Abstract

An ultra-compact concentric catadioptric imaging spectrometer with large relative aperture and long slit is proposed. It consists of three optical components integrated monolithically in a concentric layout. Its astigmatism theory is discussed through tracing its chief ray and its athermalization is realized by optimizing lens materials. A high-speed (F/2.25) long-slit (48mm) VNIR design with high imaging quality and small distortions is presented. Results show a 10× reduction in volume than classic designs based on Offner-Chrisp configuration and a 1.9× reduction in length than Dyson configuration. Moreover, the design shows superior thermal adaptability with negligible decline in imaging quality while operating temperature changes between −30 ℃ and 70 ℃.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analytical design of an Offner imaging spectrometer

X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente
Opt. Express 14(20) 9156-9168 (2006)

The Offner imaging spectrometer in quadrature

Xesús Prieto-Blanco, Carlos Montero-Orille, Héctor González-Nuñez, María Dolores Mouriz, Elena López Lago, and Raúl de la Fuente
Opt. Express 18(12) 12756-12769 (2010)

Design of Dyson imaging spectrometers based on the Rowland circle concept

Carlos Montero-Orille, Xesús Prieto-Blanco, Héctor González-Núñez, and Raúl de la Fuente
Appl. Opt. 50(35) 6487-6494 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-22(6), 546–549 (1984).
    [Crossref]
  2. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
    [Crossref]
  3. A. Offner, “Unit power imaging catoptric anastigmat,” U.S. Patent 3,748,015 (1974).
  4. C. G. Wynne, “Optical imaging systems,” U.S. Patent 4,796,984 (1989).
  5. M. P. Chrisp, “Convex diffraction grating imaging spectrometer,” U.S. Patent 5,880,834 (1999).
  6. L. Mertz, “Concentric spectrographs,” Appl. Opt. 16(12), 3122–3124 (1977).
    [Crossref]
  7. D. Kwo, G. Lawrence, and M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” Proc. SPIE 0818, 275–281 (1987).
    [Crossref]
  8. D. R. Lobb, “Theory of concentric designs for grating spectrometers,” Appl. Opt. 33(13), 2648–2658 (1994).
    [Crossref]
  9. D. Lobb, “Design of a spectrometer system for measurements on Earth atmosphere from geostationary orbit,” Proc. SPIE 5249, 191–202 (2004).
    [Crossref]
  10. X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente, “Analytical design of an Offner imaging spectrometer,” Opt. Express 14(20), 9156–9168 (2006).
    [Crossref]
  11. H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
    [Crossref]
  12. P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
    [Crossref]
  13. C. Montero-Orille, X. Prieto-Blanco, H. González-Núñez, and R. de la Fuente, “Two-wavelength anastigmatic Dyson imaging spectrometers,” Opt. Lett. 35(14), 2379–2381 (2010).
    [Crossref]
  14. J. Dyson, “Unit magnification optical system without Seidel aberrations,” J. Opt. Soc. Am. 49(7), 713–716 (1959).
    [Crossref]
  15. B. V. Gorp, P. Mouroulis, D. W. Wilson, and R. O. Green, “Design of the Compact Wide Swath Imaging Spectrometer (CWIS),” Proc. SPIE 9222, 92220C (2014).
    [Crossref]
  16. L. G. Cook, “High-resolution, all-reflective imaging spectrometer,” U.S. Patent 7,080,912 (2006).
  17. L. Yuan, Z. He, G. Lv, Y. Wang, C. Li, J. Xie, and J. Wang, “Optical design, laboratory test, and calibration of airborne long wave infrared imaging Spectrometer,” Opt. Express 25(19), 22440–22454 (2017).
    [Crossref]
  18. J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light: Sci. Appl. 6(7), e17026 (2017).
    [Crossref]
  19. M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
    [Crossref]
  20. C. P. Warren, “Spectrometer designs,” U.S. Patent 7,898,660 (2011).
  21. T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
    [Crossref]

2018 (1)

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

2017 (3)

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

L. Yuan, Z. He, G. Lv, Y. Wang, C. Li, J. Xie, and J. Wang, “Optical design, laboratory test, and calibration of airborne long wave infrared imaging Spectrometer,” Opt. Express 25(19), 22440–22454 (2017).
[Crossref]

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light: Sci. Appl. 6(7), e17026 (2017).
[Crossref]

2016 (1)

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

2014 (2)

B. V. Gorp, P. Mouroulis, D. W. Wilson, and R. O. Green, “Design of the Compact Wide Swath Imaging Spectrometer (CWIS),” Proc. SPIE 9222, 92220C (2014).
[Crossref]

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

2010 (1)

2006 (1)

2004 (1)

D. Lobb, “Design of a spectrometer system for measurements on Earth atmosphere from geostationary orbit,” Proc. SPIE 5249, 191–202 (2004).
[Crossref]

1998 (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

1994 (1)

1987 (1)

D. Kwo, G. Lawrence, and M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” Proc. SPIE 0818, 275–281 (1987).
[Crossref]

1984 (1)

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-22(6), 546–549 (1984).
[Crossref]

1977 (1)

1959 (1)

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Babu, S. R.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

Balonek, G.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

Bauer, A.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light: Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Beier, M.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Bender, H. A.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Chrisp, M.

