Abstract

Optical double-quantum two-dimensional coherent spectroscopy (2DCS) was implemented to probe interatomic dipole-dipole interactions in both potassium and rubidium atomic vapors. The dipole-dipole interaction was detected at densities of $4.81 \times 10^8$ cm$^{-3}$ and $8.40 \times 10^9$ cm$^{-3}$ for potassium and rubidium, respectively, corresponding to a mean interatomic separation of 15.8 $\mu$m or $3.0\times 10^5a_0$ for potassium and 6.1 $\mu$m or $1.2\times 10^5a_0$ for rubidium, where $a_0$ is the Bohr radius. The experimental results confirm the long range nature of the dipole-dipole interaction, which is critical for understanding many-body physics in atoms/molecules. The long range interaction also has implications in atom-based applications involving many-body interactions. Additionally, we demonstrated that double-quantum 2DCS is sufficiently sensitive to probe dipole-dipole interaction at densities that can be achieved with cold atom in a magneto-optical trap, paving the way for double-quantum 2DCS studies of cold atoms and molecules. The method can also open a new avenue to study long-range interactions in solid state systems such as quantum dots and color centers in diamonds.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Probing dipole–dipole interaction in a rubidium gas via double-quantum 2D spectroscopy

Feng Gao, Steven T. Cundiff, and Hebin Li
Opt. Lett. 41(13) 2954-2957 (2016)

Two-dimensional double-quantum spectroscopy: peak shapes as a sensitive probe of carrier interactions in quantum wells

Jonathan Tollerud and Jeffrey A. Davis
J. Opt. Soc. Am. B 33(7) C108-C114 (2016)

Double-negative atomic vapor assisted by two-photon quantum coherence

Jian Qi Shen
J. Opt. Soc. Am. B 29(11) 3192-3200 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. W. King and J. H. van Vleck, “Dipole-Dipole Resonance Forces,” Phys. Rev. 55(12), 1165–1172 (1939).
    [Crossref]
  2. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71(1), 1–85 (1999).
    [Crossref]
  3. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
    [Crossref]
  4. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
    [Crossref]
  5. M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
    [Crossref]
  6. J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991).
    [Crossref]
  7. V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-Dipole Broadened Line Shape in a Partially Excited Dense Atomic Gas,” Phys. Rev. Lett. 77(16), 3327–3330 (1996).
    [Crossref]
  8. H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
    [Crossref]
  9. H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
    [Crossref]
  10. H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities,” J. Phys. B: At., Mol. Opt. Phys. 42(6), 065203 (2009).
    [Crossref]
  11. F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
    [Crossref]
  12. J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
    [Crossref]
  13. S. T. Cundiff, “Time domain observation of the Lorentz-local field,” Laser Phys. 12, 1073–1078 (2002).
  14. V. Lorenz and S. Cundiff, “Non-Markovian Dynamics in a Dense Potassium Vapor,” Phys. Rev. Lett. 95(16), 163601 (2005).
    [Crossref]
  15. V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100(1), 013603 (2008).
    [Crossref]
  16. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
    [Crossref]
  17. F. Gao, S. T. Cundiff, and H. Li, “Probing dipole–dipole interaction in a rubidium gas via double-quantum 2D spectroscopy,” Opt. Lett. 41(13), 2954–2957 (2016).
    [Crossref]
  18. B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120(23), 233401 (2018).
    [Crossref]
  19. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
    [Crossref]
  20. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
    [Crossref]
  21. A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
    [Crossref]
  22. S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
    [Crossref]
  23. J. Szudy and W. Baylis, “Unified Franck-Condon treatment of pressure broadening of spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 15(7-8), 641–668 (1975).
    [Crossref]
  24. A. Ben-Reuven, “Spectral line shapes in gases in the binary-collision approximation,” Adv. Chem. Phys. 33, 235–293 (1975).
    [Crossref]
  25. E. W. Smith, J. Cooper, and L. J. Roszman, “An analysis of the unified and scalar additivity theories of spectral line broadening,” J. Quant. Spectrosc. Radiat. Transfer 13(12), 1523–1538 (1973).
    [Crossref]
  26. A. W. Ali and H. R. Griem, “Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts,” Phys. Rev. 140(4A), A1044–A1049 (1965).
    [Crossref]
  27. P. W. Anderson, “Pressure Broadening in the Mircrowave and Infra-Red Regions,” Phys. Rev. 76(5), 647–661 (1949).
    [Crossref]
  28. E. Lewis, “Collisional relaxation of atomic excited states, line broadening and interatomic interactions,” Phys. Rep. 58(1), 1–71 (1980).
    [Crossref]
  29. V. Weisskopf, “Zur theorie der kopplungsbreite und der stoßdämpfung,” Eur. Phys. J. A 75(5-6), 287–301 (1932).
    [Crossref]
  30. A. Thorne, U. Litzén, S. Johansson, and U. Litzen, Spectrophysics: Principles and Applications (Springer, 1999).
  31. J. A. Leegwater and S. Mukamel, “Self-broadening and exciton line shifts in gases: Beyond the local-field approximation,” Phys. Rev. A 49(1), 146–155 (1994).
    [Crossref]
  32. B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357(6358), 1389–1391 (2017).
    [Crossref]
  33. G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617 (2013).
    [Crossref]
  34. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
    [Crossref]
  35. G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
    [Crossref]
  36. L. Bruder, M. Binz, and F. Stienkemeier, “Efficient isolation of multiphoton processes and detection of collective resonances in dilute samples,” Phys. Rev. A 92(5), 053412 (2015).
    [Crossref]
  37. S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom dicke states in an atomic vapor,” Opt. Lett. 44(11), 2795–2798 (2019).
    [Crossref]
  38. A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
    [Crossref]
  39. P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9(19), 5654–5659 (2018).
    [Crossref]
  40. M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149(11), 114107 (2018).
    [Crossref]
  41. A. N. Nesmeyanov, Vapor pressure curve of chemical elements (Elsevier, New York, 1963).
  42. M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96(3), 032508 (2017).
    [Crossref]
  43. R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of ${\mathrm {rb}}_{2}$rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
    [Crossref]
  44. L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
    [Crossref]
  45. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15(1), 1–89 (1943).
    [Crossref]

