelength under electrostatic gating. Using a two-layer model based on Thomas-Fermi screening model and the Drude model, the optical constants and Drude parameters of the ITO thin films are determined during the gating process. The maximum carrier modulation amplitude ΔN of the accumulation layer is found to vary significantly depending on the oxygen stoichiometry. Under an electric field gate bias of 2.5 MV/cm, the largest ENZ wavelength modulation up to 27.9 nm at around 1550 nm is observed in ITO thin films deposited with oxygen partial pressure of ${P_{{O_2}}}$=10 Pa. Our work provides insights to the optical properties of ITO during electrostatic gating process for electro-optic modulators (EOMs) applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical and electrical properties of ultra-thin indium tin oxide nanofilms on silicon for infrared photonics

Justin W. Cleary, Evan M. Smith, Kevin D. Leedy, Gordon Grzybowski, and Junpeng Guo
Opt. Mater. Express 8(5) 1231-1245 (2018)

Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide

Qian Gao, Erwen Li, and Alan X. Wang
Photon. Res. 6(4) 277-281 (2018)

Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films

Taixing Huang, Lin Yang, Jun Qin, Fei Huang, Xupeng Zhu, Peiheng Zhou, Bo Peng, Huigao Duan, Longjiang Deng, and Lei Bi
Opt. Mater. Express 6(11) 3609-3621 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
    [Crossref]
  2. M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
    [Crossref]
  3. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
    [Crossref]
  4. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
    [Crossref]
  5. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
    [Crossref]
  6. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
    [Crossref]
  7. K. Shi, R. R. Haque, B. Zhao, R. Zhao, and Z. Lu, “Broadband electro-optical modulator based on transparent conducting oxide,” Opt. Lett. 39(17), 4978–4981 (2014).
    [Crossref]
  8. S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
    [Crossref]
  9. H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
    [Crossref]
  10. L. Jin, Q. Chen, W. Liu, and S. Song, “Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO,” Plasmonics 11(4), 1087–1092 (2016).
    [Crossref]
  11. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
    [Crossref]
  12. S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
    [Crossref]
  13. J. S. Kim and J. T. Kim, “Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler,” J. Phys. D: Appl. Phys. 49(7), 075101 (2016).
    [Crossref]
  14. A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys. A 122(4), 473 (2016).
    [Crossref]
  15. A. Anopchenko, L. Tao, C. Arndt, and H. W. H. Lee, “Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness,” ACS Photonics 5(7), 2631–2637 (2018).
    [Crossref]
  16. Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277–281 (2018).
    [Crossref]
  17. L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
    [Crossref]
  18. X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
    [Crossref]
  19. S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
    [Crossref]
  20. N. Engheta, “Pursing Near-Zero Response,” Science 340(6130), 286–287 (2013).
    [Crossref]
  21. Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
    [Crossref]
  22. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  23. S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
    [Crossref]
  24. M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref]
  25. L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
    [Crossref]
  26. A. Ciattoni, A. Marini, and C. Rizza, “All-optical modulation in wavelength-sized epsilon-near-zero media,” Opt. Lett. 41(13), 3102–3105 (2016).
    [Crossref]
  27. F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
    [Crossref]
  28. Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
    [Crossref]
  29. Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
    [Crossref]
  30. Y. Li and C. Argyropoulos, “Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides,” Phys. Rev. B 99(7), 075413 (2019).
    [Crossref]
  31. Y. Wang, H. Zhao, D. Huo, H. Su, C. Wang, and J. Zhang, “Accumulation-layer hybridized surface plasmon polaritions at an ITO/LiNbO3 interface,” Opt. Lett. 44(4), 947–950 (2019).
    [Crossref]
  32. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref]
  33. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  34. B. Dastmalchi, P. Tassin, T. Koschny, and C. M. Soukoulis, “A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries,” Adv. Opt. Mater. 4(1), 177–184 (2016).
    [Crossref]
  35. P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
    [Crossref]
  36. A. Forouzmand and H. Mosallaei, “Real-Time Controllable and Multifunctional Metasurfaces Ultilizing Indium Tin Oxide Materials: Phase Array Perspective,” IEEE Trans. Nanotechnol. 16(2), 296–306 (2017).
    [Crossref]
  37. A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A Tunable Multigate Indium-Tin-Oxide-Assisted All-Dielectric Metasurface,” Adv. Opt. Mater. 6(7), 1701275 (2018).
    [Crossref]
  38. Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
    [Crossref]
  39. T. Cui, B. Bai, and H.-B. Sun, “Tunable Metasurfaces Based on Active Materials,” Adv. Funct. Mater. 29(10), 1806692 (2019).
    [Crossref]
  40. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
    [Crossref]
  41. S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
    [Crossref]
  42. S.-I. Jun, T. E. McKnight, M. L. Simpson, and P. D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering,” Thin Solid Films 476(1), 59–64 (2005).
    [Crossref]
  43. X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
    [Crossref]
  44. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
    [Crossref]
  45. L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
    [Crossref]
  46. M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
    [Crossref]
  47. J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
    [Crossref]
  48. D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
    [Crossref]
  49. P. Guo, R. P. H. Chang, and R. D. Schaller, “Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range,” ACS Photonics 4(6), 1494–1500 (2017).
    [Crossref]
  50. P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
    [Crossref]
  51. K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B 44(15), 8301–8303 (1991).
    [Crossref]
  52. A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
    [Crossref]
  53. J. Baek, J. B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
    [Crossref]
  54. F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
    [Crossref]
  55. Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
    [Crossref]

