Abstract

This paper proposes a dynamic model for measuring the 3D tip clearance of rotating blades using an isosceles-right-triangle sensing structure consisting of three identical two-circle coaxial optical fiber bundles and a demodulation approach using the ratios of difference signals between any two bundles based on the Taylor expansion principle. The dynamic system comprising the optical fiber probe, hardware circuits, and measurement software is designed and established according to the characteristics of dynamic sensing signals. Finally, the feasibility of the system for the dynamic measurement of 3D tip clearance is experimentally verified using the simulated blades of a rotor test bench.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Output characteristics of two-circle coaxial optical fiber bundle with regard to three-dimensional tip clearance

Siying Xie, Xiaodong Zhang, Bing Wu, and Yiwei Xiong
Opt. Express 26(19) 25244-25256 (2018)

Fiber-optic laser Doppler turbine tip clearance probe

Lars Büttner, Thorsten Pfister, and Jürgen Czarske
Opt. Lett. 31(9) 1217-1219 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Anguita, C. Cravero, and C. Filz, “An innovative technique for the aerodynamic design of turbine blade profiles using artificial intelligence,” in Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003-3737 (2003).
  2. D. A. Curriston, Turbine aerothermal optimization using evolution strategies, M.S. thesis, (Auburn University, 2014).
  3. C. P. Lawson and P. C. Ivey, “Tubomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes,” Sens. Actuators, A 118(1), 14–24 (2005).
    [Crossref]
  4. S. Heath and M. Imregun, “An improved single-parameter tip-timing method for turbo machinery blade vibration measurements using optical laser probes,” Int. J. Mech. Sci. 38(10), 1047–1058 (1996).
    [Crossref]
  5. P. Beauseroy and R. Lengellé, “Nonintrusive turbomachine blade vibration measurement system,” Mech. Syst. Sig. Process. 21(4), 1717–1738 (2007).
    [Crossref]
  6. S. Madhavan, R. Jain, C. Sujatha, and A. S. Sekhar, “Vibration based damage detection of rotor blades in a gas turbine engine,” Eng. Failure Anal. 46, 26–39 (2014).
    [Crossref]
  7. G. Rigosi, G. Battiato, and T. M. Berruti, “Synchronous vibration parameters identification by tip timing measurements,” Mech. Res. Commun. 79, 7–14 (2017).
    [Crossref]
  8. D. Müller, A. G. Sheard, S. Mozumdar, and E. Johann, “Capacitive measurement of compressor and turbine blade tip to casing running clearance,” J. Eng. Gas Turbines Power 119(4), 877–884 (1997).
    [Crossref]
  9. D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
    [Crossref]
  10. I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
    [Crossref]
  11. I. García, J. Beloki, and A. Berganza, “Different configurations of a reflective intensity-modulated optical sensor to avoid modal noise in tip clearance measurements,” J. Lightwave Technol. 33(12), 2663–2669 (2015).
    [Crossref]
  12. B. H. Jia, Research on optical fiber based measurement and active control technology of turbine tip clearance, Ph.D. thesis, (Northwestern Polytechnical University, 2013).
  13. S. Y. Xie and X. D. Zhang, “Design and modeling of three-dimensional tip clearance optical probe based on two-circle coaxial optical fiber bundle,” in Proceedings of IEEE International Conference on Sensors, (IEEE, 2016) 16582224.
  14. F. Teng, X. D. Zhang, and S. Y. Xie, “Research on variation mechanism of three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence, (IEEE, 2016) 07734008.
  15. S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diag. 37(1), 174–181 (2017).
  16. S. Y. Xie, X. D. Zhang, B. Wu, and Y. W. Xiong, “Output characteristics of two-circle coaxial optical fiber bundle with regard to three-dimensional tip clearance,” Opt. Express 26(19), 25244–25256 (2018).
    [Crossref]
  17. S. Y. Xie, X. D. Zhang, Y. W. Xiong, and H. C. Liu, “Demodulation technique for 3-D tip clearance measurements based on output signals from optical fiber probe with three two-circle coaxial optical fiber bundles,” Opt. Express 27(9), 12600–12615 (2019).
    [Crossref]
  18. E. Canbay, U. Ersoy, and T. Tankut, “A three component force transducer for reinforced concrete structural testing,” Eng. Struct. 26(2), 257–265 (2004).
    [Crossref]
  19. Y. W. Xiong, X. D. Zhang, and S. Y. Xie, “Effect of thermal fatigue on three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 14th Conference on Test and Measurement Technology of Aero-engine, Xiamen, China, (2018), pp 611–617, (in Chinese).
  20. X. D. Zhang, B. Wu, and S. Y. Xie, “Optical fiber measurement system for 3-D variation of turbine blade tip clearance,” Opt. Precis. Eng. 26(7), 1578–1587 (2018) (in Chinese).
    [Crossref]
  21. C. Mishra, A. K. Samantaray, and G. Chakraborty, “Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate,” Mech. Syst. Sig. Process. 72-73, 206–222 (2016).
    [Crossref]
  22. W. Zhongyu and G. Leyi, “Novel method of evaluating dynamic repeated measurement uncertainty,” J. Test. Eval. 36(5), 453–459 (2008).
    [Crossref]