2019 (2)

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom dicke states in an atomic vapor,” Opt. Lett. 44(11), 2795–2798 (2019).
[Crossref]

2018 (3)

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9(19), 5654–5659 (2018).
[Crossref]

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149(11), 114107 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120(23), 233401 (2018).
[Crossref]

2017 (4)

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357(6358), 1389–1391 (2017).
[Crossref]

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96(3), 032508 (2017).
[Crossref]

2016 (1)

2015 (2)

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

L. Bruder, M. Binz, and F. Stienkemeier, “Efficient isolation of multiphoton processes and detection of collective resonances in dilute samples,” Phys. Rev. A 92(5), 053412 (2015).
[Crossref]

2013 (1)

2012 (3)

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
[Crossref]

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

2011 (1)

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

2009 (1)

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities,” J. Phys. B: At., Mol. Opt. Phys. 42(6), 065203 (2009).
[Crossref]

2008 (4)

J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
[Crossref]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100(1), 013603 (2008).
[Crossref]

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

2007 (3)

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

2006 (1)

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[Crossref]

2005 (1)

V. Lorenz and S. Cundiff, “Non-Markovian Dynamics in a Dense Potassium Vapor,” Phys. Rev. Lett. 95(16), 163601 (2005).
[Crossref]

2002 (1)

S. T. Cundiff, “Time domain observation of the Lorentz-local field,” Laser Phys. 12, 1073–1078 (2002).

1999 (1)

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71(1), 1–85 (1999).
[Crossref]

1997 (1)

H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
[Crossref]

1996 (1)

V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-Dipole Broadened Line Shape in a Partially Excited Dense Atomic Gas,” Phys. Rev. Lett. 77(16), 3327–3330 (1996).
[Crossref]

1994 (2)

J. A. Leegwater and S. Mukamel, “Self-broadening and exciton line shifts in gases: Beyond the local-field approximation,” Phys. Rev. A 49(1), 146–155 (1994).
[Crossref]

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of ${\mathrm {rb}}_{2}$rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[Crossref]

1991 (1)

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991).
[Crossref]

1980 (1)

