Abstract

Injecting radio frequency (RF) white noise to the current driving of the laser can broaden the laser emission linewidth and efficiently suppress cavity-mode noise in off-axis integrated cavity output spectroscopy (OA-ICOS). The effect of the injected RF noise level on the cavity-mode noise and the deformation of the absorption line shape in off-axis integrated cavity output spectroscopy (OA-ICOS) with a distributed feedback laser (DFB) at 1.65 µm were investigated. We measured methane at different concentrations between 0.1 ppmv and 2 ppmv associated with a −20 dBm RF noise injection. A linear spectral response of the intensity of the cavity output spectra with the CH4 concentration was observed. A threefold improvement in the detection limit was achieved compared to unperturbed OA-ICOS. The response time of the improved OA-ICOS system is about 30 s and the minimum detectable concentration (MDC) of CH4 is 7.6 ppbv, which corresponds to a minimum detectable fractional absorption scaled to the path length of 7.3 × 10−10 cm−1. The noise equivalent absorption sensitivity of the system is 5.51 × 10−9 cm−1Hz-1/2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity enhancement in off-axis integrated cavity output spectroscopy

R. Centeno, J. Mandon, S. M. Cristescu, and F. J. M. Harren
Opt. Express 22(23) 27985-27991 (2014)

High-sensitivity off-axis integrated cavity output spectroscopy implementing wavelength modulation and white noise perturbation

Jingjing Wang, Xing Tian, Yang Dong, Jiajin Chen, Tu Tan, Gongdong Zhu, Weidong Chen, and Xiaoming Gao
Opt. Lett. 44(13) 3298-3301 (2019)

Experimental-based comparison between off-axis integrated cavity output spectroscopy and multipass-assisted wavelength modulation spectroscopy at 7.7 µm