2019 (1)

2018 (2)

X. D. Zhang, B. Wu, and S. Y. Xie, “Optical fiber measurement system for 3-D variation of turbine blade tip clearance,” Opt. Precis. Eng. 26(7), 1578–1587 (2018) (in Chinese).
[Crossref]

S. Y. Xie, X. D. Zhang, B. Wu, and Y. W. Xiong, “Output characteristics of two-circle coaxial optical fiber bundle with regard to three-dimensional tip clearance,” Opt. Express 26(19), 25244–25256 (2018).
[Crossref]

2017 (2)

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diag. 37(1), 174–181 (2017).

G. Rigosi, G. Battiato, and T. M. Berruti, “Synchronous vibration parameters identification by tip timing measurements,” Mech. Res. Commun. 79, 7–14 (2017).
[Crossref]

2016 (1)

C. Mishra, A. K. Samantaray, and G. Chakraborty, “Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate,” Mech. Syst. Sig. Process. 72-73, 206–222 (2016).
[Crossref]

2015 (1)

2014 (1)

S. Madhavan, R. Jain, C. Sujatha, and A. S. Sekhar, “Vibration based damage detection of rotor blades in a gas turbine engine,” Eng. Failure Anal. 46, 26–39 (2014).
[Crossref]

2013 (1)

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

2012 (1)

D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
[Crossref]

2008 (1)

W. Zhongyu and G. Leyi, “Novel method of evaluating dynamic repeated measurement uncertainty,” J. Test. Eval. 36(5), 453–459 (2008).
[Crossref]

2007 (1)

P. Beauseroy and R. Lengellé, “Nonintrusive turbomachine blade vibration measurement system,” Mech. Syst. Sig. Process. 21(4), 1717–1738 (2007).
[Crossref]

2005 (1)

C. P. Lawson and P. C. Ivey, “Tubomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes,” Sens. Actuators, A 118(1), 14–24 (2005).
[Crossref]

2004 (1)

E. Canbay, U. Ersoy, and T. Tankut, “A three component force transducer for reinforced concrete structural testing,” Eng. Struct. 26(2), 257–265 (2004).
[Crossref]

1997 (1)

D. Müller, A. G. Sheard, S. Mozumdar, and E. Johann, “Capacitive measurement of compressor and turbine blade tip to casing running clearance,” J. Eng. Gas Turbines Power 119(4), 877–884 (1997).
[Crossref]

1996 (1)

S. Heath and M. Imregun, “An improved single-parameter tip-timing method for turbo machinery blade vibration measurements using optical laser probes,” Int. J. Mech. Sci. 38(10), 1047–1058 (1996).
[Crossref]

Aldabaldetreku, G.

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

Anguita, D.

D. Anguita, C. Cravero, and C. Filz, “An innovative technique for the aerodynamic design of turbine blade profiles using artificial intelligence,” in Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003-3737 (2003).

Battiato, G.

G. Rigosi, G. Battiato, and T. M. Berruti, “Synchronous vibration parameters identification by tip timing measurements,” Mech. Res. Commun. 79, 7–14 (2017).
[Crossref]

Beauseroy, P.

P. Beauseroy and R. Lengellé, “Nonintrusive turbomachine blade vibration measurement system,” Mech. Syst. Sig. Process. 21(4), 1717–1738 (2007).
[Crossref]

Beloki, J.

I. García, J. Beloki, and A. Berganza, “Different configurations of a reflective intensity-modulated optical sensor to avoid modal noise in tip clearance measurements,” J. Lightwave Technol. 33(12), 2663–2669 (2015).
[Crossref]

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

Berganza, A.