E. Lewis, “Collisional relaxation of atomic excited states, line broadening and interatomic interactions,” Phys. Rep. 58(1), 1–71 (1980).
[Crossref]

1975 (2)

J. Szudy and W. Baylis, “Unified Franck-Condon treatment of pressure broadening of spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 15(7-8), 641–668 (1975).
[Crossref]

A. Ben-Reuven, “Spectral line shapes in gases in the binary-collision approximation,” Adv. Chem. Phys. 33, 235–293 (1975).
[Crossref]

1973 (1)

E. W. Smith, J. Cooper, and L. J. Roszman, “An analysis of the unified and scalar additivity theories of spectral line broadening,” J. Quant. Spectrosc. Radiat. Transfer 13(12), 1523–1538 (1973).
[Crossref]

1965 (1)

A. W. Ali and H. R. Griem, “Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts,” Phys. Rev. 140(4A), A1044–A1049 (1965).
[Crossref]

1949 (1)

P. W. Anderson, “Pressure Broadening in the Mircrowave and Infra-Red Regions,” Phys. Rev. 76(5), 647–661 (1949).
[Crossref]

1943 (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15(1), 1–89 (1943).
[Crossref]

1939 (1)

G. W. King and J. H. van Vleck, “Dipole-Dipole Resonance Forces,” Phys. Rev. 55(12), 1165–1172 (1939).
[Crossref]

1932 (1)

V. Weisskopf, “Zur theorie der kopplungsbreite und der stoßdämpfung,” Eur. Phys. J. A 75(5-6), 287–301 (1932).
[Crossref]

Ahn, T.-K.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Ali, A. W.

A. W. Ali and H. R. Griem, “Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts,” Phys. Rev. 140(4A), A1044–A1049 (1965).
[Crossref]

Allen, J. R.

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Anderson, P. W.

P. W. Anderson, “Pressure Broadening in the Mircrowave and Infra-Red Regions,” Phys. Rev. 76(5), 647–661 (1949).
[Crossref]

Aspuru-Guzik, A.

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
[Crossref]

Autry, T. M.

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617 (2013).
[Crossref]

Bagnato, V. S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71(1), 1–85 (1999).
[Crossref]

Bangert, U.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

Barber, Z. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Baylis, W.

J. Szudy and W. Baylis, “Unified Franck-Condon treatment of pressure broadening of spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 15(7-8), 641–668 (1975).
[Crossref]

Beck, K. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Ben-Reuven, A.

A. Ben-Reuven, “Spectral line shapes in gases in the binary-collision approximation,” Adv. Chem. Phys. 33, 235–293 (1975).
[Crossref]

Bernien, H.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Binz, M.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

L. Bruder, M. Binz, and F. Stienkemeier, “Efficient isolation of multiphoton processes and detection of collective resonances in dilute samples,” Phys. Rev. A 92(5), 053412 (2015).
[Crossref]

Bishof, M.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

Blankenship, R. E.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Blatt, S.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Bloch, I.

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Boyd, M. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Boyd, R. W.

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991).
[Crossref]

Bristow, A. D.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

Bruder, L.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

L. Bruder, M. Binz, and F. Stienkemeier, “Efficient isolation of multiphoton processes and detection of collective resonances in dilute samples,” Phys. Rev. A 92(5), 053412 (2015).
[Crossref]

Calhoun, T. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Campbell, G. K.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15(1), 1–89 (1943).
[Crossref]

Chen, H.

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Chen, Y. A.

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Cheng, Y.-C.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Chiu, C. S.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Choi, S.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Cline, R. A.

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of ${\mathrm {rb}}_{2}$rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[Crossref]

Cooper, J.

E. W. Smith, J. Cooper, and L. J. Roszman, “An analysis of the unified and scalar additivity theories of spectral line broadening,” J. Quant. Spectrosc. Radiat. Transfer 13(12), 1523–1538 (1973).
[Crossref]

Cundiff, S.

V. Lorenz and S. Cundiff, “Non-Markovian Dynamics in a Dense Potassium Vapor,” Phys. Rev. Lett. 95(16), 163601 (2005).
[Crossref]

Cundiff, S. T.