2019 (4)

L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
[Crossref]

Y. Li and C. Argyropoulos, “Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides,” Phys. Rev. B 99(7), 075413 (2019).
[Crossref]

T. Cui, B. Bai, and H.-B. Sun, “Tunable Metasurfaces Based on Active Materials,” Adv. Funct. Mater. 29(10), 1806692 (2019).
[Crossref]

Y. Wang, H. Zhao, D. Huo, H. Su, C. Wang, and J. Zhang, “Accumulation-layer hybridized surface plasmon polaritions at an ITO/LiNbO3 interface,” Opt. Lett. 44(4), 947–950 (2019).
[Crossref]

2018 (6)

M. G. Wood, S. Campione, S. Parameswaran, T. S. Luk, J. R. Wendt, D. K. Serkland, and G. A. Keeler, “Gigahertz speed operation of epsilon-near-zero silicon photonic modulators,” Optica 5(3), 233–236 (2018).
[Crossref]

Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
[Crossref]

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A Tunable Multigate Indium-Tin-Oxide-Assisted All-Dielectric Metasurface,” Adv. Opt. Mater. 6(7), 1701275 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

A. Anopchenko, L. Tao, C. Arndt, and H. W. H. Lee, “Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness,” ACS Photonics 5(7), 2631–2637 (2018).
[Crossref]

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277–281 (2018).
[Crossref]

2017 (5)

A. Forouzmand and H. Mosallaei, “Real-Time Controllable and Multifunctional Metasurfaces Ultilizing Indium Tin Oxide Materials: Phase Array Perspective,” IEEE Trans. Nanotechnol. 16(2), 296–306 (2017).
[Crossref]

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. Dal Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
[Crossref]

P. Guo, R. P. H. Chang, and R. D. Schaller, “Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range,” ACS Photonics 4(6), 1494–1500 (2017).
[Crossref]

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

2016 (12)

J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
[Crossref]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

A. Ciattoni, A. Marini, and C. Rizza, “All-optical modulation in wavelength-sized epsilon-near-zero media,” Opt. Lett. 41(13), 3102–3105 (2016).
[Crossref]

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

B. Dastmalchi, P. Tassin, T. Koschny, and C. M. Soukoulis, “A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries,” Adv. Opt. Mater. 4(1), 177–184 (2016).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