Berruti, T. M.

G. Rigosi, G. Battiato, and T. M. Berruti, “Synchronous vibration parameters identification by tip timing measurements,” Mech. Res. Commun. 79, 7–14 (2017).
[Crossref]

Canbay, E.

E. Canbay, U. Ersoy, and T. Tankut, “A three component force transducer for reinforced concrete structural testing,” Eng. Struct. 26(2), 257–265 (2004).
[Crossref]

Chakraborty, G.

C. Mishra, A. K. Samantaray, and G. Chakraborty, “Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate,” Mech. Syst. Sig. Process. 72-73, 206–222 (2016).
[Crossref]

Cravero, C.

D. Anguita, C. Cravero, and C. Filz, “An innovative technique for the aerodynamic design of turbine blade profiles using artificial intelligence,” in Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003-3737 (2003).

Curriston, D. A.

D. A. Curriston, Turbine aerothermal optimization using evolution strategies, M.S. thesis, (Auburn University, 2014).

Duan, F. J.

D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
[Crossref]

Ersoy, U.

E. Canbay, U. Ersoy, and T. Tankut, “A three component force transducer for reinforced concrete structural testing,” Eng. Struct. 26(2), 257–265 (2004).
[Crossref]

Filz, C.

D. Anguita, C. Cravero, and C. Filz, “An innovative technique for the aerodynamic design of turbine blade profiles using artificial intelligence,” in Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003-3737 (2003).

García, I.

I. García, J. Beloki, and A. Berganza, “Different configurations of a reflective intensity-modulated optical sensor to avoid modal noise in tip clearance measurements,” J. Lightwave Technol. 33(12), 2663–2669 (2015).
[Crossref]

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

Guo, H. T.

D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
[Crossref]

Heath, S.

S. Heath and M. Imregun, “An improved single-parameter tip-timing method for turbo machinery blade vibration measurements using optical laser probes,” Int. J. Mech. Sci. 38(10), 1047–1058 (1996).
[Crossref]

Illarramendi, M. A.

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

Imregun, M.

S. Heath and M. Imregun, “An improved single-parameter tip-timing method for turbo machinery blade vibration measurements using optical laser probes,” Int. J. Mech. Sci. 38(10), 1047–1058 (1996).
[Crossref]

Ivey, P. C.

C. P. Lawson and P. C. Ivey, “Tubomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes,” Sens. Actuators, A 118(1), 14–24 (2005).
[Crossref]

Jain, R.

S. Madhavan, R. Jain, C. Sujatha, and A. S. Sekhar, “Vibration based damage detection of rotor blades in a gas turbine engine,” Eng. Failure Anal. 46, 26–39 (2014).
[Crossref]

Jia, B. H.

B. H. Jia, Research on optical fiber based measurement and active control technology of turbine tip clearance, Ph.D. thesis, (Northwestern Polytechnical University, 2013).

Jiménez, F.

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

Johann, E.

D. Müller, A. G. Sheard, S. Mozumdar, and E. Johann, “Capacitive measurement of compressor and turbine blade tip to casing running clearance,” J. Eng. Gas Turbines Power 119(4), 877–884 (1997).
[Crossref]

Lawson, C. P.

C. P. Lawson and P. C. Ivey, “Tubomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes,” Sens. Actuators, A 118(1), 14–24 (2005).
[Crossref]

Lengellé, R.

P. Beauseroy and R. Lengellé, “Nonintrusive turbomachine blade vibration measurement system,” Mech. Syst. Sig. Process. 21(4), 1717–1738 (2007).
[Crossref]

Leyi, G.

W. Zhongyu and G. Leyi, “Novel method of evaluating dynamic repeated measurement uncertainty,” J. Test. Eval. 36(5), 453–459 (2008).
[Crossref]

Li, Y.

D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
[Crossref]

Liu, H. C.

Madhavan, S.

S. Madhavan, R. Jain, C. Sujatha, and A. S. Sekhar, “Vibration based damage detection of rotor blades in a gas turbine engine,” Eng. Failure Anal. 46, 26–39 (2014).
[Crossref]

Mishra, C.

C. Mishra, A. K. Samantaray, and G. Chakraborty, “Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate,” Mech. Syst. Sig. Process. 72-73, 206–222 (2016).
[Crossref]

Mozumdar, S.

