Abstract

A novel RF front-end, which could simultaneously realize wideband RF signal self-interference cancellation (SIC), local oscillator (LO) generator based on optoelectronic oscillator (OEO) and frequency down-conversion has been proposed and experimentally demonstrated. In our microwave photonic RF front-end, only one single-polarization optical in-phase and quadrature-phase (IQ) modulator are required. The upper Mach-Zehnder modulator (MZM) of this optical IQ modulator works as a mixer; the lower MZM works as a reference arm; the parent Mach-Zehnder interferometer (MZI) is used to combine two output optical signals of these two child MZMs. In this way, not only self-interference signal is cancelled in optical domain but also frequency down-conversion is realized at the same time. On the other hand, the upper MZM is also shared to form an OEO by using a self-polarization-stabilization technique. By this means, no external LO signal for frequency down-conversion and electrical attenuator for SIC are needed in our scheme, contributing to compact structure and cost reduction. In our proof-of-concept experiment, a LO signal with central frequency of 10 GHz and phase noise of -108.66 dBc/Hz@10kHz is generated. By optimizing the bias points of the used optical IQ modulator, a 5×20MHz 64-ary quadrature amplitude modulation-orthogonal frequency division multiplexing (64QAM-OFDM) LTE-A signal with central frequency of 12.6 GHz is down-converted to 2.6 GHz, and about 28 dB cancellation ratio is achieved. The proposed scheme is suitable for wideband, integrated co-frequency co-time full duplex 5G communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
RF photonic front-end integrating with local oscillator loop

H. Yu, M. Chen, H. Gao, S. Yang, H. Chen, and S. Xie
Opt. Express 22(4) 3918-3923 (2014)

Experimental study of wideband in-band full-duplex communication based on optical self-interference cancellation

Yunhao Zhang, Shilin Xiao, Yinghong Yu, Cao Chen, Meihua Bi, Ling Liu, Lu Zhang, and Weisheng Hu
Opt. Express 24(26) 30139-30148 (2016)

Tunable OEO-based photonic RF receiver with image frequency rejection

Kang Xiao, Xiaofeng Jin, Xiangdong Jin, Xianbin Yu, Qinggui Tan, and Guoyong Wang
Appl. Opt. 58(8) 2127-2131 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” Commun. Surveys Tuts. 18(3), 1617–1655 (2016).
    [Crossref]
  2. R. Waterhouse and D. Novack, “Realizing 5G: microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
    [Crossref]
  3. Y. Gao, A. Wen, X. Wu, Y. Wang, and H. Zhang, “Efficient photonic microwave mixer with compensation of the chromatic dispersion-induced power fading,” J. Lightwave Technol. 34(14), 3440–3448 (2016).
    [Crossref]
  4. Y. Gao, A. Wen, W. Zhang, Y. Wang, and H. Zhang, “Photonic microwave and mm-wave mixer for multichannel fiber transmission,” J. Lightwave Technol. 35(9), 1566–1574 (2017).
    [Crossref]
  5. Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhou, and W. Hu, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system,” Opt. Express 23(26), 33205–33213 (2015).
    [Crossref]
  6. X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
    [Crossref]
  7. X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.
  8. H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
    [Crossref]
  9. Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett. 42(6), 1105–1108 (2017).
    [Crossref]
  10. T. Jiang, R. Wu, S. Yu, D. Wang, and W. Gu, “Microwave photonic phase-tunable mixer,” Opt. Express 25(4), 4519–4527 (2017).
    [Crossref]
  11. Y. Gao, A. Wen, W. Jiang, Y. Fan, and Y. He, “All-optical and broadband microwave fundamental/sub-harmonic I/Q down-converters,” Opt. Express 26(6), 7336–7350 (2018).
    [Crossref]
  12. Y. Chen and S. Pan, “Simultaneous wideband radio-frequency self-interference cancellation and frequency downconversion for in-band full-duplex radio-over-fiber systems,” Opt. Lett. 43(13), 3124–3127 (2018).
    [Crossref]
  13. L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.
  14. L. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, M. Choi, D. Chang, G. K. P. Lei, and D. Liu, “Novel dual-loop optoelectronic oscillator based on self-polarization-stabilization technique,” Opt. Express 25(18), 21993–22003 (2017).
    [Crossref]
  15. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base station (BS) radio transmission and reception (release 8) (3GPP, 2008).
  16. L. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and compact dual-loop optoelectronic oscillator using self-polarization-stabilization technique and multicore fiber,” J. Lightwave Technol. 36(22), 5196–5202 (2018).
    [Crossref]
  17. K. Xu, Z. Wu, J. Zheng, J. Dai, Y. Dai, F. Yin, J. Li, Y. Zhou, and J. Lin, “Long-term stability improvement of tunable optoelectronic oscillator using dynamic feedback compensation,” Opt. Express 23(10), 12935–12941 (2015).
    [Crossref]

2018 (3)

2017 (5)

2016 (2)

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” Commun. Surveys Tuts. 18(3), 1617–1655 (2016).
[Crossref]

Y. Gao, A. Wen, X. Wu, Y. Wang, and H. Zhang, “Efficient photonic microwave mixer with compensation of the chromatic dispersion-induced power fading,” J. Lightwave Technol. 34(14), 3440–3448 (2016).
[Crossref]

2015 (3)

2014 (1)

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Agiwal, M.