Faisal Nadeem, Julien Mandon, Simona M. Cristescu, Amir Khodabakhsh, and Frans J. M. Harren
OSA Continuum 2(9) 2667-2682 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Fukasawa, S. Hozumi, M. Morita, T. Oketani, and M. Masson, “Dissolved methane sensor for methane leakage Monitoring in methane hydrate production,” in OCEANS 2006 (IEEE, 2006), pp. 1–6.
  2. T. Fukasawa, T. Oketani, M. Masson, J. Groneman, Y. Hara, M. Hayashi, “Optimized METS Sensor for Methane Leakage Monitoring,” in OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean (IEEE, 2008), pp, 1–8.
  3. C. Boulart, M. C. Mowlem, D. P. Connelly, J. P. Dutasta, and C. R. German, “A novel, low-cost, high performance dissolved methane sensor for aqueous environments,” Opt. Express 16(17), 12607–12617 (2008).
    [Crossref] [PubMed]
  4. X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
    [Crossref]
  5. U. Tsunogai, S. Kou, H. Kimoto, and T. Kimoto, “Development of in-situ methane sensor in seawater,” in 51th Annual Meeting of the Geochemical Society of Japan, 23 February 2007.
  6. S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
    [Crossref] [PubMed]
  7. S. D. Wankel, M. Gupta, J. Leen, R. A. Provencal, V. Parsotam, and P. R. Girguis, “In Situ Stable Isotopic Detection of Anaerobic Oxidation of Methane in Monterey Bay Cold Seeps Via Off-Axis Integrated Cavity Output Spectroscopy,” American Geophysical Union, Fall Meeting 2010, December2010.
  8. P. M. Michel, S. D. Wankel, J. Kapit, P. R. Girguis, M. Gupta, “Advancing a deep sea near-infrared laser spectrometer for dual isotope measurements,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu4J.6.
  9. R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
    [Crossref] [PubMed]
  10. R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
    [Crossref] [PubMed]
  11. G. Gagliardi, and H. P. Loock. Cavity-Enhanced Spectroscopy and Sensing (Springer 2014).
  12. F. Nadeem, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Intensity enhancement in off-axis integrated cavity output spectroscopy,” Appl. Opt. 57(29), 8536–8542 (2018).
    [Crossref] [PubMed]
  13. D. S. Baer, J. B. Paul, M. Gupta, and A. O’keefe, “Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
    [Crossref]
  14. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
    [Crossref] [PubMed]
  15. P. W. Heo and I. S. Park, “Separation Characteristics of Dissolved Gases from Water Using a Polypropylene Hollow Fiber Membrane Module with High Surface Area,” Internat. Scholarly Sci. Res. Innov. 8(7), 1295–1298 (2014).
  16. M. Aleksanyan, “Methane sensor based on SnO2 /In2O3 TiO2 nanostrucure,” J. Contemp. Phys. 45(2), 77–80 (2010).
    [Crossref]
  17. X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
    [Crossref]
  18. J. J. S. O’Keefe and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
    [Crossref]
  19. J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
    [Crossref]
  20. L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
    [Crossref] [PubMed]
  21. G. S. Engel, E. J. Moyer, F. N. Keutsch, and J. G. Anderson, “Innovations in cavity enhanced laser absorption spectroscopy: using in situ measurements to probe the mechanisms driving climate change,” in NASA Earth Science Technology Conference (ESTC) Proceedings, College Park, Maryland (2001).
  22. L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P. A. Robbins, and G. A. D. Ritchie, “RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy,” Opt. Express 22(14), 17030–17038 (2014).
    [Crossref] [PubMed]
  23. K. M. Manfred, J. M. R. Kirkbride, L. Ciaffoni, R. Peverall, and G. A. D. Ritchie, “Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation,” Opt. Lett. 39(24), 6811–6814 (2014).
    [Crossref] [PubMed]
  24. J. Wang, X. Tian, Y. Dong, J. Chen, T. Tan, G. Zhu, W. Chen, and X. Gao, “High-sensitivity off-axis integrated cavity output spectroscopy implementing wavelength modulation and white noise perturbation,” Opt. Lett. 44(13), 3298–3301 (2019).
    [Crossref] [PubMed]
  25. H. Zhao, G. S. Wang, T. D. Cai, and X. M. Gao, “Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide,” Guangpuxue Yu Guangpu Fenxi 32(1), 41–45 (2012).
    [PubMed]
  26. V. L. Kasyutich, P. A. Martin, and R. J. Holdsworth, “An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the 12CO2 / 13CO2 measurement,” Appl. Phys. B 85(2-3), 413–420 (2006).
    [Crossref]
  27. C. K. Laue, R. Knappe, K.-J. Boller, and R. Wallenstein, “Wavelength tuning and spectral properties of distributed feedback diode lasers with a short external optical cavity,” Appl. Opt. 40(18), 3051–3059 (2001).
    [Crossref] [PubMed]
  28. P. Yalin, “Laser lineshape effects on cavity-enhanced absorption spectroscopy signals,” Appl. Phys. B 78(3-4), 477–483 (2004).
    [Crossref]
  29. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
    [Crossref]

2019 (2)

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

J. Wang, X. Tian, Y. Dong, J. Chen, T. Tan, G. Zhu, W. Chen, and X. Gao, “High-sensitivity off-axis integrated cavity output spectroscopy implementing wavelength modulation and white noise perturbation,” Opt. Lett. 44(13), 3298–3301 (2019).
[Crossref] [PubMed]

2018 (2)

F. Nadeem, J. Mandon, S. M. Cristescu, and F. J. M. Harren, “Intensity enhancement in off-axis integrated cavity output spectroscopy,” Appl. Opt. 57(29), 8536–8542 (2018).
[Crossref] [PubMed]

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

2014 (4)

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

P. W. Heo and I. S. Park, “Separation Characteristics of Dissolved Gases from Water Using a Polypropylene Hollow Fiber Membrane Module with High Surface Area,” Internat. Scholarly Sci. Res. Innov. 8(7), 1295–1298 (2014).

L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P. A. Robbins, and G. A. D. Ritchie, “RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy,” Opt. Express 22(14), 17030–17038 (2014).
[Crossref] [PubMed]

K. M. Manfred, J. M. R. Kirkbride, L. Ciaffoni, R. Peverall, and G. A. D. Ritchie, “Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation,” Opt. Lett. 39(24), 6811–6814 (2014).
[Crossref] [PubMed]

2013 (3)

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
[Crossref]

L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
[Crossref] [PubMed]

2012 (1)

H. Zhao, G. S. Wang, T. D. Cai, and X. M. Gao, “Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide,” Guangpuxue Yu Guangpu Fenxi 32(1), 41–45 (2012).
[PubMed]

2011 (1)