D. Müller, A. G. Sheard, S. Mozumdar, and E. Johann, “Capacitive measurement of compressor and turbine blade tip to casing running clearance,” J. Eng. Gas Turbines Power 119(4), 877–884 (1997).
[Crossref]

Müller, D.

D. Müller, A. G. Sheard, S. Mozumdar, and E. Johann, “Capacitive measurement of compressor and turbine blade tip to casing running clearance,” J. Eng. Gas Turbines Power 119(4), 877–884 (1997).
[Crossref]

Rigosi, G.

G. Rigosi, G. Battiato, and T. M. Berruti, “Synchronous vibration parameters identification by tip timing measurements,” Mech. Res. Commun. 79, 7–14 (2017).
[Crossref]

Samantaray, A. K.

C. Mishra, A. K. Samantaray, and G. Chakraborty, “Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate,” Mech. Syst. Sig. Process. 72-73, 206–222 (2016).
[Crossref]

Sekhar, A. S.

S. Madhavan, R. Jain, C. Sujatha, and A. S. Sekhar, “Vibration based damage detection of rotor blades in a gas turbine engine,” Eng. Failure Anal. 46, 26–39 (2014).
[Crossref]

Sheard, A. G.

D. Müller, A. G. Sheard, S. Mozumdar, and E. Johann, “Capacitive measurement of compressor and turbine blade tip to casing running clearance,” J. Eng. Gas Turbines Power 119(4), 877–884 (1997).
[Crossref]

Sujatha, C.

S. Madhavan, R. Jain, C. Sujatha, and A. S. Sekhar, “Vibration based damage detection of rotor blades in a gas turbine engine,” Eng. Failure Anal. 46, 26–39 (2014).
[Crossref]

Tankut, T.

E. Canbay, U. Ersoy, and T. Tankut, “A three component force transducer for reinforced concrete structural testing,” Eng. Struct. 26(2), 257–265 (2004).
[Crossref]

Teng, F.

F. Teng, X. D. Zhang, and S. Y. Xie, “Research on variation mechanism of three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence, (IEEE, 2016) 07734008.

Wang, K.

D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
[Crossref]

Wu, B.

X. D. Zhang, B. Wu, and S. Y. Xie, “Optical fiber measurement system for 3-D variation of turbine blade tip clearance,” Opt. Precis. Eng. 26(7), 1578–1587 (2018) (in Chinese).
[Crossref]

S. Y. Xie, X. D. Zhang, B. Wu, and Y. W. Xiong, “Output characteristics of two-circle coaxial optical fiber bundle with regard to three-dimensional tip clearance,” Opt. Express 26(19), 25244–25256 (2018).
[Crossref]

Xie, S. Y.

S. Y. Xie, X. D. Zhang, Y. W. Xiong, and H. C. Liu, “Demodulation technique for 3-D tip clearance measurements based on output signals from optical fiber probe with three two-circle coaxial optical fiber bundles,” Opt. Express 27(9), 12600–12615 (2019).
[Crossref]

S. Y. Xie, X. D. Zhang, B. Wu, and Y. W. Xiong, “Output characteristics of two-circle coaxial optical fiber bundle with regard to three-dimensional tip clearance,” Opt. Express 26(19), 25244–25256 (2018).
[Crossref]

X. D. Zhang, B. Wu, and S. Y. Xie, “Optical fiber measurement system for 3-D variation of turbine blade tip clearance,” Opt. Precis. Eng. 26(7), 1578–1587 (2018) (in Chinese).
[Crossref]

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diag. 37(1), 174–181 (2017).

F. Teng, X. D. Zhang, and S. Y. Xie, “Research on variation mechanism of three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence, (IEEE, 2016) 07734008.

Y. W. Xiong, X. D. Zhang, and S. Y. Xie, “Effect of thermal fatigue on three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 14th Conference on Test and Measurement Technology of Aero-engine, Xiamen, China, (2018), pp 611–617, (in Chinese).

S. Y. Xie and X. D. Zhang, “Design and modeling of three-dimensional tip clearance optical probe based on two-circle coaxial optical fiber bundle,” in Proceedings of IEEE International Conference on Sensors, (IEEE, 2016) 16582224.

Xiong, Y. W.

Ye, D. C.

D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
[Crossref]

Zhang, X. D.