L. Jin, Q. Chen, W. Liu, and S. Song, “Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO,” Plasmonics 11(4), 1087–1092 (2016).
[Crossref]

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

J. S. Kim and J. T. Kim, “Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler,” J. Phys. D: Appl. Phys. 49(7), 075101 (2016).
[Crossref]

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys. A 122(4), 473 (2016).
[Crossref]

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

2015 (7)

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

J. Baek, J. B. You, and K. Yu, “Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO,” Opt. Express 23(12), 15863–15876 (2015).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
[Crossref]

2014 (4)

S. Zhu, G. Q. Lo, and D. L. Kwong, “Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration,” Opt. Express 22(15), 17930–17947 (2014).
[Crossref]

K. Shi, R. R. Haque, B. Zhao, R. Zhao, and Z. Lu, “Broadband electro-optical modulator based on transparent conducting oxide,” Opt. Lett. 39(17), 4978–4981 (2014).
[Crossref]

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

2013 (5)

N. Engheta, “Pursing Near-Zero Response,” Science 340(6130), 286–287 (2013).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

2012 (3)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref]

2011 (1)

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

2010 (2)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref]

2008 (2)

L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
[Crossref]

M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
[Crossref]

2007 (1)

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[Crossref]

2005 (1)

S.-I. Jun, T. E. McKnight, M. L. Simpson, and P. D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering,” Thin Solid Films 476(1), 59–64 (2005).
[Crossref]

1999 (1)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

1991 (1)

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B 44(15), 8301–8303 (1991).
[Crossref]

Abdullah, M.

M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
[Crossref]

Adhikari, D.

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Anopchenko, A.

L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
[Crossref]

A. Anopchenko, L. Tao, C. Arndt, and H. W. H. Lee, “Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness,” ACS Photonics 5(7), 2631–2637 (2018).
[Crossref]

Archambault, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Argyropoulos, C.

Y. Li and C. Argyropoulos, “Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides,” Phys. Rev. B 99(7), 075413 (2019).
[Crossref]

Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
[Crossref]

Arndt, C.

A. Anopchenko, L. Tao, C. Arndt, and H. W. H. Lee, “Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness,” ACS Photonics 5(7), 2631–2637 (2018).
[Crossref]

Atwater, H. A.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref]

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Baek, J.

Bai, B.

T. Cui, B. Bai, and H.-B. Sun, “Tunable Metasurfaces Based on Active Materials,” Adv. Funct. Mater. 29(10), 1806692 (2019).
[Crossref]

Bhaskaran, H.

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

Boltasseva, A.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Bowen, P. K.

J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
[Crossref]

Boyd, R. W.

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Brener, I.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Brongersma, M. L.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Buchholz, D. B.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Campione, S.

Cao, X.

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

Capretti, A.

Y. Wang, A. Capretti, and L. Dal Negro, “Wide tuning of the optical and structural properties of alternative plasmonic materials,” Opt. Mater. Express 5(11), 2415 (2015).
[Crossref]

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Carrillo, S. G. C.

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

Caspani, L.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Cavanna, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Chang, R. P.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

Chang, R. P. H.

P. Guo, R. P. H. Chang, and R. D. Schaller, “Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range,” ACS Photonics 4(6), 1494–1500 (2017).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Chen, Q.

L. Jin, Q. Chen, W. Liu, and S. Song, “Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO,” Plasmonics 11(4), 1087–1092 (2016).
[Crossref]

Chin, K. K.

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

Chrisey, D. B.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Ciattoni, A.

Clerici, M.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Cryan, M. J.

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

Cubukcu, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Cui, T.

T. Cui, B. Bai, and H.-B. Sun, “Tunable Metasurfaces Based on Active Materials,” Adv. Funct. Mater. 29(10), 1806692 (2019).
[Crossref]

Cui, Y.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Dal Negro, L.

Dastmalchi, B.

B. Dastmalchi, P. Tassin, T. Koschny, and C. M. Soukoulis, “A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries,” Adv. Opt. Mater. 4(1), 177–184 (2016).
[Crossref]

Delahoy, A. E.

