Abstract

We present the design, fabrication, and characterization of a compound infrared microlens array having an ultrashort focal length and a hyperbolic profile that comprises a PDMS microlens array and a GRIN lens. A concave microlens mold was first fabricated on a fused silica substrate using femtosecond laser irradiation followed by a wet etching process, and a standard replication process was employed to fabricate a PDMS convex lens array. To shorten the focal length further and cut off the visible spectrum of light, a graded DLC/silicon coating, which functioned as a GRIN lens and a visible light cut-off filter, was additionally deposited using dual-beam pulsed laser deposition. The lenslet diameter was 6 µm and the graded coating reduced the focal length from 4.5 to 2.9 µm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method

Feng Chen, Hewei Liu, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou
Opt. Express 18(19) 20334-20343 (2010)

Fabrication of polymer microlens array with controllable focal length by modifying surface wettability

Qiao Xu, Bo Dai, Yu Huang, Huansi Wang, Zhuoqing Yang, Kaimin Wang, Songlin Zhuang, and Dawei Zhang
Opt. Express 26(4) 4172-4182 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A: Mater. Sci. Process. 68(6), 709–713 (1999).
    [Crossref]
  2. C. F. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33(22), 2575–2577 (2008).
    [Crossref]
  3. Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
    [Crossref]
  4. B. D. F. Casse, W. T. Lu, Y. J. Huang, and S. Sridhar, “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93(5), 053111 (2008).
    [Crossref]
  5. F. Liu, Q. Yang, F. Chen, F. Zhang, H. Bian, and X. Hou, “Low-cost high integration IR polymer microlens array,” Opt. Lett. 44(7), 1600–1602 (2019).
    [Crossref]
  6. Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
    [Crossref]
  7. S. Mihailov and S. Lazare, “Fabrication of Refractive Microlens Arrays by Excimer-Laser Ablation of Amorphous Teflon,” Appl. Opt. 32(31), 6211–6218 (1993).
    [Crossref]
  8. I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
    [Crossref]
  9. H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
    [Crossref]
  10. S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
    [Crossref]
  11. C. Deng and H. Ki, “Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 37–45 (2016).
    [Crossref]
  12. C. Deng, H. Kim, and H. Ki, “Fabrication of functionally-graded yttria-stabilized zirconia coatings by 355 nm picosecond dual-beam pulsed laser deposition,” Composites, Part B 160, 498–504 (2019).
    [Crossref]
  13. W. Heller, “Remarks on Refractive Index Mixture Rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
    [Crossref]
  14. P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
    [Crossref]
  15. J. A. Roden and T. Kramer, “The Convolutional PML For FDTD Analysis: Transient Electromagnetic Absorption from DC to Daylight,” 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 892–898 (2011).

2019 (2)

F. Liu, Q. Yang, F. Chen, F. Zhang, H. Bian, and X. Hou, “Low-cost high integration IR polymer microlens array,” Opt. Lett. 44(7), 1600–1602 (2019).
[Crossref]

C. Deng, H. Kim, and H. Ki, “Fabrication of functionally-graded yttria-stabilized zirconia coatings by 355 nm picosecond dual-beam pulsed laser deposition,” Composites, Part B 160, 498–504 (2019).
[Crossref]

2016 (3)

C. Deng and H. Ki, “Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 37–45 (2016).
[Crossref]

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

2014 (1)

2013 (1)

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref]

2012 (1)

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

2008 (2)

B. D. F. Casse, W. T. Lu, Y. J. Huang, and S. Sridhar, “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93(5), 053111 (2008).
[Crossref]

C. F. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33(22), 2575–2577 (2008).
[Crossref]

1999 (1)

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A: Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

1997 (1)

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

1993 (1)

1965 (1)

W. Heller, “Remarks on Refractive Index Mixture Rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
[Crossref]

Ahsan, M. S.

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

Amaragtunga, G.

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

Beinhorn, F.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A: Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Bian, H.

F. Liu, Q. Yang, F. Chen, F. Zhang, H. Bian, and X. Hou, “Low-cost high integration IR polymer microlens array,” Opt. Lett. 44(7), 1600–1602 (2019).
[Crossref]

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

Butt, H.

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, and S. Sridhar, “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93(5), 053111 (2008).
[Crossref]

Chen, F.

F. Liu, Q. Yang, F. Chen, F. Zhang, H. Bian, and X. Hou, “Low-cost high integration IR polymer microlens array,” Opt. Lett. 44(7), 1600–1602 (2019).
[Crossref]

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

Choi, H. K.