S. Y. Xie, X. D. Zhang, Y. W. Xiong, and H. C. Liu, “Demodulation technique for 3-D tip clearance measurements based on output signals from optical fiber probe with three two-circle coaxial optical fiber bundles,” Opt. Express 27(9), 12600–12615 (2019).
[Crossref]

S. Y. Xie, X. D. Zhang, B. Wu, and Y. W. Xiong, “Output characteristics of two-circle coaxial optical fiber bundle with regard to three-dimensional tip clearance,” Opt. Express 26(19), 25244–25256 (2018).
[Crossref]

X. D. Zhang, B. Wu, and S. Y. Xie, “Optical fiber measurement system for 3-D variation of turbine blade tip clearance,” Opt. Precis. Eng. 26(7), 1578–1587 (2018) (in Chinese).
[Crossref]

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diag. 37(1), 174–181 (2017).

Y. W. Xiong, X. D. Zhang, and S. Y. Xie, “Effect of thermal fatigue on three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 14th Conference on Test and Measurement Technology of Aero-engine, Xiamen, China, (2018), pp 611–617, (in Chinese).

S. Y. Xie and X. D. Zhang, “Design and modeling of three-dimensional tip clearance optical probe based on two-circle coaxial optical fiber bundle,” in Proceedings of IEEE International Conference on Sensors, (IEEE, 2016) 16582224.

F. Teng, X. D. Zhang, and S. Y. Xie, “Research on variation mechanism of three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence, (IEEE, 2016) 07734008.

Zhongyu, W.

W. Zhongyu and G. Leyi, “Novel method of evaluating dynamic repeated measurement uncertainty,” J. Test. Eval. 36(5), 453–459 (2008).
[Crossref]

Zubia, J.

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

Eng. Failure Anal. (1)

S. Madhavan, R. Jain, C. Sujatha, and A. S. Sekhar, “Vibration based damage detection of rotor blades in a gas turbine engine,” Eng. Failure Anal. 46, 26–39 (2014).
[Crossref]

Eng. Struct. (1)

E. Canbay, U. Ersoy, and T. Tankut, “A three component force transducer for reinforced concrete structural testing,” Eng. Struct. 26(2), 257–265 (2004).
[Crossref]

Int. J. Mech. Sci. (1)

S. Heath and M. Imregun, “An improved single-parameter tip-timing method for turbo machinery blade vibration measurements using optical laser probes,” Int. J. Mech. Sci. 38(10), 1047–1058 (1996).
[Crossref]

J. Eng. Gas Turbines Power (1)

D. Müller, A. G. Sheard, S. Mozumdar, and E. Johann, “Capacitive measurement of compressor and turbine blade tip to casing running clearance,” J. Eng. Gas Turbines Power 119(4), 877–884 (1997).
[Crossref]

J. Lightwave Technol. (1)

J. Test. Eval. (1)

W. Zhongyu and G. Leyi, “Novel method of evaluating dynamic repeated measurement uncertainty,” J. Test. Eval. 36(5), 453–459 (2008).
[Crossref]

J. Vib. Meas. Diag. (1)

S. Y. Xie and X. D. Zhang, “Research on three-dimensional output behavior of displacement sensor of two-circle coaxial optical fiber bundle,” J. Vib. Meas. Diag. 37(1), 174–181 (2017).

Mech. Res. Commun. (1)

G. Rigosi, G. Battiato, and T. M. Berruti, “Synchronous vibration parameters identification by tip timing measurements,” Mech. Res. Commun. 79, 7–14 (2017).
[Crossref]

Mech. Syst. Sig. Process. (2)

P. Beauseroy and R. Lengellé, “Nonintrusive turbomachine blade vibration measurement system,” Mech. Syst. Sig. Process. 21(4), 1717–1738 (2007).
[Crossref]

C. Mishra, A. K. Samantaray, and G. Chakraborty, “Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate,” Mech. Syst. Sig. Process. 72-73, 206–222 (2016).
[Crossref]

Opt. Eng. (1)

D. C. Ye, F. J. Duan, H. T. Guo, Y. Li, and K. Wang, “Turbine blade tip clearance measurement using askewed dual-beam fiber optic sensor,” Opt. Eng. 58(8), 1514–1522 (2012).
[Crossref]

Opt. Express (2)

Opt. Precis. Eng. (1)

X. D. Zhang, B. Wu, and S. Y. Xie, “Optical fiber measurement system for 3-D variation of turbine blade tip clearance,” Opt. Precis. Eng. 26(7), 1578–1587 (2018) (in Chinese).
[Crossref]

Sens. Actuators, A (1)

C. P. Lawson and P. C. Ivey, “Tubomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes,” Sens. Actuators, A 118(1), 14–24 (2005).
[Crossref]

Sensors (1)

I. García, J. Beloki, J. Zubia, G. Aldabaldetreku, M. A. Illarramendi, and F. Jiménez, “An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig,” Sensors 13(6), 7385–7398 (2013).
[Crossref]

Other (6)

D. Anguita, C. Cravero, and C. Filz, “An innovative technique for the aerodynamic design of turbine blade profiles using artificial intelligence,” in Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003-3737 (2003).