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

DeVault, C.

Di Falco, A.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Diao, X.

L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
[Crossref]

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

N. Engheta, “Pursing Near-Zero Response,” Science 340(6130), 286–287 (2013).
[Crossref]

Faccio, D.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Fang, X.

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref]

Ferrera, M.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Forouzmand, A.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A Tunable Multigate Indium-Tin-Oxide-Assisted All-Dielectric Metasurface,” Adv. Opt. Mater. 6(7), 1701275 (2018).
[Crossref]

A. Forouzmand and H. Mosallaei, “Real-Time Controllable and Multifunctional Metasurfaces Ultilizing Indium Tin Oxide Materials: Phase Array Perspective,” IEEE Trans. Nanotechnol. 16(2), 296–306 (2017).
[Crossref]

Freude, W.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Gao, Q.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277–281 (2018).
[Crossref]

Genenko, Y. A.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[Crossref]

Gennser, U.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Ghimire, K.

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

Gilmore, C. M.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Greffet, J. J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Grice, C. R.

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

Gu, B.

L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
[Crossref]

Guo, P.

P. Guo, R. P. H. Chang, and R. D. Schaller, “Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range,” ACS Photonics 4(6), 1494–1500 (2017).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Gurung, S.

L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
[Crossref]

Gwamuri, J.

J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
[Crossref]

Hahn, H.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Han, S.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

Hao, L.

L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
[Crossref]

Haque, R. R.

Hayat, H.

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

Horwitz, J. S.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Huang, Y. W.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

Huo, D.

Hwang, H. Y.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Inampudi, S.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A Tunable Multigate Indium-Tin-Oxide-Assisted All-Dielectric Metasurface,” Adv. Opt. Mater. 6(7), 1701275 (2018).
[Crossref]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Iskandar, F.

M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
[Crossref]

Jin, L.

L. Jin, Q. Chen, W. Liu, and S. Song, “Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO,” Plasmonics 11(4), 1087–1092 (2016).
[Crossref]

Jun, S.-I.

S.-I. Jun, T. E. McKnight, M. L. Simpson, and P. D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering,” Thin Solid Films 476(1), 59–64 (2005).
[Crossref]

Jun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

Junda, M. M.

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

Kafafi, Z. H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kaipurath, R. P.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Kang, J.-H.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Keeler, G. A.

Ketterson, J. B.

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Kim, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Kim, J.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Kim, J. S.

J. S. Kim and J. T. Kim, “Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler,” J. Phys. D: Appl. Phys. 49(7), 075101 (2016).
[Crossref]

Kim, J. T.

J. S. Kim and J. T. Kim, “Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler,” J. Phys. D: Appl. Phys. 49(7), 075101 (2016).
[Crossref]

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Kinsey, N.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Kirah, K.

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys. A 122(4), 473 (2016).
[Crossref]

Klamkin, J.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Klemm, M.

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

Koos, C.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Koschny, T.

B. Dastmalchi, P. Tassin, T. Koschny, and C. M. Soukoulis, “A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries,” Adv. Opt. Mater. 4(1), 177–184 (2016).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Kwong, D. L.

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Lee, H. W.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Lee, H. W. H.

L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
[Crossref]

A. Anopchenko, L. Tao, C. Arndt, and H. W. H. Lee, “Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness,” ACS Photonics 5(7), 2631–2637 (2018).
[Crossref]

Leon, I. D.

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Leufke, P. M.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Leuthold, J.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Li, E.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277–281 (2018).
[Crossref]

Li, S. Q.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

Li, Y.

Y. Li and C. Argyropoulos, “Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides,” Phys. Rev. B 99(7), 075413 (2019).
[Crossref]

Y. Li and C. Argyropoulos, “Tunable nonlinear coherent perfect absorption with epsilon-near-zero plasmonic waveguides,” Opt. Lett. 43(8), 1806–1809 (2018).
[Crossref]

Li, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Lindenmann, N.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Liu, K.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Liu, W.