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

2010 (1)

M. Aleksanyan, “Methane sensor based on SnO2 /In2O3 TiO2 nanostrucure,” J. Contemp. Phys. 45(2), 77–80 (2010).
[Crossref]

2008 (2)

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

C. Boulart, M. C. Mowlem, D. P. Connelly, J. P. Dutasta, and C. R. German, “A novel, low-cost, high performance dissolved methane sensor for aqueous environments,” Opt. Express 16(17), 12607–12617 (2008).
[Crossref] [PubMed]

2006 (1)

V. L. Kasyutich, P. A. Martin, and R. J. Holdsworth, “An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the 12CO2 / 13CO2 measurement,” Appl. Phys. B 85(2-3), 413–420 (2006).
[Crossref]

2004 (2)

2002 (1)

D. S. Baer, J. B. Paul, M. Gupta, and A. O’keefe, “Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

2001 (1)

1999 (1)

J. J. S. O’Keefe and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Aleksanyan, M.

M. Aleksanyan, “Methane sensor based on SnO2 /In2O3 TiO2 nanostrucure,” J. Contemp. Phys. 45(2), 77–80 (2010).
[Crossref]

Allen, N. T.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Anderson, J. G.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

G. S. Engel, E. J. Moyer, F. N. Keutsch, and J. G. Anderson, “Innovations in cavity enhanced laser absorption spectroscopy: using in situ measurements to probe the mechanisms driving climate change,” in NASA Earth Science Technology Conference (ESTC) Proceedings, College Park, Maryland (2001).

Anthony, K. W.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Baer, D.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Baer, D. S.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’keefe, “Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

Bakhirkin, Y. A.

Boller, K.-J.

Boulart, C.

Brewer, P. G.

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

Cai, T. D.

H. Zhao, G. S. Wang, T. D. Cai, and X. M. Gao, “Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide,” Guangpuxue Yu Guangpu Fenxi 32(1), 41–45 (2012).
[PubMed]

Calzas, M.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Chao, X.

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Chappellaz, J.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Chen, J.

Chen, W.

Ciaffoni, L.

Clair, J. M. S. T.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Connelly, D. P.

Couper, J.

Cristescu, S. M.

Curl, R. F.

Desbois, T.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Dong, Y.

Dutasta, J. P.

Engel, G. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

G. S. Engel, E. J. Moyer, F. N. Keutsch, and J. G. Anderson, “Innovations in cavity enhanced laser absorption spectroscopy: using in situ measurements to probe the mechanisms driving climate change,” in NASA Earth Science Technology Conference (ESTC) Proceedings, College Park, Maryland (2001).

Fahrland, A.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

Ferré, B.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Gao, X.

Gao, X. M.

H. Zhao, G. S. Wang, T. D. Cai, and X. M. Gao, “Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide,” Guangpuxue Yu Guangpu Fenxi 32(1), 41–45 (2012).
[PubMed]

Gerardo-Nieto, O.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

German, C. R.

Girguis, P. R.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

Gonzalez-Valencia, R.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Grilli, R.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Guillerm, C.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Gupta, M.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’keefe, “Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

Hancock, G.

L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P. A. Robbins, and G. A. D. Ritchie, “RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy,” Opt. Express 22(14), 17030–17038 (2014).
[Crossref] [PubMed]

L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
[Crossref] [PubMed]

Hanson, R. K.

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Harren, F. J. M.

Harrison, J. J.

L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
[Crossref] [PubMed]

Heo, P. W.

P. W. Heo and I. S. Park, “Separation Characteristics of Dissolved Gases from Water Using a Polypropylene Hollow Fiber Membrane Module with High Surface Area,” Internat. Scholarly Sci. Res. Innov. 8(7), 1295–1298 (2014).

Hester, K. C.

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

Holdsworth, R. J.

V. L. Kasyutich, P. A. Martin, and R. J. Holdsworth, “An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the 12CO2 / 13CO2 measurement,” Appl. Phys. B 85(2-3), 413–420 (2006).
[Crossref]

Huang, Y. W.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

Jansson, P.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Kasyutich, V. L.