D. A. Curriston, Turbine aerothermal optimization using evolution strategies, M.S. thesis, (Auburn University, 2014).

Y. W. Xiong, X. D. Zhang, and S. Y. Xie, “Effect of thermal fatigue on three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 14th Conference on Test and Measurement Technology of Aero-engine, Xiamen, China, (2018), pp 611–617, (in Chinese).

B. H. Jia, Research on optical fiber based measurement and active control technology of turbine tip clearance, Ph.D. thesis, (Northwestern Polytechnical University, 2013).

S. Y. Xie and X. D. Zhang, “Design and modeling of three-dimensional tip clearance optical probe based on two-circle coaxial optical fiber bundle,” in Proceedings of IEEE International Conference on Sensors, (IEEE, 2016) 16582224.

F. Teng, X. D. Zhang, and S. Y. Xie, “Research on variation mechanism of three-dimensional blade tip clearance of aero-engine,” in Proceedings of the 13th International Conference on Ubiquitous Robots and Ambient Intelligence, (IEEE, 2016) 07734008.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1.
Fig. 1. Space model of 3D tip clearance.
Fig. 2.
Fig. 2. Diagram of optical probe for 3D tip clearance. (a) Measurement principle of 3D tip clearance probe; (b) Cross section of the probe.
Fig. 3.
Fig. 3. Diagram of subinterval in variation scope of 3D tip clearance.
Fig. 4.
Fig. 4. Measurement model of 3D tip clearance.
Fig. 5.
Fig. 5. Framework of measurement system for 3D tip clearance.
Fig. 6.
Fig. 6. Optical probe for 3D tip clearance. (a) Design diagram of 3D tip clearance probe; (b) Surface of the entity.
Fig. 7.
Fig. 7. Photoelectric conversion and amplifier module. (a) Diagram of photoelectric conversion signal; (b) Structure of photoelectric conversion circuit.
Fig. 8.
Fig. 8. Hardware circuits of the measurement system.
Fig. 9.
Fig. 9. Sketch map of the measurement software.
Fig. 10.
Fig. 10. Diagram of the first-order difference method.
Fig. 11.
Fig. 11. Flowchart of the demodulation module.
Fig. 12.
Fig. 12. Dynamic measurement system for 3D tip clearance.
Fig. 13.
Fig. 13. Panel of data acquisition and calibration.
Fig. 14.
Fig. 14. Panel of dynamic signal processing.
Fig. 15.
Fig. 15. Panel of demodulation for 3D tip clearance.
Fig. 16.
Fig. 16. Framework of simulated rotor test bench.
Fig. 17.
Fig. 17. Diagram of simulated blisk and blades.
Fig. 18.
Fig. 18. Dynamic measurement system for 3D tip clearance.
Fig. 19.
Fig. 19. Dynamic sensing signals from three units.
Fig. 20.
Fig. 20. Sensing signals from three units within a blade. (a) Vin; (b) Vout.
Fig. 21.
Fig. 21. Dynamic measurement results of 3D tip clearance of simulated blades.

Tables (3)

