Abstract

We experimentally demonstrated a giant Goos-Hänchen (GH) shift in a metal-dielectric multilayer Fano structure. The observed GH shift was 0.176 mm, which corresponded to (GH shift/$\lambda $) = 493, where $\lambda $ is the incident wavelength. A unique feature of this giant GH shift was that it occurred without attenuation, i.e., reflectivity ∼1, due to Fano interference between surface plasmon polariton and high-Q dielectric waveguide mode. The Q-value is determined by the coupling loss. Therefore, we can enhance the GH shift to an arbitrarily large value by controlling the coupling strength. The unique feature whereby the giant GH shift occurs without attenuation has great potential for real-world applications, such as optical switching, optical filters, and sensors, where the reduction of reflected beam intensity is currently a major drawback.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance

Rui Yang, Wenkan Zhu, and Jingjing Li
Opt. Express 22(2) 2043-2050 (2014)

Giant Goos-Hänchen shift induced by bounded states in optical PT-symmetric bilayer structures

Yanyan Cao, Yangyang Fu, Qingjia Zhou, Yadong Xu, Lei Gao, and Huanyang Chen
Opt. Express 27(6) 7857-7867 (2019)

Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene

Dong Zhao, Shaolin Ke, Qingjie Liu, Bing Wang, and Peixiang Lu
Opt. Express 26(3) 2817-2828 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7–8), 333–346 (1947).
    [Crossref]
  2. W. J. Wild and C. L. Giles, “Goos–Hänchen shifts from absorbing media,” Phys. Rev. A 25(4), 2099–2101 (1982).
    [Crossref]
  3. H. M. Lai and S. W. Chan, “Large and negative Goos–Hänchen shift near the Brewster dip on reflection from weakly absorbing media,” Opt. Lett. 27(9), 680–682 (2002).
    [Crossref]
  4. T. Tamir and H. L. Bertoni, “Lateral displacement of optical beams at multilayered and periodic structures,” J. Opt. Soc. Am. 61(10), 1397–1413 (1971).
    [Crossref]
  5. F. Pillon, H. Gilles, S. Girard, M. Laroche, R. Kaiser, and A. Gazibegovic, “Goos–Hänchen and Imbert-Fedorov shifts for leaky guided modes,” J. Opt. Soc. Am. B 22(6), 1290–1299 (2005).
    [Crossref]
  6. X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
    [Crossref]
  7. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
    [Crossref]
  8. I. V. Soboleva, V. V. Moskalenko, and A. A. Fedyanin, “Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces,” Phys. Rev. Lett. 108(12), 123901 (2012).
    [Crossref]
  9. D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos–Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26(3), 2817–2828 (2018).
    [Crossref]
  10. S. Longhi, G. Della Valle, and K. Staliunas, “Goos-Hänchen shift in complex crystals,” Phys. Rev. A 84(4), 042119 (2011).
    [Crossref]
  11. D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
    [Crossref]
  12. Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
    [Crossref]
  13. M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
    [Crossref]
  14. X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
    [Crossref]
  15. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref]
  16. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  17. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [Crossref]
  18. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref]
  19. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
    [Crossref]
  20. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref]
  21. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  22. S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
    [Crossref]
  23. P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
    [Crossref]
  24. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microspheres resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
    [Crossref]
  25. S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
    [Crossref]
  26. Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
    [Crossref]
  27. K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett. 41(22), 5274–5277 (2016).
    [Crossref]
  28. K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
    [Crossref]
  29. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).
  30. S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
    [Crossref]
  31. M. Born and E. Wolf, Principles of Optics (7th edition) Cambridge University Press (1999).
  32. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Lett. 33(13), 1437–1439 (2008).
    [Crossref]
  33. G. Jayaswal, G. Mistura, and M. Merano, “Observing angular deviations in light-beam reflection via weak measurements,” Opt. Lett. 39(21), 6257–6260 (2014).
    [Crossref]

2019 (1)

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

2018 (3)

D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos–Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26(3), 2817–2828 (2018).
[Crossref]

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

2017 (3)

K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
[Crossref]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

2016 (5)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett. 41(22), 5274–5277 (2016).
[Crossref]

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

2014 (2)

G. Jayaswal, G. Mistura, and M. Merano, “Observing angular deviations in light-beam reflection via weak measurements,” Opt. Lett. 39(21), 6257–6260 (2014).
[Crossref]

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

2013 (1)

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
[Crossref]

2012 (2)

I. V. Soboleva, V. V. Moskalenko, and A. A. Fedyanin, “Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces,” Phys. Rev. Lett. 108(12), 123901 (2012).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