L. Jin, Q. Chen, W. Liu, and S. Song, “Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO,” Plasmonics 11(4), 1087–1092 (2016).
[Crossref]

Liu, X.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Lo, G. Q.

Lu, Z.

Luk, T. S.

Ma, R. M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Ma, Z.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Mak, C. L.

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

Marikkannan, M.

J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
[Crossref]

Marini, A.

Marquier, F.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Mayandi, J.

J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
[Crossref]

McKnight, T. E.

S.-I. Jun, T. E. McKnight, M. L. Simpson, and P. D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering,” Thin Solid Films 476(1), 59–64 (2005).
[Crossref]

Melikyan, A.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Melzer, C.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[Crossref]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Mosallaei, H.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A Tunable Multigate Indium-Tin-Oxide-Assisted All-Dielectric Metasurface,” Adv. Opt. Mater. 6(7), 1701275 (2018).
[Crossref]

A. Forouzmand and H. Mosallaei, “Real-Time Controllable and Multifunctional Metasurfaces Ultilizing Indium Tin Oxide Materials: Phase Array Perspective,” IEEE Trans. Nanotechnol. 16(2), 296–306 (2017).
[Crossref]

Munir, M. M.

M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
[Crossref]

Murata, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nash, G. R.

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

Negro, L. D.

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Neumann, F.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[Crossref]

Okuyama, K.

M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
[Crossref]

Overvig, A. C.

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Pala, R. A.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

Pan, J.

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Parameswaran, S.

Pardo, F.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Park, J.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Pearce, J. M.

J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
[Crossref]

Peiponen, K. E.

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B 44(15), 8301–8303 (1991).
[Crossref]

Pelouard, J. L.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Peng, S.

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Pietrzyk, M.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Piqué, A.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

Podraza, N. J.

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

Rack, P. D.

S.-I. Jun, T. E. McKnight, M. L. Simpson, and P. D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering,” Thin Solid Films 476(1), 59–64 (2005).
[Crossref]

Reed, J. C.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Reno, J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

Ribaudo, T.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

Rizza, C.

Roger, T.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

Salary, M. M.

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A Tunable Multigate Indium-Tin-Oxide-Assisted All-Dielectric Metasurface,” Adv. Opt. Mater. 6(7), 1701275 (2018).
[Crossref]

Schaller, R. D.

P. Guo, R. P. H. Chang, and R. D. Schaller, “Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range,” ACS Photonics 4(6), 1494–1500 (2017).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Schimmel, T.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Serkland, D. K.

Shalaev, V. M.

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shaner, E.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

Shi, K.

Shim, E.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Shrestha, S.

Simpson, M. L.

S.-I. Jun, T. E. McKnight, M. L. Simpson, and P. D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering,” Thin Solid Films 476(1), 59–64 (2005).
[Crossref]

Sinclair, M.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

Sokhoyan, R.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

Song, S.

L. Jin, Q. Chen, W. Liu, and S. Song, “Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO,” Plasmonics 11(4), 1087–1092 (2016).
[Crossref]

Sorger, V. J.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Soukoulis, C. M.

B. Dastmalchi, P. Tassin, T. Koschny, and C. M. Soukoulis, “A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries,” Adv. Opt. Mater. 4(1), 177–184 (2016).
[Crossref]

Su, H.

Sun, H.-B.

T. Cui, B. Bai, and H.-B. Sun, “Tunable Metasurfaces Based on Active Materials,” Adv. Funct. Mater. 29(10), 1806692 (2019).
[Crossref]

Swillam, M. A.

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys. A 122(4), 473 (2016).
[Crossref]

Tagliazucchi, M.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

Tan, X.

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

Tao, L.

L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
[Crossref]

A. Anopchenko, L. Tao, C. Arndt, and H. W. H. Lee, “Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness,” ACS Photonics 5(7), 2631–2637 (2018).
[Crossref]

Tassin, P.