D. Kwo, G. Lawrence, and M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” Proc. SPIE 0818, 275–281 (1987).
[Crossref]

Chrisp, M. P.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

M. P. Chrisp, “Convex diffraction grating imaging spectrometer,” U.S. Patent 5,880,834 (1999).

Cook, L. G.

L. G. Cook, “High-resolution, all-reflective imaging spectrometer,” U.S. Patent 7,080,912 (2006).

Coppo, P.

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

Couce, B.

Damm, C.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

de la Fuente, R.

Drusch, M.

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

Dyson, J.

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Francois, M.

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

Gebhardt, A.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Ghuman, P.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

Goetz, A. F. H.

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-22(6), 546–549 (1984).
[Crossref]

González-Núñez, H.

Gorp, B. V.

B. V. Gorp, P. Mouroulis, D. W. Wilson, and R. O. Green, “Design of the Compact Wide Swath Imaging Spectrometer (CWIS),” Proc. SPIE 9222, 92220C (2014).
[Crossref]

Green, R. O.

B. V. Gorp, P. Mouroulis, D. W. Wilson, and R. O. Green, “Design of the Compact Wide Swath Imaging Spectrometer (CWIS),” Proc. SPIE 9222, 92220C (2014).
[Crossref]

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

He, Z.

Holtsberg, C.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

Korniski, R. J.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

Krutz, D.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Kwo, D.

D. Kwo, G. Lawrence, and M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” Proc. SPIE 0818, 275–281 (1987).
[Crossref]

Lawrence, G.

D. Kwo, G. Lawrence, and M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” Proc. SPIE 0818, 275–281 (1987).
[Crossref]

Li, C.

Lobb, D.

D. Lobb, “Design of a spectrometer system for measurements on Earth atmosphere from geostationary orbit,” Proc. SPIE 5249, 191–202 (2004).
[Crossref]

Lobb, D. R.

Lockwood, R. B.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

Lv, G.

Mertz, L.

Montero-Orille, C.

Mouroulis, P.

B. V. Gorp, P. Mouroulis, D. W. Wilson, and R. O. Green, “Design of the Compact Wide Swath Imaging Spectrometer (CWIS),” Proc. SPIE 9222, 92220C (2014).
[Crossref]

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

Offner, A.

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. Patent 3,748,015 (1974).

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Peschel, T.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Pettinato, L.

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

Prieto-Blanco, X.

Reimers, J.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light: Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Risse, S.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Rolland, J. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light: Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Sebastian, I.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Smith, M. A.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Taccola, M.

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

Taiti, A.

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

Thome, K. J.

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

Thompson, K. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light: Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Vane, G.

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-22(6), 546–549 (1984).
[Crossref]

Walter, I.

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Wang, J.

Wang, Y.

Warren, C. P.

C. P. Warren, “Spectrometer designs,” U.S. Patent 7,898,660 (2011).

Wellman, J. B.

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-22(6), 546–549 (1984).
[Crossref]

Willams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Wilson, D. W.

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

B. V. Gorp, P. Mouroulis, D. W. Wilson, and R. O. Green, “Design of the Compact Wide Swath Imaging Spectrometer (CWIS),” Proc. SPIE 9222, 92220C (2014).
[Crossref]

Wynne, C. G.

C. G. Wynne, “Optical imaging systems,” U.S. Patent 4,796,984 (1989).

Xie, J.

Yuan, L.

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sensing (1)

G. Vane, A. F. H. Goetz, and J. B. Wellman, “Airborne imaging spectrometer: A new tool for remote sensing,” IEEE Trans. Geosci. Remote Sensing GE-22(6), 546–549 (1984).
[Crossref]

J. Opt. Soc. Am. (1)

Light: Sci. Appl. (1)

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light: Sci. Appl. 6(7), e17026 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (6)

M. P. Chrisp, R. B. Lockwood, M. A. Smith, C. Holtsberg, G. Balonek, K. J. Thome, S. R. Babu, and P. Ghuman, “A novel imaging spectrometer form for the solar reflective spectral range for size, weight and power limited applications,” Proc. SPIE 10780, 22 (2018).
[Crossref]