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” Commun. Surveys Tuts. 18(3), 1617–1655 (2016).
[Crossref]

Chang, D.

Chen, H.

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Chen, M.

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Chen, W.

Chen, Y.

Cheng, M.

L. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and compact dual-loop optoelectronic oscillator using self-polarization-stabilization technique and multicore fiber,” J. Lightwave Technol. 36(22), 5196–5202 (2018).
[Crossref]

L. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, M. Choi, D. Chang, G. K. P. Lei, and D. Liu, “Novel dual-loop optoelectronic oscillator based on self-polarization-stabilization technique,” Opt. Express 25(18), 21993–22003 (2017).
[Crossref]

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

Choi, M.

Dai, J.

Dai, Y.

Deng, L.

L. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and compact dual-loop optoelectronic oscillator using self-polarization-stabilization technique and multicore fiber,” J. Lightwave Technol. 36(22), 5196–5202 (2018).
[Crossref]

L. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, M. Choi, D. Chang, G. K. P. Lei, and D. Liu, “Novel dual-loop optoelectronic oscillator based on self-polarization-stabilization technique,” Opt. Express 25(18), 21993–22003 (2017).
[Crossref]

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

Fan, Y.

Feng, H.

Fu, S.

L. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and compact dual-loop optoelectronic oscillator using self-polarization-stabilization technique and multicore fiber,” J. Lightwave Technol. 36(22), 5196–5202 (2018).
[Crossref]

L. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, M. Choi, D. Chang, G. K. P. Lei, and D. Liu, “Novel dual-loop optoelectronic oscillator based on self-polarization-stabilization technique,” Opt. Express 25(18), 21993–22003 (2017).
[Crossref]

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

Gao, H.

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Gao, Y.

Gu, W.

Han, X.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

He, Y.

Hu, W.

Huang, L.

L. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and compact dual-loop optoelectronic oscillator using self-polarization-stabilization technique and multicore fiber,” J. Lightwave Technol. 36(22), 5196–5202 (2018).
[Crossref]

L. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, M. Choi, D. Chang, G. K. P. Lei, and D. Liu, “Novel dual-loop optoelectronic oscillator based on self-polarization-stabilization technique,” Opt. Express 25(18), 21993–22003 (2017).
[Crossref]

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

Huo, B.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Jiang, T.

Jiang, W.

Lei, C.

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Lei, G. K. P.

Li, D.

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

Li, J.

Li, X.

Y. Gao, A. Wen, W. Chen, and X. Li, “All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter,” Opt. Lett. 42(6), 1105–1108 (2017).
[Crossref]

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

Lin, J.

Liu, D.

L. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and compact dual-loop optoelectronic oscillator using self-polarization-stabilization technique and multicore fiber,” J. Lightwave Technol. 36(22), 5196–5202 (2018).
[Crossref]

L. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, M. Choi, D. Chang, G. K. P. Lei, and D. Liu, “Novel dual-loop optoelectronic oscillator based on self-polarization-stabilization technique,” Opt. Express 25(18), 21993–22003 (2017).
[Crossref]

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

Novack, D.

R. Waterhouse and D. Novack, “Realizing 5G: microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Pan, S.

Roy, A.

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” Commun. Surveys Tuts. 18(3), 1617–1655 (2016).
[Crossref]

Saxena, N.

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” Commun. Surveys Tuts. 18(3), 1617–1655 (2016).
[Crossref]

Shao, Y.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Tang, M.

L. Huang, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, and D. Liu, “Stable and compact dual-loop optoelectronic oscillator using self-polarization-stabilization technique and multicore fiber,” J. Lightwave Technol. 36(22), 5196–5202 (2018).
[Crossref]

L. Huang, Q. Yu, L. Deng, S. Fu, M. Tang, M. Cheng, M. Zhang, M. Choi, D. Chang, G. K. P. Lei, and D. Liu, “Novel dual-loop optoelectronic oscillator based on self-polarization-stabilization technique,” Opt. Express 25(18), 21993–22003 (2017).
[Crossref]

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

Wang, D.

Wang, Y.

Waterhouse, R.

R. Waterhouse and D. Novack, “Realizing 5G: microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

Wen, A.

Wu, R.

Wu, X.

Wu, Z.

Xiao, S.

Xie, S.

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Xu, K.

Yang, S.

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Yin, F.

Yu, H.

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Yu, Q.

Yu, S.

Zhang, H.

Zhang, L.

Zhang, M.

Zhang, W.

Zhang, Y.

Y. Zhang, S. Xiao, H. Feng, L. Zhang, Z. Zhou, and W. Hu, “Self-interference cancellation using dual-drive Mach-Zehnder modulator for in-band full-duplex radio-over-fiber system,” Opt. Express 23(26), 33205–33213 (2015).
[Crossref]

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

Zhao, M.

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

Zheng, J.

Zhou, Y.

Zhou, Z.