B. Dastmalchi, P. Tassin, T. Koschny, and C. M. Soukoulis, “A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries,” Adv. Opt. Mater. 4(1), 177–184 (2016).
[Crossref]

Thyagarajan, K.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

Tice, D. B.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

Tsai, D. P.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

Ulrich, S.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Uprety, P.

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Vartiainen, E. M.

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B 44(15), 8301–8303 (1991).
[Crossref]

Vassant, S.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Vincze, P.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

von Seggern, H.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[Crossref]

Walheim, S.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Wang, A. X.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277–281 (2018).
[Crossref]

Wang, C.

Wang, R.

Wang, T.

L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
[Crossref]

Wang, X.

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

Wang, Y.

Wang, Z.

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

Weiss, E. A.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

Wendt, J. R.

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Wood, M. G.

Wright, C. D.

S. G. C. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase change metadevices for near infrared absorber and modulator applications,” Opt. Lett. 24(12), 13563–13573 (2016).
[Crossref]

Xu, H.

L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
[Crossref]

Yampolskii, S. V.

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[Crossref]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Ye, C.

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

Ye, H.

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

Ye, J.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Lett. 19(9), 8855–8869 (2011).
[Crossref]

Yi, F.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

You, J. B.

Yu, K.

Yu, N.

Yuan, H.

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

Yuan, W.

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

Yun, K. M.

M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
[Crossref]

Zaki, A. O.

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys. A 122(4), 473 (2016).
[Crossref]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref]

Zhang, J.

Y. Wang, H. Zhao, D. Huo, H. Su, C. Wang, and J. Zhang, “Accumulation-layer hybridized surface plasmon polaritions at an ITO/LiNbO3 interface,” Opt. Lett. 44(4), 947–950 (2019).
[Crossref]

L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
[Crossref]

Zhang, R.

Zhang, S.

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Zhao, B.

Zhao, H.

Y. Wang, H. Zhao, D. Huo, H. Su, C. Wang, and J. Zhang, “Accumulation-layer hybridized surface plasmon polaritions at an ITO/LiNbO3 interface,” Opt. Lett. 44(4), 947–950 (2019).
[Crossref]

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

Zhao, R.

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Zhu, A. Y.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zhu, H.

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Zhu, S.

ACS Photonics (3)

A. Anopchenko, L. Tao, C. Arndt, and H. W. H. Lee, “Field-Effect Tunable and Broadband Epsilon-Near-Zero Perfect Absorbers with Deep Subwavelength Thickness,” ACS Photonics 5(7), 2631–2637 (2018).
[Crossref]

X. Liu, J.-H. Kang, H. Yuan, J. Park, Y. Cui, H. Y. Hwang, and M. L. Brongersma, “Tuning of Plasmons in Transparent Conductive Oxides by Carrier Accumulation,” ACS Photonics 5(4), 1493–1498 (2018).
[Crossref]

P. Guo, R. P. H. Chang, and R. D. Schaller, “Transient Negative Optical Nonlinearity of Indium Oxide Nanorod Arrays in the Full-Visible Range,” ACS Photonics 4(6), 1494–1500 (2017).
[Crossref]

Adv. Funct. Mater. (1)

T. Cui, B. Bai, and H.-B. Sun, “Tunable Metasurfaces Based on Active Materials,” Adv. Funct. Mater. 29(10), 1806692 (2019).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref]

Adv. Opt. Mater. (2)

B. Dastmalchi, P. Tassin, T. Koschny, and C. M. Soukoulis, “A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries,” Adv. Opt. Mater. 4(1), 177–184 (2016).
[Crossref]

A. Forouzmand, M. M. Salary, S. Inampudi, and H. Mosallaei, “A Tunable Multigate Indium-Tin-Oxide-Assisted All-Dielectric Metasurface,” Adv. Opt. Mater. 6(7), 1701275 (2018).
[Crossref]

Appl. Phys. A (1)