H. A. Bender, P. Mouroulis, R. J. Korniski, R. O. Green, and D. W. Wilson, “Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission,” Proc. SPIE 9222, 92220E (2014).
[Crossref]

B. V. Gorp, P. Mouroulis, D. W. Wilson, and R. O. Green, “Design of the Compact Wide Swath Imaging Spectrometer (CWIS),” Proc. SPIE 9222, 92220C (2014).
[Crossref]

D. Lobb, “Design of a spectrometer system for measurements on Earth atmosphere from geostationary orbit,” Proc. SPIE 5249, 191–202 (2004).
[Crossref]

D. Kwo, G. Lawrence, and M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” Proc. SPIE 0818, 275–281 (1987).
[Crossref]

T. Peschel, C. Damm, M. Beier, A. Gebhardt, S. Risse, I. Walter, I. Sebastian, and D. Krutz, “Design of an imaging spectrometer for earth observation using freeform mirrors,” Proc. SPIE 10562, 161 (2016).
[Crossref]

Remote Sens. (1)

P. Coppo, A. Taiti, L. Pettinato, M. Francois, M. Taccola, and M. Drusch, “Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission,” Remote Sens. 9(7), 649–666 (2017).
[Crossref]

Remote Sens. Environ. (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Willams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Other (5)

A. Offner, “Unit power imaging catoptric anastigmat,” U.S. Patent 3,748,015 (1974).

C. G. Wynne, “Optical imaging systems,” U.S. Patent 4,796,984 (1989).

M. P. Chrisp, “Convex diffraction grating imaging spectrometer,” U.S. Patent 5,880,834 (1999).

L. G. Cook, “High-resolution, all-reflective imaging spectrometer,” U.S. Patent 7,080,912 (2006).

C. P. Warren, “Spectrometer designs,” U.S. Patent 7,898,660 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Sketch of the UCIS. (b), (c) Ray tracing of chief ray from an arbitrary point on the slit showing location of the meridional and sagittal images.
Fig. 2.
Fig. 2. Diffraction on the grating. (a) Path of off-plane diffraction on the grating; (b) View along the z-axis; (c) Projection in the principal section of grating; (d) Projection in the plane perpendicular to the principal section of grating.
Fig. 3.
Fig. 3. Anastigmatic region in a quarter of the object plane of UCIS. The normalized anastigmatism threshold is 0.0001, and we assume that the astigmatism is low when Astig is less than 0.001. The slit with low astigmatism is short. 4. Units of x and y axis are a.u. (n1=n2=n3=1.46, k1=1.92)
Fig. 4.
Fig. 4. Anastigmatic regions in a quarter of the object plane for different combinations of two different materials of the UCIS. (n1, n2, n3) respectively refers to the refractive index of L1, L2 and L3. The lower index is l = 1.46, and the higher refractive index is h = 1.74.
Fig. 5.
Fig. 5. Anastigmatic regions in a quarter of the object plane for different combinations of three different materials of the UCIS. (n1, n2, n3) respectively refers to the refractive index of L1, L2 and L3. The minimum index is l = 1.46, the medium index is m = 1.60, and the highest refractive index is h = 1.74.
Fig. 6.
Fig. 6. Astigmatism along the slits of two spectrometer types. Normalized off-axis value is 0.6 for Offner type and 0.38 for the UCIS. The abscissa is the normalized half-length of slit, and the ordinate is the normalized astigmatism. Astigmatism of the UCIS is quite insensitive to its slit length. Units of the abscissa and the ordinate are a.u.
Fig. 7.
Fig. 7. Decomposition map of the UCIS. (a) The refraction group, (b) The reflection group. Red solid line is the chief ray from the object point O to the image point I. The chief ray passes through each surface successively to form virtual images V1-V6.
Fig. 8.
Fig. 8. Maps of the TDC versus the (a) thermal expansion coefficients and (b) thermo-optic coefficients. α1=10×10−6/ dT ℃, dn1/dT = dn2/dT = dn3/dT = 5×10−6 /℃ in (a). dn1/dT = 6×10−6/℃, α1 =α2 =α3 = 5×10−6 /℃ in (b).
Fig. 9.
Fig. 9. Steps for designing an UCIS.
Fig. 10.
Fig. 10. Designs of different spectrometers with the same specifications shown in Table  1. (a) The UCIS. (b) The Offner-Chrisp spectrometer. (c) The Dyson spectrometer.
Fig. 11.
Fig. 11. Geometrical spot diagrams of (a) the UCIS, (b) the Offner-Chrisp spectrometer and (c) the Dyson spectrometer.
Fig. 12.
Fig. 12. MTF of three spectrometer types at −30 ℃, 20 ℃, and 70 ℃. The evaluated wavelength is 0.7µm.