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120(23), 233401 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357(6358), 1389–1391 (2017).
[Crossref]

F. Gao, S. T. Cundiff, and H. Li, “Probing dipole–dipole interaction in a rubidium gas via double-quantum 2D spectroscopy,” Opt. Lett. 41(13), 2954–2957 (2016).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617 (2013).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100(1), 013603 (2008).
[Crossref]

S. T. Cundiff, “Time domain observation of the Lorentz-local field,” Laser Phys. 12, 1073–1078 (2002).

Dai, X.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

de Miranda, M. H. G.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Demler, E.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Diddams, S. A.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Eden, J.

J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
[Crossref]

Eden, J. G.

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Eisert, J.

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Eisfeld, A.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

Eliel, E. R.

H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
[Crossref]

V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-Dipole Broadened Line Shape in a Partially Excited Dense Atomic Gas,” Phys. Rev. Lett. 77(16), 3327–3330 (1996).
[Crossref]

Endres, M.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Engel, G. S.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Falvo, C.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

Fleming, G. R.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Flesch, A.

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Foreman, S. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Fortier, T. M.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Gao, F.

Gao, J.

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Grant, E. R.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

Greif, D.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Greiner, M.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Griem, H. R.

A. W. Ali and H. R. Griem, “Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts,” Phys. Rev. 140(4A), A1044–A1049 (1965).
[Crossref]

Grusdt, F.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Heinzen, D. J.

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of ${\mathrm {rb}}_{2}$rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[Crossref]

Jakob, M.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

Ji, G.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Johansson, S.

A. Thorne, U. Litzén, S. Johansson, and U. Litzen, Spectrophysics: Principles and Applications (Springer, 1999).

Jones, K. M.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[Crossref]

Julienne, P. S.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[Crossref]

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71(1), 1–85 (1999).
[Crossref]

Kanász-Nagy, M.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Keesling, A.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

King, G. W.

G. W. King and J. H. van Vleck, “Dipole-Dipole Resonance Forces,” Phys. Rev. 55(12), 1165–1172 (1939).
[Crossref]

Kühn, O.

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149(11), 114107 (2018).
[Crossref]

Le Coq, Y.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Leegwater, J. A.

J. A. Leegwater and S. Mukamel, “Self-broadening and exciton line shifts in gases: Beyond the local-field approximation,” Phys. Rev. A 49(1), 146–155 (1994).
[Crossref]

Lemke, N. D.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Lett, P. D.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[Crossref]

Levine, H.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Lewis, E.

E. Lewis, “Collisional relaxation of atomic excited states, line broadening and interatomic interactions,” Phys. Rep. 58(1), 1–71 (1980).
[Crossref]

Li, H.

S. Yu, M. Titze, Y. Zhu, X. Liu, and H. Li, “Observation of scalable and deterministic multi-atom dicke states in an atomic vapor,” Opt. Lett. 44(11), 2795–2798 (2019).
[Crossref]

M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96(3), 032508 (2017).
[Crossref]

F. Gao, S. T. Cundiff, and H. Li, “Probing dipole–dipole interaction in a rubidium gas via double-quantum 2D spectroscopy,” Opt. Lett. 41(13), 2954–2957 (2016).
[Crossref]

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities,” J. Phys. B: At., Mol. Opt. Phys. 42(6), 065203 (2009).
[Crossref]

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Lin, Y.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

Litzen, U.

A. Thorne, U. Litzén, S. Johansson, and U. Litzen, Spectrophysics: Principles and Applications (Springer, 1999).

Litzén, U.

A. Thorne, U. Litzén, S. Johansson, and U. Litzen, Spectrophysics: Principles and Applications (Springer, 1999).

Liu, X.

Lomsadze, B.

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120(23), 233401 (2018).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357(6358), 1389–1391 (2017).
[Crossref]

Lorenz, V.

V. Lorenz and S. Cundiff, “Non-Markovian Dynamics in a Dense Potassium Vapor,” Phys. Rev. Lett. 95(16), 163601 (2005).
[Crossref]

Lorenz, V. O.

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100(1), 013603 (2008).
[Crossref]

Lott, G. A.

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

Lu, Z. H.

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Ludlow, A. D.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Lukin, M. D.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Maki, J. J.

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991).
[Crossref]

Malcuit, M. S.

