Abstract

This paper proposes and experimentally demonstrates an error-free secure key generation and distribution (SKGD) scheme in classical optical fiber link by exploiting Stokes parameters (SPs) of the state of polarization (SOP). Due to the unique birefringence distribution of the optical fiber channel, random but high-correlated SPs are shared between Alice and Bob. The dynamic SPs are also affected by the time-varying environmental factors, providing the source of randomness for the secret key extraction. As a proof of concept, key generation rate (KGR) of 213-bits/s is successfully demonstrated over 25-km standard single-mode fiber (SSMF). The error-free SKGD is realized in fiber channel using the information reconciliation (IR) technology, where Bose-Chaudhuri-Hocquenghem (BCH) codes are applied. Due to the channel uniqueness and the high-sensitivity to the initial SOP of optical signals, high-level security is provided by the proposed scheme, which is analyzed and verified against the possible fiber-tapping attacks. Moreover, the proposed SKGD scheme offers additional benefits such as simple structure, low cost, and suitablity for long-haul transmission.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Accelerated key generation and distribution using polarization scrambling in optical fiber

Adnan A. E. Hajomer, Liuming Zhang, Xuelin Yang, and Weisheng Hu
Opt. Express 27(24) 35761-35773 (2019)

Accelerated secure key distribution based on localized and asymmetric fiber interferometers

Chaoran Huang, Philip Y. Ma, Eric C. Blow, Prateek Mittal, and Paul R. Prucnal
Opt. Express 27(22) 32096-32110 (2019)

Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing

Chenpeng Xue, Ning Jiang, Kun Qiu, and Yunxin Lv
Opt. Express 23(11) 14510-14519 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection & prevention,” in IEEE MILCOM 2004. Military Communications Conference, (IEEE, 2004), pp. 711–716.
  2. N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
    [Crossref]
  3. D. Dahan and U. Mahlab, “Security threats and protection procedures for optical networks,” IET Optoelectron. 11(5), 186–200 (2017).
    [Crossref]
  4. A. A. E. Hajomer, X. Yang, and W. Hu, “Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON,” IEEE Photonics Technol. Lett. 29(6), 527–530 (2017).
    [Crossref]
  5. C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
    [Crossref]
  6. Z. Hu and C. Chan, “A 7-D hyperchaotic system-based encryption scheme for secure fast-OFDM-PON,” J. Lightwave Technol. 36(16), 3373–3381 (2018).
    [Crossref]
  7. B. Liu, L. Zhang, and X. Xin, “Enhanced secure 4-D modulation space optical multi-carrier system based on joint constellation and stokes vector scrambling,” Opt. Express 26(6), 6890–6898 (2018).
    [Crossref]
  8. J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman and Hall/CRC, 2014).
  9. Y. Wang, H. Zhang, and H. Wang, “Quantum polynomial-time fixed-point attack for RSA,” China Commun. 15(2), 25–32 (2018).
    [Crossref]
  10. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.
  11. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  12. U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
    [Crossref]
  13. R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography. I. Secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
    [Crossref]
  14. J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access 4, 614–626 (2016).
    [Crossref]
  15. M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
    [Crossref]
  16. S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
    [Crossref]
  17. Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity in secret key generation from multipath fading randomness,” IEEE Trans. Inf. Forensics Secur. 7(5), 1484–1497 (2012).
    [Crossref]
  18. S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, (Springer, 2011), paper DBLP.
  19. N. Wang, X. Song, J. Cheng, and V. C. M. Leung, “Enhancing the security of free-space optical communications with secret sharing and key agreement,” J. Opt. Commun. Netw. 6(12), 1072–1081 (2014).
    [Crossref]
  20. H. Endo, M. Fujiwara, M. Kitamura, O. Tsuzuki, T. Ito, R. Shimizu, M. Takeoka, and M. Sasaki, “Free space optical secret key agreement,” Opt. Express 26(18), 23305–23332 (2018).
    [Crossref]
  21. A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express 16(21), 16680–16690 (2008).
    [Crossref]
  22. K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
    [Crossref]
  23. N. Jiang, C. Xue, D. Liu, Y. Lv, and K. Qiu, “Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection,” Opt. Lett. 42(6), 1055–1058 (2017).
    [Crossref]
  24. T. Sasaki, I. Kakesu, Y. Mitsui, D. Rontani, A. Uchida, S. Sunada, K. Yoshimura, and M. Inubushi, “Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution,” Opt. Express 25(21), 26029–26044 (2017).
    [Crossref]
  25. K. Kravtsov, Z. Wang, W. Trappe, and P. R. Prucnal, “Physical layer secret key generation for fiber-optical networks,” Opt. Express 21(20), 23756–23771 (2013).
    [Crossref]
  26. I. U. Zaman, A. B. Lopez, M. A. A. Faruque, and O. Boyraz, “Physical layer cryptographic key generation by exploiting PMD of an optical fiber link,” J. Lightwave Technol. 36(24), 5903–5911 (2018).
    [Crossref]
  27. Y. Bromberg, B. Redding, S. M. Popoff, and H. Cao, “Remote key establishment by mode mixing in multimode fibres and optical reciprocity,” https://arxiv.org/abs/1506.07892 (2015).
  28. A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
    [Crossref]
  29. S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
    [Crossref]
  30. A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
    [Crossref]
  31. T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.
  32. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.
  33. U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels. II. Privacy amplification,” IEEE Trans. Inf. Theory 49(4), 839–851 (2003).
    [Crossref]
  34. T. R. Woliński, “Polarimetric optical fibers and sensors,” Prog. Opt. 40, 1–75 (2000).
    [Crossref]