Tables (3)

Tables Icon

Table 1. Characteristics of the UCIS Designed in the Text

Tables Icon

Table 2. The tightest five tolerance items of the designed UCIS

Tables Icon

Table 3. . Mechanical and optical materials of two types

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

φ = 2 θ 3 + θ 2 + θ 1 2 θ 2 θ 1 ,
θ 2 = θ 4 .
OC = R 1 sin θ 1 = n 2 n 1 R 1 sin θ 1 = n 2 n 1 R 2 sin θ 2 = n 3 n 1 R 2 sin θ 2 = n 3 n 1 R 3 sin θ 3 .
φ M = 2 θ 4 + θ 7 2 θ 5 θ 6 θ 7 ,
θ 4 = θ 6 ,
C I M = R 1 sin θ 7 = n 2 n 1 R 1 sin θ 7 = n 2 n 1 R 2 sin θ 6 = n 3 n 1 R 2 sin θ 6 = n 3 n 1 R 3 sin θ 5 .
A s t i g = C I M tan ( φ S φ M ) .
sin θ 4 cos γ sin θ 4 cos γ = m g λ , sin θ 4 sin γ sin θ 4 sin γ = 0 ,
C I M  =  sin γ sin γ OC .
tan φ S1x = tan φ S1 sin γ , tan φ S2x = tan φ S2 sin γ .
1 A I S1x + 1 A I S2x = cos β + cos β R 2 .
sin β tan φ S1x  =  sin β tan φ S2x .
tan φ S2 = sin γ sin γ tan φ S1 .
φ S1 = φ , φ S = φ S2 .
φ S = arctan ( sin γ sin γ tan φ ) .
C I M = k R 2 sin γ sin γ ,
φ S = arctan { sin γ sin γ tan [ 2 arcsin ( n 1 n 3 k k 1 ) + arcsin ( n 1 n 2 k )   + arcsin ( k k 2 ) 2 arcsin ( n 1 n 3 k ) arcsin ( n 1 n 2 k k 2 ) ] } ,
φ M = 2 arcsin ( n 1 k sin γ n 3 sin γ ) + arcsin ( n 1 k sin γ n 2 k 2 sin γ ) 2 arcsin ( n 1 k sin γ n 3 k 1 sin γ )   arcsin ( n 1 k sin γ n 2 sin γ ) arcsin ( k sin γ k 2 sin γ ) ,
γ = arctan ( x y ) ,
γ = arctan ( n 1 k sin γ n 1 k cos γ + n 3 m g λ ) .
l 1 = n 2 d 1 R 1 d 1 ( n 2 n 1 ) + n 1 R 1 ,
l 2 = n 3 ( l 1 + d 2 ) R 2 ( l 1 + d 2 ) ( n 3 n 2 ) + n 2 R 2 .
l 3 = ( l 2 + d 3 ) R 3 2 ( l 2 + d 3 ) R 3 ,
l 4 = ( l 3 d 3 ) R 2 2 ( l 3 d 3 ) R 2 ,
l 5 = ( l 4 + d 3 ) R 3 2 ( l 4 + d 3 ) R 3 .
l 6 = n 2 ( l 5 d 3 ) R 2 n 3 R 2 + ( n 2 n 3 ) ( l 5 d 3 ) ,
l 7 = n 1 ( l 6 d 2 ) R 1 n 2 R 1 + ( n 1 n 2 ) ( l 6 d 2 ) .
T D C = | d l 7 d T d d 1 d T | ,
T D C = | [ d n 1 d T R 1 ( l 6 d 2 ) + n 1 α 1 R 1 ( l 6 d 2 ) + n 1 R 1 ( d l 6 d T d 2 α 2 ) ] [ n 2 R 1 + ( n 1 n 2 ) ( l 6 d 2 ) ] [ n 2 R 1 + ( n 1 n 2 ) ( l 6 d 2 ) ] 2 n 1 R 1 ( l 6 d 2 ) [ ( d l 6 d T d 2 α 2 ) ( n 1 n 2 ) + ( l 6 d 2 ) ( d n 1 d T d n 2 d T ) + d n 2 d T R 1 + n 2 α 1 R 1 ] [ n 2 R 1 + ( n 1 n 2 ) ( l 6 d 2 ) ] 2 α 1 d 1 | .
sin θ 4 a sin θ 4 = m g λ a , sin θ 4 b sin θ 4 = m g λ b .
h s p e c = C I a C I b = n 3 n 1 R 2 ( sin θ 4 a sin θ 4 b ) .
R 2 = n 1 h s p e c n 3 m g ( λ a λ b ) .

Metrics