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991).
[Crossref]

Malý, P.

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9(19), 5654–5659 (2018).
[Crossref]

Mancal, T.

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9(19), 5654–5659 (2018).
[Crossref]

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Marcus, A. H.

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

Martin, M. J.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Mazurenko, A.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

McCulloch, I. P.

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Miller, J. D.

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of ${\mathrm {rb}}_{2}$rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[Crossref]

Moody, G.

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

Mukamel, S.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100(1), 013603 (2008).
[Crossref]

J. A. Leegwater and S. Mukamel, “Self-broadening and exciton line shifts in gases: Beyond the local-field approximation,” Phys. Rev. A 49(1), 146–155 (1994).
[Crossref]

Nardin, G.

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617 (2013).
[Crossref]

Nesmeyanov, A. N.

A. N. Nesmeyanov, Vapor pressure curve of chemical elements (Elsevier, New York, 1963).

Oates, C. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Omran, A.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Parsons, M. F.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Perdomo-Ortiz, A.

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
[Crossref]

Pichler, H.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Poli, N.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Pullerits, T.

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149(11), 114107 (2018).
[Crossref]

Read, E. L.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

Rey, A. M.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

Ricconi, B.

J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
[Crossref]

Richter, M.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

Rostovtsev, Y.

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Rostovtsev, Y. V.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities,” J. Phys. B: At., Mol. Opt. Phys. 42(6), 065203 (2009).
[Crossref]

Roszman, L. J.

E. W. Smith, J. Cooper, and L. J. Roszman, “An analysis of the unified and scalar additivity theories of spectral line broadening,” J. Quant. Spectrosc. Radiat. Transfer 13(12), 1523–1538 (1973).
[Crossref]

Sarkisyan, D.

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Sautenkov, V.

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Sautenkov, V. A.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities,” J. Phys. B: At., Mol. Opt. Phys. 42(6), 065203 (2009).
[Crossref]

H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
[Crossref]

V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-Dipole Broadened Line Shape in a Partially Excited Dense Atomic Gas,” Phys. Rev. Lett. 77(16), 3327–3330 (1996).
[Crossref]

Schmidt, R.

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Schollwöck, U.

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Schröter, M.

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149(11), 114107 (2018).
[Crossref]

Schulz-Weiling, M.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

Schwartz, S.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Scully, M.

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Scully, M. O.

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities,” J. Phys. B: At., Mol. Opt. Phys. 42(6), 065203 (2009).
[Crossref]

Senin, A.

J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
[Crossref]

Senin, A. A.

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Shalagin, A. M.

H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
[Crossref]

Shen, F.

J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
[Crossref]

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Silverman, K. L.

Singh, R.

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

Sipe, J. E.

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991).
[Crossref]

Smith, E. W.

E. W. Smith, J. Cooper, and L. J. Roszman, “An analysis of the unified and scalar additivity theories of spectral line broadening,” J. Quant. Spectrosc. Radiat. Transfer 13(12), 1523–1538 (1973).
[Crossref]

Stalnaker, J. E.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Stienkemeier, F.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

L. Bruder, M. Binz, and F. Stienkemeier, “Efficient isolation of multiphoton processes and detection of collective resonances in dilute samples,” Phys. Rev. A 92(5), 053412 (2015).
[Crossref]

Swallows, M. D.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

Szudy, J.

J. Szudy and W. Baylis, “Unified Franck-Condon treatment of pressure broadening of spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 15(7-8), 641–668 (1975).
[Crossref]

Tekavec, P. F.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

Thomsen, J. W.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Thorne, A.

A. Thorne, U. Litzén, S. Johansson, and U. Litzen, Spectrophysics: Principles and Applications (Springer, 1999).

Tiesinga, E.

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[Crossref]

Titze, M.

Trotzky, S.

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Uhl, D.

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

van Kampen, H.

H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
[Crossref]

V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-Dipole Broadened Line Shape in a Partially Excited Dense Atomic Gas,” Phys. Rev. Lett. 77(16), 3327–3330 (1996).
[Crossref]

van Vleck, J. H.

G. W. King and J. H. van Vleck, “Dipole-Dipole Resonance Forces,” Phys. Rev. 55(12), 1165–1172 (1939).
[Crossref]

Varzhapetyan, T.