2018 (8)

C. Zhang, W. Zhang, C. Chen, X. He, and K. Qiu, “Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding,” J. Lightwave Technol. 36(9), 1706–1712 (2018).
[Crossref]

Z. Hu and C. Chan, “A 7-D hyperchaotic system-based encryption scheme for secure fast-OFDM-PON,” J. Lightwave Technol. 36(16), 3373–3381 (2018).
[Crossref]

B. Liu, L. Zhang, and X. Xin, “Enhanced secure 4-D modulation space optical multi-carrier system based on joint constellation and stokes vector scrambling,” Opt. Express 26(6), 6890–6898 (2018).
[Crossref]

Y. Wang, H. Zhang, and H. Wang, “Quantum polynomial-time fixed-point attack for RSA,” China Commun. 15(2), 25–32 (2018).
[Crossref]

M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
[Crossref]

H. Endo, M. Fujiwara, M. Kitamura, O. Tsuzuki, T. Ito, R. Shimizu, M. Takeoka, and M. Sasaki, “Free space optical secret key agreement,” Opt. Express 26(18), 23305–23332 (2018).
[Crossref]

I. U. Zaman, A. B. Lopez, M. A. A. Faruque, and O. Boyraz, “Physical layer cryptographic key generation by exploiting PMD of an optical fiber link,” J. Lightwave Technol. 36(24), 5903–5911 (2018).
[Crossref]

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

2017 (5)

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

N. Jiang, C. Xue, D. Liu, Y. Lv, and K. Qiu, “Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection,” Opt. Lett. 42(6), 1055–1058 (2017).
[Crossref]

T. Sasaki, I. Kakesu, Y. Mitsui, D. Rontani, A. Uchida, S. Sunada, K. Yoshimura, and M. Inubushi, “Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution,” Opt. Express 25(21), 26029–26044 (2017).
[Crossref]

D. Dahan and U. Mahlab, “Security threats and protection procedures for optical networks,” IET Optoelectron. 11(5), 186–200 (2017).
[Crossref]

A. A. E. Hajomer, X. Yang, and W. Hu, “Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON,” IEEE Photonics Technol. Lett. 29(6), 527–530 (2017).
[Crossref]

2016 (2)

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
[Crossref]

J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access 4, 614–626 (2016).
[Crossref]

2014 (1)

2013 (2)

K. Kravtsov, Z. Wang, W. Trappe, and P. R. Prucnal, “Physical layer secret key generation for fiber-optical networks,” Opt. Express 21(20), 23756–23771 (2013).
[Crossref]

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

2012 (2)

Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity in secret key generation from multipath fading randomness,” IEEE Trans. Inf. Forensics Secur. 7(5), 1484–1497 (2012).
[Crossref]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

2008 (1)

2003 (1)

U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels. II. Privacy amplification,” IEEE Trans. Inf. Theory 49(4), 839–851 (2003).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2000 (1)

T. R. Woliński, “Polarimetric optical fibers and sensors,” Prog. Opt. 40, 1–75 (2000).
[Crossref]

1993 (2)

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
[Crossref]

R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography. I. Secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

1983 (1)

S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[Crossref]

Ahlswede, R.