Tables Icon

Table 1. Evaluation index of repeated experiments with regard to z0

Tables Icon

Table 2. Evaluation index of repeated experiments with regard to α

Tables Icon

Table 3. Evaluation index of repeated experiments with regard to β

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

M = f ( z 0 , α , β ) = I o u t ( z 0 , α , β ) I i n ( z 0 , α , β )
{ z 1 = z 0 d p tan α z 2 = z 0 d p tan β
M 0 = f c a l ( z 0 )
C z = f c a l ( M 0 )
{ D I M 01 < D I M 0.8 / 2 D I M 0.8 / 2 D I M 01 < D I M 1.4 ( D I M 1.4 D I M 0.8 ) / 2 D I M 1.4 ( D I M 1.4 D I M 0.8 ) / 2 D I M 01 < D I M 2.0 ( D I M 2.0 D I M 1.4 ) / 2 D I M 01 D I M 2.0 ( D I M 2.0 D I M 1.4 ) / 2   C α = 0.2 C α = 0.8 C α = 1.4 C α = 2.0
{ D M 01 = V 0 o u t V 1 o u t V 0 i n V 1 i n D M 02 = V 0 o u t V 2 o u t V 0 i n V 2 i n D M 21 = V 2 o u t V 1 o u t V 2 i n V 1 i n
z 0 = ( 4 k 2 i D o u t 4 k 2 o D i n ) [ ( 4 k 2 i 2 k 3 i ) ( D M 21 D M 02 ) ( 4 k 2 o 4 k 2 i D M 01 ) 2 k 4 i ( D M 21 D M 01 ) ( 4 k 2 o 4 k 2 i D M 02 ) ( 4 k 2 o 4 k 2 i D M 02 ) ( 4 k 2 o 4 k 2 i D M 21 ) ] / { 4 k 2 i [ ( 4 k 2 o 4 k 2 i D M 01 ) ( D M 21 D M 02 ) ( 4 k 2 o 2 k 3 i 2 k 3 o 4 k 2 i ) + ( 4 k 2 o 4 k 2 i D M 01 ) ( 4 k 2 o 4 k 2 i D M 02 ) ( 4 k 2 o 4 k 2 i D M 21 ) + ( 4 k 2 o 4 k 2 i D M 02 ) ( D M 21 D M 01 ) ( 4 k 2 o 2 k 4 i 2 k 4 o 4 k 2 i ) ] } D i n / 4 k 2 i
α = ( 4 k 2 i D o u t 4 k 2 o D i n ) ( D M 21 D M 02 ) ( 4 k 2 o 4 k 2 i D M 01 ) / [ ( 4 k 2 o 4 k 2 i D M 01 ) ( D M 21 D M 02 ) ( 4 k 2 o 2 k 3 i 2 k 3 o 4 k 2 i ) + ( 4 k 2 o 4 k 2 i D M 01 ) ( 4 k 2 o 4 k 2 i D M 02 ) ( 4 k 2 o 4 k 2 i D M 21 ) + ( 4 k 2 o 4 k 2 i D M 02 ) ( D M 21 D M 01 ) ( 4 k 2 o 2 k 4 i 2 k 4 o 4 k 2 i ) ]
β = ( 4 k 2 i D o u t 4 k 2 o D i n ) ( D M 21 D M 01 ) ( 4 k 2 o 4 k 2 i D M 02 ) / [ ( 4 k 2 o 4 k 2 i D M 01 ) ( D M 21 D M 02 ) ( 4 k 2 o 2 k 3 i 2 k 3 o 4 k 2 i ) + ( 4 k 2 o 4 k 2 i D M 01 ) ( 4 k 2 o 4 k 2 i D M 02 ) ( 4 k 2 o 4 k 2 i D M 21 ) + ( 4 k 2 o 4 k 2 i D M 02 ) ( D M 21 D M 01 ) ( 4 k 2 o 2 k 4 i 2 k 4 o 4 k 2 i ) ]
{ D i n = 2 k 1 i 4 k 2 i C z 2 k 3 i C α 2 k 4 i C β D o u t = 2 k 1 o 4 k 2 o C z 2 k 3 o C α 2 k 4 o C β
{ z 0 , α , β , V 0 o u t , V 1 o u t , V 2 o u t , V 0 i n , V 1 i n , V 2 i n , M 0 , M 1 , M 2 , D I M 01 , D I M 02 }
{ z 0 , α , β , k 1 o , k 2 o , k 3 o , k 4 o , k 1 i , k 2 i , k 3 i , k 4 i }
y ( n ) = 1 N k = 0 N 1 x ( n m k ) , n = N 1 M + 1 , N 1 M + 2 , , N 1
{ M 0 , D I M 01 , D I M 02 , D M 01 , D M 02 , D M 21 }
Y ( x ) = { y 1 ( x ) , y 2 ( x ) , , y N ( x ) }
σ = 1 N  -  1 i = 1 N [ Y ¯ i ( x ) Y i ( x ) ] 2
u = σ N = 1 N  -  1 i = 1 N [ Y ¯ i ( x ) Y i ( x ) ] 2 N