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Vuletic, V.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Weiner, J.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71(1), 1–85 (1999).
[Crossref]

Weisskopf, V.

V. Weisskopf, “Zur theorie der kopplungsbreite und der stoßdämpfung,” Eur. Phys. J. A 75(5-6), 287–301 (1932).
[Crossref]

Widom, J. R.

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
[Crossref]

Woerdman, J. P.

H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
[Crossref]

V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-Dipole Broadened Line Shape in a Partially Excited Dense Atomic Gas,” Phys. Rev. Lett. 77(16), 3327–3330 (1996).
[Crossref]

Xiao, Y.

J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
[Crossref]

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Ye, J.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Yu, S.

Zelevinsky, T.

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

Zhu, C. J.

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

Zhu, Y.

Zhuang, W.

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100(1), 013603 (2008).
[Crossref]

Zibrov, A. S.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

Zilio, S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71(1), 1–85 (1999).
[Crossref]

Adv. At., Mol., Opt. Phys. (1)

J. Eden, B. Ricconi, Y. Xiao, F. Shen, and A. Senin, “Interactions Between Thermal Ground or Excited Atoms in the Vapor Phase: Many-Body Dipole-Dipole Effects, Molecular Dissociation, and Photoassociation Probed By Laser Spectroscopy,” Adv. At., Mol., Opt. Phys. 56, 49–118 (2008).
[Crossref]

Adv. Chem. Phys. (1)

A. Ben-Reuven, “Spectral line shapes in gases in the binary-collision approximation,” Adv. Chem. Phys. 33, 235–293 (1975).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

H. Li, T. Varzhapetyan, V. Sautenkov, Y. Rostovtsev, H. Chen, D. Sarkisyan, and M. Scully, “Improvement of spectral resolution by using the excitation dependence of dipole-dipole interaction in a dense atomic gas,” Appl. Phys. B: Lasers Opt. 91(2), 229–231 (2008).
[Crossref]

Eur. Phys. J. A (1)

V. Weisskopf, “Zur theorie der kopplungsbreite und der stoßdämpfung,” Eur. Phys. J. A 75(5-6), 287–301 (1932).
[Crossref]

J. Appl. Phys. (1)

G. Nardin, T. M. Autry, G. Moody, R. Singh, H. Li, and S. T. Cundiff, “Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches,” J. Appl. Phys. 117(11), 112804 (2015).
[Crossref]

J. Chem. Phys. (2)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127(21), 214307 (2007).
[Crossref]

M. Schröter, T. Pullerits, and O. Kühn, “Using fluorescence detected two-dimensional spectroscopy to investigate initial exciton delocalization between coupled chromophores,” J. Chem. Phys. 149(11), 114107 (2018).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (1)

H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Excitation dependence of resonance line self-broadening at different atomic densities,” J. Phys. B: At., Mol. Opt. Phys. 42(6), 065203 (2009).
[Crossref]

J. Phys. Chem. B (1)

A. Perdomo-Ortiz, J. R. Widom, G. A. Lott, A. Aspuru-Guzik, and A. H. Marcus, “Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2d fluorescence spectroscopy,” J. Phys. Chem. B 116(35), 10757–10770 (2012).
[Crossref]

J. Phys. Chem. Lett. (1)

P. Malý and T. Mančal, “Signatures of exciton delocalization and exciton-exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy,” J. Phys. Chem. Lett. 9(19), 5654–5659 (2018).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

E. W. Smith, J. Cooper, and L. J. Roszman, “An analysis of the unified and scalar additivity theories of spectral line broadening,” J. Quant. Spectrosc. Radiat. Transfer 13(12), 1523–1538 (1973).
[Crossref]

J. Szudy and W. Baylis, “Unified Franck-Condon treatment of pressure broadening of spectral lines,” J. Quant. Spectrosc. Radiat. Transfer 15(7-8), 641–668 (1975).
[Crossref]

Laser Phys. (1)

S. T. Cundiff, “Time domain observation of the Lorentz-local field,” Laser Phys. 12, 1073–1078 (2002).

Nat. Phys. (1)

S. Trotzky, Y. A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8(4), 325–330 (2012).
[Crossref]

Nature (3)