A. O. Zaki, K. Kirah, and M. A. Swillam, “Hybrid plasmonic electro-optical modulator,” Appl. Phys. A 122(4), 473 (2016).
[Crossref]

Appl. Phys. Lett. (1)

F. Yi, E. Shim, A. Y. Zhu, H. Zhu, J. C. Reed, and E. Cubukcu, “Voltage tuning of plasmonic absorbers by indium tin oxide,” Appl. Phys. Lett. 102(22), 221102 (2013).
[Crossref]

Appl. Surf. Sci. (2)

P. Uprety, M. M. Junda, K. Ghimire, D. Adhikari, C. R. Grice, and N. J. Podraza, “Spectroscopic ellipsometry determination of optical and electrical properties of aluminum doped zinc oxide,” Appl. Surf. Sci. 421, 852–858 (2017).
[Crossref]

L. Hao, X. Diao, H. Xu, B. Gu, and T. Wang, “Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates,” Appl. Surf. Sci. 254(11), 3504–3508 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Zhao, Y. Wang, A. Capretti, L. D. Negro, and J. Klamkin, “Broadband Electroabsorption Modulators Design Based on Epsilon-Near-Zero Indium Tin Oxide,” IEEE J. Sel. Top. Quantum Electron. 21(4), 192–198 (2015).
[Crossref]

IEEE Trans. Nanotechnol. (1)

A. Forouzmand and H. Mosallaei, “Real-Time Controllable and Multifunctional Metasurfaces Ultilizing Indium Tin Oxide Materials: Phase Array Perspective,” IEEE Trans. Nanotechnol. 16(2), 296–306 (2017).
[Crossref]

J. Appl. Phys. (1)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451–6461 (1999).
[Crossref]

J. Electron. Mater. (1)

S. Peng, X. Cao, J. Pan, X. Wang, X. Tan, A. E. Delahoy, and K. K. Chin, “X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures,” J. Electron. Mater. 46(2), 1405–1412 (2017).
[Crossref]

J. Phys. D: Appl. Phys. (1)

J. S. Kim and J. T. Kim, “Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler,” J. Phys. D: Appl. Phys. 49(7), 075101 (2016).
[Crossref]

J. Phys.: Condens. Matter (1)

X. Fang, C. L. Mak, S. Zhang, Z. Wang, W. Yuan, and H. Ye, “Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region,” J. Phys.: Condens. Matter 28(22), 224009 (2016).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Materials (1)

J. Gwamuri, M. Marikkannan, J. Mayandi, P. K. Bowen, and J. M. Pearce, “Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices,” Materials 9(1), 63 (2016).
[Crossref]

Nano Lett. (5)

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14(3), 1120–1126 (2014).
[Crossref]

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10(6), 2111–2116 (2010).
[Crossref]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-Tunable Conducting Oxide Metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J. J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref]

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14(11), 6463–6468 (2014).
[Crossref]

Nanophotonics (2)

Z. Ma, Z. Li, K. Liu, C. Ye, and V. J. Sorger, “Indium-Tin-Oxide for High-performance Electro-Optic Modulation,” Nanophotonics 4(1), 198–213 (2015).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1(1), 17–22 (2012).
[Crossref]

Nanotechnology (1)

M. M. Munir, F. Iskandar, K. M. Yun, K. Okuyama, and M. Abdullah, “Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning,” Nanotechnology 19(14), 145603 (2008).
[Crossref]

Nat. Photonics (2)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

P. Guo, R. D. Schaller, J. B. Ketterson, and R. P. H. Chang, “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photonics 10(4), 267–273 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Opt. Mater. Express (2)

Optica (2)

Photonics Res. (1)

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photonics Res. 6(4), 277–281 (2018).
[Crossref]

Phys. Rev. B (4)

Y. Li and C. Argyropoulos, “Exceptional points and spectral singularities in active epsilon-near-zero plasmonic waveguides,” Phys. Rev. B 99(7), 075413 (2019).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