2011 (1)

S. Longhi, G. Della Valle, and K. Staliunas, “Goos-Hänchen shift in complex crystals,” Phys. Rev. A 84(4), 042119 (2011).
[Crossref]

2010 (1)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

2009 (1)

2008 (2)

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Lett. 33(13), 1437–1439 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

2006 (1)

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

2005 (1)

2004 (1)

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

2003 (1)

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

2002 (1)

1982 (1)

W. J. Wild and C. L. Giles, “Goos–Hänchen shifts from absorbing media,” Phys. Rev. A 25(4), 2099–2101 (1982).
[Crossref]

1971 (1)

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7–8), 333–346 (1947).
[Crossref]

Aiello, A.

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Bertoni, H. L.

Born, M.

M. Born and E. Wolf, Principles of Optics (7th edition) Cambridge University Press (1999).

Brener, I.

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Cao, Z.

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Chan, S. W.

Chen, F.

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Chen, X.

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Cui, C.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Della Valle, G.

S. Longhi, G. Della Valle, and K. Staliunas, “Goos-Hänchen shift in complex crystals,” Phys. Rev. A 84(4), 042119 (2011).
[Crossref]

Fang, N.

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Fedyanin, A. A.

I. V. Soboleva, V. V. Moskalenko, and A. A. Fedyanin, “Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces,” Phys. Rev. Lett. 108(12), 123901 (2012).
[Crossref]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Gazibegovic, A.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Giles, C. L.

W. J. Wild and C. L. Giles, “Goos–Hänchen shifts from absorbing media,” Phys. Rev. A 25(4), 2099–2101 (1982).
[Crossref]

Gilles, H.

Girard, S.

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7–8), 333–346 (1947).
[Crossref]

Hanamura, R.

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7–8), 333–346 (1947).
[Crossref]

Hayashi, S.

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

Hesselink, L.

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Hirai, Y.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
[Crossref]

Huang, Q.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

Inouye, Y.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

Ishitobi, H.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Jayaswal, G.

Kaiser, R.

Kawata, S.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

Ke, S.

Keeler, G. A.

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Kippenberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

Kong, W.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
[Crossref]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Lai, H. M.

Laroche, M.

Li, H.

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Li, Y.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

Li, Z.

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Liu, F.

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

Liu, J.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, Q.

Liu, S.

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Liu, Z. W.

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Longhi, S.

S. Longhi, G. Della Valle, and K. Staliunas, “Goos-Hänchen shift in complex crystals,” Phys. Rev. A 84(4), 042119 (2011).
[Crossref]

Lu, P.

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Matsumoto, T.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
[Crossref]

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett. 41(22), 5274–5277 (2016).
[Crossref]

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microspheres resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[Crossref]

Matsunaga, K.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
[Crossref]

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett. 41(22), 5274–5277 (2016).
[Crossref]

Meng, P.

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

Merano, M.

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Mistura, G.

Moskalenko, V. V.

I. V. Soboleva, V. V. Moskalenko, and A. A. Fedyanin, “Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces,” Phys. Rev. Lett. 108(12), 123901 (2012).
[Crossref]

Neo, Y.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
[Crossref]

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett. 41(22), 5274–5277 (2016).
[Crossref]

Nesterenko, D. V.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Peake, G. M.

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Pillon, F.

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Qiu, X.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

Rahmouni, A.

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

Ran, M.

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Refki, S.

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Sekkat, Z.

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

Shadrivov, I. V.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Sinclair, M. B.

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Soboleva, I. V.

I. V. Soboleva, V. V. Moskalenko, and A. A. Fedyanin, “Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces,” Phys. Rev. Lett. 108(12), 123901 (2012).
[Crossref]

Song, J.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Staliunas, K.

S. Longhi, G. Della Valle, and K. Staliunas, “Goos-Hänchen shift in complex crystals,” Phys. Rev. A 84(4), 042119 (2011).
[Crossref]

Tamir, T.

Tang, M.

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Tomita, M.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
[Crossref]

K. Matsunaga, T. Watanabe, Y. Neo, T. Matsumoto, and M. Tomita, “Attenuated total reflection response to wavelength tuning of plasmon-induced transparency in a metal–insulator–metal structure,” Opt. Lett. 41(22), 5274–5277 (2016).
[Crossref]

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microspheres resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

Totsuka, K.

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microspheres resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

Vabishchevich, P. P.

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Wan, Y.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
[Crossref]

Wang, B.