Commun. Surveys Tuts. (1)

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” Commun. Surveys Tuts. 18(3), 1617–1655 (2016).
[Crossref]

IEEE Microw. Mag. (1)

R. Waterhouse and D. Novack, “Realizing 5G: microwave photonics for 5G mobile wireless systems,” IEEE Microw. Mag. 16(8), 84–92 (2015).
[Crossref]

IEEE Photonics J. (1)

X. Han, B. Huo, Y. Shao, and M. Zhao, “Optical RF self-interference cancellation by using an integrated dual parallel MZM,” IEEE Photonics J. 9(2), 1–8 (2017).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (5)

Opt. Lett. (2)

Photonics Res. (1)

H. Yu, M. Chen, H. Gao, C. Lei, H. Zhang, S. Yang, H. Chen, and S. Xie, “Simple photonic-assisted radio frequency down-converter based on optoelectronic oscillator,” Photonics Res. 2(4), B1–B4 (2014).
[Crossref]

Other (3)

X. Li, L. Deng, Y. Zhang, D. Li, M. Cheng, S. Fu, M. Tang, and D. Liu, “A novel self-interfere cancellation technique based on operating-point-optimized optical IQ modulator for co-frequency co-time full duplex wireless communication,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Th3C.6.

L. Huang, Y. Zhang, X. Li, L. Deng, M. Cheng, S. Fu, M. Tang, and D. Liu, “Simultaneous RF signal self-interference cancellation, optoelectronic oscillator and frequency down-conversion for co-frequency co-time full duplex 5G communication,” in European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2019), pp. 1–3.

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base station (BS) radio transmission and reception (release 8) (3GPP, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. The principle of the proposed 5G RF front-end (a), and the schematic diagram of the optical spectra in RF front-end (b).
Fig. 2.
Fig. 2. The contour map of OSIR versus ${\varphi _Q}$ and ${\varphi _P}$ (a), the enlarged contour map of the right dash box (b).
Fig. 3.
Fig. 3. The experimental setup of the proposed microwave photonic RF front.
Fig. 4.
Fig. 4. The measured power spectrum of the generated LO signal with span of 26.5 GHz (a) and 5 MHz (b).
Fig. 5.
Fig. 5. The measured SSB phase noise curves of the single-loop OEOs with 200 m and 2 km SSMF fiber, and the proposed dual-loop OEO with 100 m and 1 km SSMF fiber.
Fig. 6.
Fig. 6. The experimental results of frequency drift (a) and power drift (b) of the generated LO signal at 10 GHz within one hour.
Fig. 7.
Fig. 7. The optical spectra of the optical signal before (a) and after (b) the OBPF.
Fig. 8.
Fig. 8. The electrical spectra of the down converted SOI with and without SIC when the bandwidths of the SI signals are 150 MHz (a) and 300 MHz (b).
Fig. 9.
Fig. 9. The measured EVM performance of 16QAM-OFDM signal versus ESIR when the bandwidths of the SI signals are 150 MHz (a) and 300 MHz (b).
Fig. 10.
Fig. 10. The measured EVM performance of 64QAM-OFDM signal versus ESIR when the bandwidth of the SI signal is 300 MHz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E o u t = E 0 2 exp ( j ω c t ) { cos [ φ I 2 + m 1 cos ( ω R F t + φ 1 ) + m 2 cos ( ω R F t + φ 2 ) + m 3 cos ( ω L O t ) 2 ] + cos [ φ Q 2 + A m 2 cos ( ω R F t + φ 2 ) 2 ] exp ( j φ P ) } ,
E o u t = E 0 2 exp ( j ω c t ) { sin ( φ I 2 ) J 1 ( m 1 2 ) J 0 ( m 2 2 ) J 0 ( m 3 2 ) exp ( j ( ω R F t + φ 1 ) ) [ sin ( φ I 2 ) J 0 ( m 1 2 ) J 1 ( m 2 2 ) J 0 ( m 3 2 ) + sin ( φ Q 2 ) J 1 ( A m 2 2 ) exp ( j φ P ) ] exp ( j ( ω R F t + φ 2 ) ) sin ( φ I 2 ) J 0 ( m 1 2 ) J 0 ( m 2 2 ) J 1 ( m 3 2 ) exp ( j ω L O t ) } .
E o u t = E 0 2 exp ( j ω c t ) { m 1 4 J 0 ( m 3 2 ) exp ( j ( ω R F t + φ 1 ) ) [ J 0 ( m 3 2 ) A sin ( φ Q 2 ) ] m 2 4 exp ( j ( ω R F t + φ 2 ) ) J 1 ( m 3 2 ) exp ( j ω L O t ) } .
I S O I = E 0 2 m 1 8 J 0 ( m 3 2 ) J 1 ( m 3 2 ) cos ( ( ω R F ω L O ) t + φ 1 ) .
O S I R = ( m 1 / m 1 m 2 m 2 ) 2 J 0 2 ( m 3 2 ) J 0 2 ( m 3 2 ) + 2 A J 0 ( m 3 2 ) sin ( φ Q 2 ) cos ( φ P ) + A 2 sin 2 ( φ Q 2 ) .