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

Dai, Q.

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

Deng, C.

C. Deng, H. Kim, and H. Ki, “Fabrication of functionally-graded yttria-stabilized zirconia coatings by 355 nm picosecond dual-beam pulsed laser deposition,” Composites, Part B 160, 498–504 (2019).
[Crossref]

C. Deng and H. Ki, “Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 37–45 (2016).
[Crossref]

Deng, Z.

Du, G. Q.

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

Dwivedi, P. K.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref]

Eisner, M.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Haselbeck, S.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Heller, W.

W. Heller, “Remarks on Refractive Index Mixture Rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
[Crossref]

Herzig, H. P.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Hou, X.

F. Liu, Q. Yang, F. Chen, F. Zhang, H. Bian, and X. Hou, “Low-cost high integration IR polymer microlens array,” Opt. Lett. 44(7), 1600–1602 (2019).
[Crossref]

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, and S. Sridhar, “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93(5), 053111 (2008).
[Crossref]

Ihlemann, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A: Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Ki, H.

C. Deng, H. Kim, and H. Ki, “Fabrication of functionally-graded yttria-stabilized zirconia coatings by 355 nm picosecond dual-beam pulsed laser deposition,” Composites, Part B 160, 498–504 (2019).
[Crossref]

C. Deng and H. Ki, “Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 37–45 (2016).
[Crossref]

Kim, H.

C. Deng, H. Kim, and H. Ki, “Fabrication of functionally-graded yttria-stabilized zirconia coatings by 355 nm picosecond dual-beam pulsed laser deposition,” Composites, Part B 160, 498–504 (2019).
[Crossref]

Kramer, T.

J. A. Roden and T. Kramer, “The Convolutional PML For FDTD Analysis: Transient Electromagnetic Absorption from DC to Daylight,” 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 892–898 (2011).

Kumaresan, Y.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref]

Lazare, S.

Lee, S. K.

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

Liu, F.

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, and S. Sridhar, “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93(5), 053111 (2008).
[Crossref]

Luther, K.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A: Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

McLeod, R. R.

Mihailov, S.

Noh, Y. C.

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

Nussbaum, P.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Qiu, X. H.

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

Rajasekharan, R.

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

Rammohan, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref]

Roden, J. A.

J. A. Roden and T. Kramer, “The Convolutional PML For FDTD Analysis: Transient Electromagnetic Absorption from DC to Daylight,” 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 892–898 (2011).

Sharma, A.

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref]

Si, J.

Sohn, I. B.

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, and S. Sridhar, “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93(5), 053111 (2008).
[Crossref]

Sung, J. H.

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

Tong, S.

Troe, J.

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A: Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Volke, R.

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Wei, Y.

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

Wilkinson, T. D.

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

Yang, Q.

F. Liu, Q. Yang, F. Chen, F. Zhang, H. Bian, and X. Hou, “Low-cost high integration IR polymer microlens array,” Opt. Lett. 44(7), 1600–1602 (2019).
[Crossref]

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

Ye, C. F.

Yong, J. L.

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

Yoo, D.

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

Zhang, F.

F. Liu, Q. Yang, F. Chen, F. Zhang, H. Bian, and X. Hou, “Low-cost high integration IR polymer microlens array,” Opt. Lett. 44(7), 1600–1602 (2019).
[Crossref]

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Kumaresan, A. Rammohan, P. K. Dwivedi, and A. Sharma, “Large Area IR Microlens Arrays of Chalcogenide Glass Photoresists by Grayscale Maskless Lithography,” ACS Appl. Mater. Interfaces 5(15), 7094–7100 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

F. Beinhorn, J. Ihlemann, K. Luther, and J. Troe, “Micro-lens arrays generated by UV laser irradiation of doped PMMA,” Appl. Phys. A: Mater. Sci. Process. 68(6), 709–713 (1999).
[Crossref]

Appl. Phys. Lett. (2)

H. Bian, Y. Wei, Q. Yang, F. Chen, F. Zhang, G. Q. Du, J. L. Yong, and X. Hou, “Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process,” Appl. Phys. Lett. 109(22), 221109 (2016).
[Crossref]

B. D. F. Casse, W. T. Lu, Y. J. Huang, and S. Sridhar, “Nano-optical microlens with ultrashort focal length using negative refraction,” Appl. Phys. Lett. 93(5), 053111 (2008).
[Crossref]