R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography. I. Secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

Aida, H.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Al-Khateeb, H.

M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
[Crossref]

Banks, D.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Barker, E.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.

Bottarelli, M.

M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
[Crossref]

Boyraz, O.

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.

Bromberg, Y.

Y. Bromberg, B. Redding, S. M. Popoff, and H. Cao, “Remote key establishment by mode mixing in multimode fibres and optical reciprocity,” https://arxiv.org/abs/1506.07892 (2015).

Cao, H.

Y. Bromberg, B. Redding, S. M. Popoff, and H. Cao, “Remote key establishment by mode mixing in multimode fibres and optical reciprocity,” https://arxiv.org/abs/1506.07892 (2015).

Carnicer, A.

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

Chan, C.

Chen, C.

Cheng, J.

Clark, M.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Croft, J.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Csiszar, I.

R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography. I. Secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

Dahan, D.

D. Dahan and U. Mahlab, “Security threats and protection procedures for optical networks,” IET Optoelectron. 11(5), 186–200 (2017).
[Crossref]

Davis, P.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Draper, S. C.

Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity in secret key generation from multipath fading randomness,” IEEE Trans. Inf. Forensics Secur. 7(5), 1484–1497 (2012).
[Crossref]

Dray, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Duong, T. Q.

J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access 4, 614–626 (2016).
[Crossref]

Endo, H.

Epiphaniou, G.

M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
[Crossref]

Faruque, M. A. A.

Fujiwara, M.

Furdek, M.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Gowda, P. L.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Gray, S.

K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection & prevention,” in IEEE MILCOM 2004. Military Communications Conference, (IEEE, 2004), pp. 711–716.

Hajomer, A. A. E.

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

A. A. E. Hajomer, X. Yang, and W. Hu, “Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON,” IEEE Photonics Technol. Lett. 29(6), 527–530 (2017).
[Crossref]

Harayama, T.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

He, X.

Heckert, A.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Hu, W.

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

A. A. E. Hajomer, X. Yang, and W. Hu, “Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON,” IEEE Photonics Technol. Lett. 29(6), 527–530 (2017).
[Crossref]

Hu, Z.

Inubushi, M.

Ismail, D. K. B.

M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
[Crossref]

Ito, T.

Jana, S.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Javidi, B.

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

Jiang, N.

Kakesu, I.

Karadimas, P.

M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
[Crossref]

Kasera, S. K.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Katz, J.

J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman and Hall/CRC, 2014).

Keattisak, S.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

Kitamura, M.

Kravtsov, K.

Krishnamurthy, S. V.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Leigh, S.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Leung, V. C. M.

Levenson, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Lindell, Y.

J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman and Hall/CRC, 2014).

Liu, B.

Liu, D.

Liu, Y.

Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity in secret key generation from multipath fading randomness,” IEEE Trans. Inf. Forensics Secur. 7(5), 1484–1497 (2012).
[Crossref]

Lopez, A. B.

Lv, Y.

Mahlab, U.

D. Dahan and U. Mahlab, “Security threats and protection procedures for optical networks,” IET Optoelectron. 11(5), 186–200 (2017).
[Crossref]

Mandayam, N.

S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, (Springer, 2011), paper DBLP.

Marshall, A.

J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access 4, 614–626 (2016).
[Crossref]

Mathur, S.

S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, (Springer, 2011), paper DBLP.

Maurer, U.

U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels. II. Privacy amplification,” IEEE Trans. Inf. Theory 49(4), 839–851 (2003).
[Crossref]

Maurer, U. M.

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
[Crossref]

Miller, R.

S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, (Springer, 2011), paper DBLP.

Mitsui, Y.

Morikatsu, S.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Muramatsu, J.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Nechvatal, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Okumura, H.

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Ornlarp, S.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

Patwari, N.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Popoff, S. M.

Y. Bromberg, B. Redding, S. M. Popoff, and H. Cao, “Remote key establishment by mode mixing in multimode fibres and optical reciprocity,” https://arxiv.org/abs/1506.07892 (2015).

Premnath, S. N.

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

Prucnal, P. R.

Qiu, K.

Rashleigh, S.

S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[Crossref]

Redding, B.

Y. Bromberg, B. Redding, S. M. Popoff, and H. Cao, “Remote key establishment by mode mixing in multimode fibres and optical reciprocity,” https://arxiv.org/abs/1506.07892 (2015).