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref]

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551(7682), 579–584 (2017).
[Crossref]

A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner, “A cold-atom Fermi-Hubbard antiferromagnet,” Nature 545(7655), 462–466 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

L. Bruder, A. Eisfeld, U. Bangert, M. Binz, M. Jakob, D. Uhl, M. Schulz-Weiling, E. R. Grant, and F. Stienkemeier, “Delocalized excitons and interaction effects in extremely dilute thermal ensembles,” Phys. Chem. Chem. Phys. 21(5), 2276–2282 (2019).
[Crossref]

Phys. Rep. (1)

E. Lewis, “Collisional relaxation of atomic excited states, line broadening and interatomic interactions,” Phys. Rep. 58(1), 1–71 (1980).
[Crossref]

Phys. Rev. (3)

A. W. Ali and H. R. Griem, “Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts,” Phys. Rev. 140(4A), A1044–A1049 (1965).
[Crossref]

P. W. Anderson, “Pressure Broadening in the Mircrowave and Infra-Red Regions,” Phys. Rev. 76(5), 647–661 (1949).
[Crossref]

G. W. King and J. H. van Vleck, “Dipole-Dipole Resonance Forces,” Phys. Rev. 55(12), 1165–1172 (1939).
[Crossref]

Phys. Rev. A (4)

H. van Kampen, V. A. Sautenkov, A. M. Shalagin, E. R. Eliel, and J. P. Woerdman, “Dipole-dipole collision-induced transport of resonance excitation in a high-density atomic vapor,” Phys. Rev. A 56(5), 3569–3575 (1997).
[Crossref]

L. Bruder, M. Binz, and F. Stienkemeier, “Efficient isolation of multiphoton processes and detection of collective resonances in dilute samples,” Phys. Rev. A 92(5), 053412 (2015).
[Crossref]

J. A. Leegwater and S. Mukamel, “Self-broadening and exciton line shifts in gases: Beyond the local-field approximation,” Phys. Rev. A 49(1), 146–155 (1994).
[Crossref]

M. Titze and H. Li, “Interpretation of optical three-dimensional coherent spectroscopy,” Phys. Rev. A 96(3), 032508 (2017).
[Crossref]

Phys. Rev. Lett. (8)

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of ${\mathrm {rb}}_{2}$rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[Crossref]

F. Shen, J. Gao, A. A. Senin, C. J. Zhu, J. R. Allen, Z. H. Lu, Y. Xiao, and J. G. Eden, “Many-Body Dipole-Dipole Interactions between Excited Rb Atoms Probed by Wave Packets and Parametric Four-Wave Mixing,” Phys. Rev. Lett. 99(14), 143201 (2007).
[Crossref]

J. J. Maki, M. S. Malcuit, J. E. Sipe, and R. W. Boyd, “Linear and nonlinear optical measurements of the Lorentz local field,” Phys. Rev. Lett. 67(8), 972–975 (1991).
[Crossref]

V. A. Sautenkov, H. van Kampen, E. R. Eliel, and J. P. Woerdman, “Dipole-Dipole Broadened Line Shape in a Partially Excited Dense Atomic Gas,” Phys. Rev. Lett. 77(16), 3327–3330 (1996).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency-comb based double-quantum two-dimensional spectrum identifies collective hyperfine resonances in atomic vapor induced by dipole-dipole interactions,” Phys. Rev. Lett. 120(23), 233401 (2018).
[Crossref]

V. Lorenz and S. Cundiff, “Non-Markovian Dynamics in a Dense Potassium Vapor,” Phys. Rev. Lett. 95(16), 163601 (2005).
[Crossref]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100(1), 013603 (2008).
[Crossref]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-Dimensional Double-Quantum Spectra Reveal Collective Resonances in an Atomic Vapor,” Phys. Rev. Lett. 108(19), 193201 (2012).
[Crossref]

Rev. Mod. Phys. (3)

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71(1), 1–85 (1999).
[Crossref]

K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[Crossref]

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15(1), 1–89 (1943).
[Crossref]

Science (3)

A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, and C. W. Oates, “Sr lattice clock at $1 \times 10^{-16}$1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock,” Science 319(5871), 1805–1808 (2008).
[Crossref]