K. E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B 44(15), 8301–8303 (1991).
[Crossref]

F. Neumann, Y. A. Genenko, C. Melzer, S. V. Yampolskii, and H. von Seggern, “Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface,” Phys. Rev. B 75(20), 205322 (2007).
[Crossref]

Phys. Rev. Lett. (3)

A. V. Krasavin and A. V. Zayats, “Photonic signal processing on electronic scales: electro-optical field-effect nanoplasmonic modulator,” Phys. Rev. Lett. 109(5), 053901 (2012).
[Crossref]

L. Caspani, R. P. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced Nonlinear Refractive Index in epsilon-Near-Zero Materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref]

Plasmonics (1)

L. Jin, Q. Chen, W. Liu, and S. Song, “Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO,” Plasmonics 11(4), 1087–1092 (2016).
[Crossref]

Sci. Rep. (2)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

L. Tao, A. Anopchenko, S. Gurung, J. Zhang, and H. W. H. Lee, “Gate-Tunable Plasmon-Induced Transparency Modulator Based on Stub-Resonator Waveguide with Epsilon-Near-Zero Materials,” Sci. Rep. 9(1), 2789 (2019).
[Crossref]

Science (2)

N. Engheta, “Pursing Near-Zero Response,” Science 340(6130), 286–287 (2013).
[Crossref]

M. Z. Alam, I. D. Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Thin Solid Films (1)

S.-I. Jun, T. E. McKnight, M. L. Simpson, and P. D. Rack, “A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering,” Thin Solid Films 476(1), 59–64 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) XRD pattern of ITO thin films deposited under different oxygen partial pressures. Within the figure, black, red, green and blue curves represent thin films deposited under oxygen partial pressures of 0.1 Pa, 1 Pa, 10 Pa and 30 Pa, respectively. (b) AFM image ($1 \times 1\;\mu {m^2}$) of ITO thin films deposited at 10 Pa.
Fig. 2.
Fig. 2. Refractive index n (solid line) and extinction coefficient ${\kappa }$ (dotted line) as a function of wavelength for ITO thin films fabricated under different oxygen partial pressures.
Fig. 3.
Fig. 3. (a) Schematic of the ITO/SiO2/Si thin films stack structure. A DC bias of 0 V to 5 V was applied a cross the SiO2 layer during the ellipsometry characterizations. (b) Cross-sectional view of the two-layer model under applied bias. (c) Optical micrograph pattern under the DC bias of the ITO films. The green circle indicates the incident light spot location of the ellipsometer.
Fig. 4.
Fig. 4. Refractive index (left axis) and extinction coefficient (right axis) of ITO films deposited under ${P_{{O_2}}}$ of (a) 1 Pa. (c) 10 Pa. (e) 30 Pa. and with different applied bias in a wavelength range from 210 to 1690 nm. Also shown are the zoom-in view of corresponding refractive index and extinction coefficient for ITO deposited at ${P_{{O_2}}}$ of (b) 1 Pa. (d) 10 Pa and (f) 30 Pa, respectively.
Fig. 5.
Fig. 5. Tuning the ENZ wavelength of ITO thin films under different applied bias for ITO thin films deposited at: (a) 1 Pa. (b) 10 Pa and (c) 30 Pa.

Tables (2)

Tables Icon

Table 1. Comparison of Hall effect measurements and Drude-Lorentz model fitting parameters for ITO thin films fabricated under different oxygen partial pressures

Tables Icon

Table 2. The variation of the parameters obtained by the Drude model fitting under different oxygen pressures with an applied gate voltage

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω )   =   ε ω P 2 ω 2 + i Γ ω + f 1 ω 1 2 ω 1 2 ω 2 + i Γ 1 ω
ω P 2 = N 0 e 2 ε 0 m
t T F = ( ε I T O ε 0 h 2 4 π 2 m e 2 ) 1 / 2 ( π 4 3 N 0 ) 1 / 6
n a c c = Q / e A × t T F

Metrics