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Rontani, D.

Rukhin, A.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Sasaki, M.

Sasaki, T.

Sayeed, A. M.

Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity in secret key generation from multipath fading randomness,” IEEE Trans. Inf. Forensics Secur. 7(5), 1484–1497 (2012).
[Crossref]

Scheuer, J.

Sendowski, J.

Shaneman, K.

K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection & prevention,” in IEEE MILCOM 2004. Military Communications Conference, (IEEE, 2004), pp. 711–716.

Shimizu, R.

Skorin-Kapov, N.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
[Crossref]

Smid, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Song, X.

Soto, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Sultan, A.

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

Sunada, S.

Takeoka, M.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Trappe, W.

K. Kravtsov, Z. Wang, W. Trappe, and P. R. Prucnal, “Physical layer secret key generation for fiber-optical networks,” Opt. Express 21(20), 23756–23771 (2013).
[Crossref]

S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, (Springer, 2011), paper DBLP.

Tsuzuki, O.

Uchida, A.

T. Sasaki, I. Kakesu, Y. Mitsui, D. Rontani, A. Uchida, S. Sunada, K. Yoshimura, and M. Inubushi, “Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution,” Opt. Express 25(21), 26029–26044 (2017).
[Crossref]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Vangel, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Varshavsky, A.

S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, (Springer, 2011), paper DBLP.

Vo, S.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Wang, H.

Y. Wang, H. Zhang, and H. Wang, “Quantum polynomial-time fixed-point attack for RSA,” China Commun. 15(2), 25–32 (2018).
[Crossref]

Wang, N.

Wang, Y.

Y. Wang, H. Zhang, and H. Wang, “Quantum polynomial-time fixed-point attack for RSA,” China Commun. 15(2), 25–32 (2018).
[Crossref]

Wang, Z.

Wolf, S.

U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels. II. Privacy amplification,” IEEE Trans. Inf. Theory 49(4), 839–851 (2003).
[Crossref]

Wolinski, T. R.

T. R. Woliński, “Polarimetric optical fibers and sensors,” Prog. Opt. 40, 1–75 (2000).
[Crossref]

Woods, R.

J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access 4, 614–626 (2016).
[Crossref]

Wosinska, L.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
[Crossref]

Wuthigorn, T.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

Xin, X.

Xue, C.

Yang, X.

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

A. A. E. Hajomer, X. Yang, and W. Hu, “Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON,” IEEE Photonics Technol. Lett. 29(6), 527–530 (2017).
[Crossref]

Yariv, A.

Yoshimura, K.

T. Sasaki, I. Kakesu, Y. Mitsui, D. Rontani, A. Uchida, S. Sunada, K. Yoshimura, and M. Inubushi, “Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution,” Opt. Express 25(21), 26029–26044 (2017).
[Crossref]

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Zadok, A.

Zaman, I. U.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zhang, C.

Zhang, H.

Y. Wang, H. Zhang, and H. Wang, “Quantum polynomial-time fixed-point attack for RSA,” China Commun. 15(2), 25–32 (2018).
[Crossref]

Zhang, J.

J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access 4, 614–626 (2016).
[Crossref]

Zhang, L.

Zhang, W.

Zsigmond, S.

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
[Crossref]

Adv. Opt. Photonics (1)

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

China Commun. (1)

Y. Wang, H. Zhang, and H. Wang, “Quantum polynomial-time fixed-point attack for RSA,” China Commun. 15(2), 25–32 (2018).
[Crossref]

Comput. Secur. (1)

M. Bottarelli, G. Epiphaniou, D. K. B. Ismail, P. Karadimas, and H. Al-Khateeb, “Physical characteristics of wireless communication channels for secret key establishment: a survey of the research,” Comput. Secur. 78, 454–476 (2018).
[Crossref]

IEEE Access (1)

J. Zhang, T. Q. Duong, A. Marshall, and R. Woods, “Key generation from wireless channels: a review,” IEEE Access 4, 614–626 (2016).
[Crossref]

IEEE Commun. Mag. (1)

N. Skorin-Kapov, M. Furdek, S. Zsigmond, and L. Wosinska, “Physical-layer security in evolving optical networks,” IEEE Commun. Mag. 54(8), 110–117 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. A. E. Hajomer, X. Yang, and W. Hu, “Chaotic Walsh–Hadamard transform for physical layer security in OFDM-PON,” IEEE Photonics Technol. Lett. 29(6), 527–530 (2017).
[Crossref]