V. L. Kasyutich, P. A. Martin, and R. J. Holdsworth, “An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the 12CO2 / 13CO2 measurement,” Appl. Phys. B 85(2-3), 413–420 (2006).
[Crossref]

Keutsch, F. N.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

G. S. Engel, E. J. Moyer, F. N. Keutsch, and J. G. Anderson, “Innovations in cavity enhanced laser absorption spectroscopy: using in situ measurements to probe the mechanisms driving climate change,” in NASA Earth Science Technology Conference (ESTC) Proceedings, College Park, Maryland (2001).

Kimoto, H.

U. Tsunogai, S. Kou, H. Kimoto, and T. Kimoto, “Development of in-situ methane sensor in seawater,” in 51th Annual Meeting of the Geochemical Society of Japan, 23 February 2007.

Kimoto, T.

U. Tsunogai, S. Kou, H. Kimoto, and T. Kimoto, “Development of in-situ methane sensor in seawater,” in 51th Annual Meeting of the Geochemical Society of Japan, 23 February 2007.

Kirkbride, J. M. R.

Knappe, R.

Kosterev, A. A.

Kou, S.

U. Tsunogai, S. Kou, H. Kimoto, and T. Kimoto, “Development of in-situ methane sensor in seawater,” in 51th Annual Meeting of the Geochemical Society of Japan, 23 February 2007.

Kroll, J. H.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Lang, N.

J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
[Crossref]

Langley, C. E.

L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
[Crossref] [PubMed]

Laue, C. K.

Lechevallier, L.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Ledoux, V.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Leen, J. B.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

Macherius, U.

J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
[Crossref]

Magana-Rodriguez, F.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Mandon, J.

Manfred, K. M.

Martin, P. A.

V. L. Kasyutich, P. A. Martin, and R. J. Holdsworth, “An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the 12CO2 / 13CO2 measurement,” Appl. Phys. B 85(2-3), 413–420 (2006).
[Crossref]

Martinez-Cruz, K.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Meng, Q.

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Mowlem, M. C.

Moyer, E. J.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

G. S. Engel, E. J. Moyer, F. N. Keutsch, and J. G. Anderson, “Innovations in cavity enhanced laser absorption spectroscopy: using in situ measurements to probe the mechanisms driving climate change,” in NASA Earth Science Technology Conference (ESTC) Proceedings, College Park, Maryland (2001).

Nadeem, F.

O’keefe, A.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’keefe, “Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

O’Keefe, J. J. S.

J. J. S. O’Keefe and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Park, I. S.

P. W. Heo and I. S. Park, “Separation Characteristics of Dissolved Gases from Water Using a Polypropylene Hollow Fiber Membrane Module with High Surface Area,” Internat. Scholarly Sci. Res. Innov. 8(7), 1295–1298 (2014).

Paul, J. B.

D. S. Baer, J. B. Paul, M. Gupta, and A. O’keefe, “Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

J. J. S. O’Keefe and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Peltzer, E. T.

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

Peverall, R.

Provencal, R.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

Ritchie, G. A. D.

Robbins, P. A.

Roller, C.

Romanini, D.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Röpcke, J.

J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
[Crossref]

Sayres, D. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

Sepulveda-Jauregui, A.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Shen, G.

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Sun, K.

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Tan, T.

Thalasso, F.

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Tian, X.

Tittel, F. K.

Triest, J.

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

Tsunogai, U.

U. Tsunogai, S. Kou, H. Kimoto, and T. Kimoto, “Development of in-situ methane sensor in seawater,” in 51th Annual Meeting of the Geochemical Society of Japan, 23 February 2007.

Ussler, W.

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

van Helden, J. H.

J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
[Crossref]

van Helden, J. P.

L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
[Crossref] [PubMed]

Vidoudez, C.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

Wallenstein, R.

Walz, P. M.

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

Wang, G. S.

H. Zhao, G. S. Wang, T. D. Cai, and X. M. Gao, “Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide,” Guangpuxue Yu Guangpu Fenxi 32(1), 41–45 (2012).
[PubMed]

Wang, J.

Wang, S.

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Wang, Z.

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Wankel, S. D.

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

Wood, S.

L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
[Crossref] [PubMed]

Yalin, P.

P. Yalin, “Laser lineshape effects on cavity-enhanced absorption spectroscopy signals,” Appl. Phys. B 78(3-4), 477–483 (2004).
[Crossref]

Zhang, X.

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

Zhao, H.