Composites, Part B (1)

C. Deng, H. Kim, and H. Ki, “Fabrication of functionally-graded yttria-stabilized zirconia coatings by 355 nm picosecond dual-beam pulsed laser deposition,” Composites, Part B 160, 498–504 (2019).
[Crossref]

J. Korean Phys. Soc. (1)

I. B. Sohn, D. Yoo, Y. C. Noh, J. H. Sung, S. K. Lee, H. K. Choi, and M. S. Ahsan, “Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique,” J. Korean Phys. Soc. 69(3), 335–343 (2016).
[Crossref]

J. Phys. Chem. (1)

W. Heller, “Remarks on Refractive Index Mixture Rules,” J. Phys. Chem. 69(4), 1123–1129 (1965).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Pure Appl. Opt. (1)

P. Nussbaum, R. Volke, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Small (1)

Q. Dai, R. Rajasekharan, H. Butt, X. H. Qiu, G. Amaragtunga, and T. D. Wilkinson, “Ultrasmall Microlens Array Based on Vertically Aligned Carbon Nanofibers,” Small 8(16), 2501–2504 (2012).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

C. Deng and H. Ki, “Pulsed laser deposition of refractive-index-graded broadband antireflection coatings for silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 37–45 (2016).
[Crossref]

Other (1)

J. A. Roden and T. Kramer, “The Convolutional PML For FDTD Analysis: Transient Electromagnetic Absorption from DC to Daylight,” 2011 IEEE International Symposium on Electromagnetic Compatibility (EMC), 892–898 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Schematic of a fabricated lenslet with a GRIN lens deposited on top.
Fig. 2.
Fig. 2. Fabrication procedure for a compound IR microlens array. (a) Femtosecond laser irradiation and HF etching for fabricating a mold for the microlens array on fused silica, (b) fabrication of a positive PDMS microlens array, and (c) dual beam PLD deposition of a DLC/silicon graded coating.
Fig. 3.
Fig. 3. Designed volumetric content profiles of silicon and DLC.
Fig. 4.
Fig. 4. Deposition rate data for (a) DLC and (b) silicon.
Fig. 5.
Fig. 5. (a) SEM image (45° tilted) and (b) confocal microscope image of the fabricated PDMS convex microlens array. (c) Measured lens profile and a hyperbolic fitting line.
Fig. 6.
Fig. 6. Focusing performance of the PDMS microlens array. (a) Confocal microscopic image of the microlens array. (b) The corresponding intensity distribution created when the microlens array was illuminated by a normally incident 488-nm laser beam. (c) The intensity distribution along the blue dashed line in (a).
Fig. 7.
Fig. 7. Imaging test result of the PDMS microlens array obtained with a halogen lamp as the light source and a letter “S” as the imaging object.
Fig. 8.
Fig. 8. (a) SEM image (45° tilted) of the compound IR microlens array. (b) Measured lenslet profile shown with a hyperbolic fitting line.
Fig. 9.
Fig. 9. (a) XPS measured C1s peak variation along the coating thickness direction for DLC content; (b) XPS measured Si2p peak variation along the coating thickness direction for silicon content; (c) An C1s XPS peak fitting example for the location indicated by a dashed blue arrow in (a) and (d); (d) Calculated DLC volume percentage at each location inside the graded coating.
Fig. 10.
Fig. 10. FDTD simulation results with a 1000-nm light on the focal length reduction of the graded coating. (a) pure PDMS lens with a focal length of 4.12 µm. (b) PDMS lens + GRIN lens with a focal length of 2.90 µm.
Fig. 11.
Fig. 11. Transmission curves for deposited DLC (red line), deposited silicon (green line), graded DLC/silicon coating (blue line), and pure PDMS (black line) from 200 nm to 2000nm.
Fig. 12.
Fig. 12. Imaging test results for the compound IR microlens array obtained using (a) total internal reflection microscopy with a halogen lamp (visible to near IR) and (b) a photoactivated localization super resolution microscopy with a 1000-nm wavelength laser beam.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n mix = ϕ 1 n 1 + ϕ 2 n 2
n l i n e a r ( x ) = n S i x + n D L C ( 1 x )
f = R n 1 ,
R = ( K + 1 ) H 2 + r 2 2 H ,
N C N S i = I C / S C I S i / S S i ,

Metrics