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

IEEE Trans. Inf. Forensics Secur. (1)

Y. Liu, S. C. Draper, and A. M. Sayeed, “Exploiting channel diversity in secret key generation from multipath fading randomness,” IEEE Trans. Inf. Forensics Secur. 7(5), 1484–1497 (2012).
[Crossref]

IEEE Trans. Inf. Theory (3)

U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory 39(3), 733–742 (1993).
[Crossref]

R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography. I. Secret sharing,” IEEE Trans. Inf. Theory 39(4), 1121–1132 (1993).
[Crossref]

U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels. II. Privacy amplification,” IEEE Trans. Inf. Theory 49(4), 839–851 (2003).
[Crossref]

IEEE Trans. Mobile Comput. (1)

S. N. Premnath, S. Jana, J. Croft, P. L. Gowda, M. Clark, S. K. Kasera, N. Patwari, and S. V. Krishnamurthy, “Secret key extraction from wireless signal strength in real environments,” IEEE Trans. Mobile Comput. 12(5), 917–930 (2013).
[Crossref]

IET Optoelectron. (1)

D. Dahan and U. Mahlab, “Security threats and protection procedures for optical networks,” IET Optoelectron. 11(5), 186–200 (2017).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

K. Yoshimura, J. Muramatsu, P. Davis, T. Harayama, H. Okumura, S. Morikatsu, H. Aida, and A. Uchida, “Secure key distribution using correlated randomness in lasers driven by common random light,” Phys. Rev. Lett. 108(7), 070602 (2012).
[Crossref]

Prog. Opt. (1)

T. R. Woliński, “Polarimetric optical fibers and sensors,” Prog. Opt. 40, 1–75 (2000).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Other (7)

K. Shaneman and S. Gray, “Optical network security: technical analysis of fiber tapping mechanisms and methods for detection & prevention,” in IEEE MILCOM 2004. Military Communications Conference, (IEEE, 2004), pp. 711–716.

S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, Maryland, USA, (Springer, 2011), paper DBLP.

J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman and Hall/CRC, 2014).

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, 1984), pp. 175–179.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Y. Bromberg, B. Redding, S. M. Popoff, and H. Cao, “Remote key establishment by mode mixing in multimode fibres and optical reciprocity,” https://arxiv.org/abs/1506.07892 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of the proposed SKGD scheme. PL: Polarized Light.
Fig. 2.
Fig. 2. Evolution of SOP and its corresponding paremeter S2 with respect to the length of SSMF.
Fig. 3.
Fig. 3. Experimental setup of the proposed SKGD scheme. PC: Polarization Controller; PA: Polarization Analyzer; OC: Optical Coupler.
Fig. 4.
Fig. 4. Recorded SOP trajectories on Poincare sphere and waveforms of parameter S2 by Alice and Bob. (a). SOP trajectory of Alice; (b). Waveforms of S2 of Alice and Bob; (c). SOP trajectory of Bob.
Fig. 5.
Fig. 5. Frequency spectra of the measured S2 by (a). Alice; (b). Bob.
Fig. 6.
Fig. 6. Cross-correlation and auto-correlation functions of the waveforms of S2 obtained by Alice and Bob.
Fig. 7.
Fig. 7. Variation of KGR and KER versus the scalar $\varepsilon$.
Fig. 8.
Fig. 8. Measured SPs by Bob and Eve. (a). S2; (b). S1; (c). Cross-correlation functions of S1 and S2.
Fig. 9.
Fig. 9. Variation of KER with respect to the mismatched fiber length.

Tables (2)

Tables Icon

Table 1. Results of the 15 NIST-sub-tests.

Tables Icon

Table 2. Comparison of KGR in recent schemes for optical fiber channel.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ S 0 = E x 0 2 + E y 0 2 S 1 = E x 0 2 E y 0 2 S 2 = 2 E x 0 E y 0 cos φ S 3 = 2 E x 0 E y 0 sin φ
φ = ( β x β y ) L
S o u t = M S i n
T d = arg min t ( | y ( t ) y ( t ) | )
Q ( y ) = { 1 i f M ( y ) > q + 0 i f M ( y ) < q q ± = m e a n ± ε × v a r i a n c e

Metrics