H. Zhao, G. S. Wang, T. D. Cai, and X. M. Gao, “Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide,” Guangpuxue Yu Guangpu Fenxi 32(1), 41–45 (2012).
[PubMed]

Zhu, G.

Zimmermann, H.

J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
[Crossref]

Anal. Chem. (1)

L. Ciaffoni, G. Hancock, J. J. Harrison, J. P. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, “Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection,” Anal. Chem. 85(2), 846–850 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (4)

V. L. Kasyutich, P. A. Martin, and R. J. Holdsworth, “An off-axis cavity-enhanced absorption spectrometer at 1605 nm for the 12CO2 / 13CO2 measurement,” Appl. Phys. B 85(2-3), 413–420 (2006).
[Crossref]

P. Yalin, “Laser lineshape effects on cavity-enhanced absorption spectroscopy signals,” Appl. Phys. B 78(3-4), 477–483 (2004).
[Crossref]

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. S. T. Clair, F. N. Keutsch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467–474 (2008).
[Crossref]

D. S. Baer, J. B. Paul, M. Gupta, and A. O’keefe, “Sensitive absorption measurements in the near infrared region using off-axis integrated-cavity output spectroscopy,” Appl. Phys. B 75(2-3), 261–265 (2002).
[Crossref]

Appl. Phys. Lett. (1)

J. H. van Helden, N. Lang, U. Macherius, H. Zimmermann, and J. Röpcke, “Sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external-cavity quantum cascade laser,” Appl. Phys. Lett. 103(13), 131114 (2013).
[Crossref]

Chem. Phys. Lett. (1)

J. J. S. O’Keefe and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307(5-6), 343–349 (1999).
[Crossref]

Environ. Sci. Technol. (3)

S. D. Wankel, Y. W. Huang, M. Gupta, R. Provencal, J. B. Leen, A. Fahrland, C. Vidoudez, and P. R. Girguis, “Characterizing the Distribution of Methane Sources and Cycling in the Deep Sea via in Situ Stable Isotope Analysis,” Environ. Sci. Technol. 47(3), 1478–1486 (2013).
[Crossref] [PubMed]

R. Grilli, J. Triest, J. Chappellaz, M. Calzas, T. Desbois, P. Jansson, C. Guillerm, B. Ferré, L. Lechevallier, V. Ledoux, and D. Romanini, “Sub-ocean: subsea dissolved methane measurements using an embedded laser spectrometer technology,” Environ. Sci. Technol. 52(18), 10543–10551 (2018).
[Crossref] [PubMed]

R. Gonzalez-Valencia, F. Magana-Rodriguez, O. Gerardo-Nieto, A. Sepulveda-Jauregui, K. Martinez-Cruz, K. W. Anthony, D. Baer, and F. Thalasso, “In Situ Measurement of Dissolved Methane and Carbon Dioxide in Freshwater Ecosystems by Off-Axis Integrated Cavity Output Spectroscopy,” Environ. Sci. Technol. 48(19), 11421–11428 (2014).
[Crossref] [PubMed]

Geophys. Res. Lett. (1)

X. Zhang, K. C. Hester, W. Ussler, P. M. Walz, E. T. Peltzer, and P. G. Brewer, “In situ Raman - based measurements of high dissolved methane concentrations in hydrate - rich ocean sediments,” Geophys. Res. Lett. 38, L08605 (2011).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (1)

H. Zhao, G. S. Wang, T. D. Cai, and X. M. Gao, “Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide,” Guangpuxue Yu Guangpu Fenxi 32(1), 41–45 (2012).
[PubMed]

Internat. Scholarly Sci. Res. Innov. (1)

P. W. Heo and I. S. Park, “Separation Characteristics of Dissolved Gases from Water Using a Polypropylene Hollow Fiber Membrane Module with High Surface Area,” Internat. Scholarly Sci. Res. Innov. 8(7), 1295–1298 (2014).

J. Contemp. Phys. (1)

M. Aleksanyan, “Methane sensor based on SnO2 /In2O3 TiO2 nanostrucure,” J. Contemp. Phys. 45(2), 77–80 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. Combust. Inst. (1)

X. Chao, G. Shen, K. Sun, Z. Wang, Q. Meng, S. Wang, and R. K. Hanson, “Cavity-enhanced absorption spectroscopy for shocktubes: Design and optimization,” Proc. Combust. Inst. 37(2), 1345–1353 (2019).
[Crossref]

Other (7)

G. Gagliardi, and H. P. Loock. Cavity-Enhanced Spectroscopy and Sensing (Springer 2014).

U. Tsunogai, S. Kou, H. Kimoto, and T. Kimoto, “Development of in-situ methane sensor in seawater,” in 51th Annual Meeting of the Geochemical Society of Japan, 23 February 2007.