Wang, X.

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Wang, Y.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Watanabe, T.

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Wen, J.

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

Wild, W. J.

W. J. Wild and C. L. Giles, “Goos–Hänchen shifts from absorbing media,” Phys. Rev. A 25(4), 2099–2101 (1982).
[Crossref]

Woerdman, J. P.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (7th edition) Cambridge University Press (1999).

Xia, J.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

Xu, S.

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

Yin, X. B.

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Yuan, S.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

Zhao, D.

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

D. Zhao, S. Ke, Q. Liu, B. Wang, and P. Lu, “Giant Goos–Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene,” Opt. Express 26(3), 2817–2828 (2018).
[Crossref]

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Zhao, X.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
[Crossref]

Zharov, A. A.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Zheng, Z.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
[Crossref]

Zhong, D.

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

Zhu, L.

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

ACS Nano (1)

S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, “Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor,” ACS Nano 11(11), 10704–10711 (2017).
[Crossref]

ACS Photonics (1)

P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, “Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces,” ACS Photonics 5(5), 1685–1690 (2018).
[Crossref]

Ann. Phys. (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7–8), 333–346 (1947).
[Crossref]

Appl. Phys. Lett. (4)

X. B. Yin, L. Hesselink, Z. W. Liu, N. Fang, and X. Zhang, “Large positive and negative lateral optical beam displacements due to surface plasmon resonance,” Appl. Phys. Lett. 85(3), 372–374 (2004).
[Crossref]

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

Appl. Sci. (1)

D. Zhao, F. Liu, P. Meng, J. Wen, S. Xu, Z. Li, and D. Zhong, “Reflection enhancement and giant lateral shift in defective photonic crystals with Graphene,” Appl. Sci. 9(10), 2141 (2019).
[Crossref]

IEEE Photonics J. (1)

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” IEEE Photonics J. 5(1), 7200107 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

M. Tang, M. Ran, F. Chen, X. Wang, H. Li, X. Chen, and Z. Cao, “Narrow band optical filter using Goos–Hänchen shift in a cascaded waveguide structure,” Opt. Laser Technol. 55, 42–45 (2014).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (2)

S. Longhi, G. Della Valle, and K. Staliunas, “Goos-Hänchen shift in complex crystals,” Phys. Rev. A 84(4), 042119 (2011).
[Crossref]

W. J. Wild and C. L. Giles, “Goos–Hänchen shifts from absorbing media,” Phys. Rev. A 25(4), 2099–2101 (1982).
[Crossref]

Phys. Rev. Lett. (4)

I. V. Soboleva, V. V. Moskalenko, and A. A. Fedyanin, “Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces,” Phys. Rev. Lett. 108(12), 123901 (2012).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: The radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref]

Plasmonics (1)

S. Refki, S. Hayashi, A. Rahmouni, D. V. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11(2), 433–440 (2016).
[Crossref]

Sci. Rep. (2)

S. Hayashi, D. V. Nesterenko, A. Rahmouni, H. Ishitobi, Y. Inouye, S. Kawata, and Z. Sekkat, “Light-tunable Fano resonance in metal-dielectric multilayer structures,” Sci. Rep. 6(1), 33144 (2016).
[Crossref]

K. Matsunaga, Y. Hirai, Y. Neo, T. Matsumoto, and M. Tomita, “Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure,” Sci. Rep. 7(1), 17824 (2017).
[Crossref]

Science (2)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref]

Z. Naturforsch. (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. 23a, 2135–2136 (1968).

Other (1)