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science 331(6020), 1043–1046 (2011).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science 357(6358), 1389–1391 (2017).
[Crossref]

Other (2)

A. Thorne, U. Litzén, S. Johansson, and U. Litzen, Spectrophysics: Principles and Applications (Springer, 1999).

A. N. Nesmeyanov, Vapor pressure curve of chemical elements (Elsevier, New York, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Experimental schematic. (b) Time ordering of the excitation pulse sequence. (c) Energy diagram of two two-level atoms. (d) Six of the twelve excitation pathways contributing to the double-quantum signal. Exchanging $s$ and $s'$ gives the other six.
Fig. 2.
Fig. 2. (a) Relevant energy levels of single (solid lines) and two (dashed lines) K atoms. Double-quantum 2D spectra of a K vapor at densities (b) $N=4.81\times 10^8$ cm$^{-3}$ and (c) $N=1.12\times 10^{10}$ cm$^{-3}$. (d) Relevant energy levels of single (solid lines) and two (dashed lines) Rb atoms. Double-quantum 2D spectra of a Rb vapor at densities (e) $N=8.40\times 10^9$ cm$^{-3}$ and (f) $N=2.29\times 10^{10}$ cm$^{-3}$. In all 2D spectra, the amplitude is plotted.
Fig. 3.
Fig. 3. (a) Simulated double-quantum 2D spectrum of Rb. The amplitude of the spectrum is plotted here. Comparison of slices taken from experimental and simulated 2D spectra along the directions denoted as (b) Slice 1, (c) Slice 2 and (d) Slice 3. The black dots are experimental data and the red lines are simulation.
Fig. 4.
Fig. 4. The extracted dephasing rates when different number of interacting atoms are accounted for. The black dots are the extracted values and the red line is an exponential fit.
Fig. 5.
Fig. 5. Sensitivity of detecting dipole-dipole interaction in atomic vapors by various techniques. Atomic density (solid lines) and mean interatomic separation (dashed lines) at different temperatures are shown for K (blue) and Rb (orange) vapors. The reported lowest density is marked with diamond for TFWM, triangle for selective reflection, pentagon for quantum beating, hexagon for MQC, star for boxcar 2DCS, and circle for collinear 2DCS.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V A B = 1 4 π ε 0 R 3 [ μ A μ B 3 ( μ A R ) ( μ B R ) R 2 ] ,
ρ s s , I ( 4 ) = i μ s g 2 e i k D r t e d t e Γ s s ( t e t ) E D δ ( t t 4 ) e i ω t i μ d s 2 e i k A r t d t e i ( ω s g i Γ s g ) ( t t ) E A δ ( t t 3 ) e i ω t i μ d g 2 e i k C r t d t e i ( ω d g i Γ d g ) ( t t ) E C δ ( t t 2 ) e i ω t i μ s g 2 e i k B r t d t e i ( ω s g i Γ s g ) ( t t ) E B δ ( t t 1 ) e i ω t ρ 00 ( 0 ) = μ s g 2 μ d s μ d g 16 4 e i ( k A + k B + k C k D ) r E A E B E C E D ρ 00 ( 0 ) Θ ( τ ) Θ ( T ) Θ ( t ) Θ ( t e ) e Γ s s t e e i ( ω s g ω ) t Γ s g t e i ( ω d g 2 ω ) T Γ d g T e i ( ω s g ω ) τ Γ s g τ ,
S I ( 4 ) ( ω t , ω T ) = S 0 μ s g 2 μ d s μ d g 1 ω T ω d g + i Γ d g × 1 ω t ω s g + i Γ s g ,
S ( 4 ) ( ω t , ω T ) = S 0 μ 10 2 μ 21 2 ω T ω 20 + i Γ 20 ( 1 ω t ω 10 + i Γ 10 1 ω t ω 21 + i Γ 21 ) + 4 S 0 μ 10 4 ω T ω d g + i Γ d g ( 1 ω t ω s g + i Γ s g 1 ω t ω d s + i Γ d s 1 ω t ω d s + i Γ d s + 1 ω t ω s g + i Γ s g ) ,
P ( r ) = 3 a ( r a ) 2 e ( r a ) 3 ,

Metrics