S. D. Wankel, M. Gupta, J. Leen, R. A. Provencal, V. Parsotam, and P. R. Girguis, “In Situ Stable Isotopic Detection of Anaerobic Oxidation of Methane in Monterey Bay Cold Seeps Via Off-Axis Integrated Cavity Output Spectroscopy,” American Geophysical Union, Fall Meeting 2010, December2010.

P. M. Michel, S. D. Wankel, J. Kapit, P. R. Girguis, M. Gupta, “Advancing a deep sea near-infrared laser spectrometer for dual isotope measurements,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu4J.6.

G. S. Engel, E. J. Moyer, F. N. Keutsch, and J. G. Anderson, “Innovations in cavity enhanced laser absorption spectroscopy: using in situ measurements to probe the mechanisms driving climate change,” in NASA Earth Science Technology Conference (ESTC) Proceedings, College Park, Maryland (2001).

T. Fukasawa, S. Hozumi, M. Morita, T. Oketani, and M. Masson, “Dissolved methane sensor for methane leakage Monitoring in methane hydrate production,” in OCEANS 2006 (IEEE, 2006), pp. 1–6.

T. Fukasawa, T. Oketani, M. Masson, J. Groneman, Y. Hara, M. Hayashi, “Optimized METS Sensor for Methane Leakage Monitoring,” in OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean (IEEE, 2008), pp, 1–8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental OA-ICOS setup used. (a) Designed cavity and integrated light path. (b) Block diagram of the improved off-axis ICOS setup. PS: pressure sensor, FL: focusing lens, PD: photodetector. PT100: temperature sensor. GF1: 7 μm gas filter; GF2: 2 μm gas filter. PV1 & PV2: proportional valve.
Fig. 2
Fig. 2 Output power spectra of the RF noise source filtered by a 70 MHz LP filter.
Fig. 3
Fig. 3 Power density spectra of the on-axis cavity modes at atmospheric pressure and 26 °C. (a) Time-series measurements of the on-axis cavity modes without and with RF noise perturbation with different powers. (b) Fourier transformation of the cavity-mode signals in (a). The corresponding spectral amplitudes are expressed in dB ( = 20 × log(amplitude)).
Fig. 4
Fig. 4 Absorption spectra of 2.0 ppmv CH4 in the on-axis ICOS setup. (a) Data averaged from 1000 signals from the detector. (b) Absorption spectra (I0/I-1) obtained after processing the data in (a).
Fig. 5
Fig. 5 OA-ICOS output signals measured at atmospheric pressure and 26 °C. (a) Off-axis cavity modes without and with RF noise perturbations at different power. (b) Fourier analysis of the cavity modes presented in (a). The spectral amplitudes are expressed in dB ( = 20 × log (amplitude)).
Fig. 6
Fig. 6 Off-axis ICOS absorption spectra of 2.0 ppmv CH4. (a) Spectral absorption signals from the detector from 1000 averages. (b) Absorption spectra expressed as (I0/I-1).
Fig. 7
Fig. 7 Relationship between the CH4 concentration and the peak height (I0/I-1).
Fig. 8
Fig. 8 Response time of the OA-ICOS system to changes in the gas concentration.
Fig. 9
Fig. 9 (a) Time-series measurements over approximately 2 hours of CH4 at a constant concentration of 2 ppmv using OA-ICOS without (black) and with (red) the −20 dBm RF noise perturbation. (b) Corresponding Allan variance.

Tables (2)

Tables Icon

Table 1 Fitted spectral parameters of the absorption spectra.

Tables Icon

Table 2 Analysis of concentration evolution.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α(υ)= 1R d ×( I 0 I 1)
N= 1R σ(υ)×d ×( I 0 I 1)
χ= N N T = P 0 ×T N L × T ref ×P × 1R σ(υ)×d ×( I 0 I 1)
χ CH4 =5.73549×( I 0 I 1)

Metrics