M. Born and E. Wolf, Principles of Optics (7th edition) Cambridge University Press (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. FIS, fiber injection system; F, optical fiber; C, beam collimation system; P, polarizer; 1/2, half wavelength plate; P, prism; S, sample; RT, rotational stage; D, detector (Si photodiode, or complementary metal-oxide semiconductor [CMOS] camera). Inset: Schematic illustration of dielectric multilayer Fano structure.
Fig. 2.
Fig. 2. (a1) and (b1) Experimental observations of reflectivity as a function of the incident angle ${\theta _i}$ in p-polarization (attenuated total reflection [ATR] spectrum). (a1) and (b1) show the results for sample 1 (${d_3}$ = 123 nm) and sample 2 (${d_3}$ = 149 nm), respectively. The upward and downward arrows at 68.4° and 85.3° indicate the waveguide (WG) mode and inverted WG mode, respectively. The notations 1, 2, 3, 4, and 5 in (b1) and 6 in (a1) indicate the angular positions where a Goos-Hänchen (GH) shift was measured. (a2) and (b2) Calculation of the reflectivity (ATR spectrum) for samples 1 and 2, respectively. (a3) and (b3) Calculation of the reflection phase shift for samples 1 and 2, respectively. Inset in (b3) shows an expanded phase shift around the resonance region. The refractive indexes used in the simulation were ${n_{Ag}}$ = 0.165 + i 3.25, ${n_{Si{O_2}}}$ = 1.45, ${n_{Ti{O_2}}}$ = 2.13 and ${n_{T{a_2}{O_5}}}$ = 2.20 .
Fig. 3.
Fig. 3. (a1), (b1), (c), (d), (e), and (f) Experimental observations of the spatial profiles in the reflected beam. (a1), (c), (d), (e), and (f) Beam profiles obtained with incident angles of ${\theta _i}$ = 85.3° (center), 72°, 83.5°, 85.8 °, and 98° in sample 2 (as indicated by notations 1, 2, 3, 4, and 5 in Fig. 2(b1), respectively). (b1) Incident angle of ${\theta _i}$ = 68.4° in sample 1 (as indicated by notation 6 in Fig. 2(a1)). The solid black lines correspond to the reference beam profile (s-polarization). The solid red [(a1), (a2)], blue [(b1), (b2), (d), and (e)], and green [(c), (f)] lines represent the non-normalized spatial profiles of the reflected beam. The dashed lines [(b1), (b2), (d), and (e)] show the spatial profile normalized with respect to the reference beam. The scales of the horizontal axes are recalibrated by taking refraction at the prism into account. The horizontal red and blue dotted lines in (a1) and (b1), respectively, represent the intensity of the reflected beam for the eye guide. (a2) and (b2) Spatial beam profiles calculated using the dispersion curves in Fig. 2(b3) and 2(a3), respectively.
Fig. 4.
Fig. 4. The left [(a1)–(f1)], middle [(a2)–(f2)], and right [(a3)–(f3)] columns show the calculated reflectivity (ATR spectrum), reflection phase shift, and GH shift, respectively, as a function of the incident angle ${\theta _i}$. I) Dependence on the gap layer thickness ${d_2}$ in the absence of attenuation or gain. The layer thicknesses ${d_2}$ were (a) 300, (b) 500, (c) 600, and (d) 700 nm. The deep blue lines in (a2)–(d2) represent the slope of the dispersion curve at the resonance of the inverted WG mode. Note that the vertical scales in the right column are different from each other. II) Similar calculations in the presence of attenuation in the WG layer (Ta2O5). The refractive index assumed in the WG layer was (e) ${n_2}$ = 2.20 + i1.0 × 10−4. III) Similar calculations when the gain was introduced as (f) ${n_2}$ = 2.20−i1.0 × 10−5. The layer thickness ${d_2}$ was 850 nm in (e) and (f). The thicknesses were ${d_1}$ = 51 nm and ${d_3}$ = 147 nm in all calculations. The horizontal red dotted lines in (b1)–(f1) represent the intensity of the reflected beam ${I_{Fano}}$.
Fig. 5.
Fig. 5. Solid and dashed lines show the calculated GH shift, ${D_{Fano}}$ (left axis) and the intensity of the reflected beam ${I_{Fano}}$ (right axis) respectively, as a function of the thickness of the gap layer (SiO2). (a) The black line shows the results without attenuation or gain. Colored lines show the results in the presence of attenuation in the WG layer (Ta2O5). The refractive indexes used were ${n_2}$ = 2.20 (black), 2.20 + i1.0 × 10−5 (yellow), 2.20 + i5.0 × 10−5 (green), and 2.20 + i1.0 × 10−4 (blue). The closed and open circles represent experimental results of ${D_{Fano}}$ and ${I_{Fano}}$ respectively, shown in Fig. 3. (b) The black line shows the results without attenuation or gain (same plot as in (a)). The red line is a similar plot in the presence of gain in the WG layer (Ta2O5) layer. The refractive index used was ${n_2}$ = 2.20 − i1.0 × 10−5.
Fig. 6.
Fig. 6. (Upper figures) (a1), (a2), and (a3) The reflectivity, reflection phase shift, and GH shift in the type II configuration, respectively. The layer thicknesses were (a) ${d_1}$ = 46 nm, ${d_2}$ = 600 nm, and ${d_3}$ = 147 nm. (Lower figures) (b) and (c) Optical admittance of the reflected field for the type I and type II configurations, respectively. Notations A–E in (c) represent the corresponding angles shown in (a1).

Metrics