Abstract

Self-absorption-free laser-induced breakdown spectroscopy (SAF-LIBS) can directly obtain the applicable quasi-optically thin lines by determining the optimal acquisition delay time according to the intensity ratio of doublet lines at specific transition wavelength of the analyzed elements, thus eliminating the influence of self-absorption on quantitative results. In quantitative analysis of samples with a certain content range, the key to the convenient application of this technique is to rapidly select the suitable doublet lines for the element to be analyzed. The theoretical analysis shows that the evolution trend of doublet intensity ratio is monotonous under the assumptions that the plasma is uniform and in local thermal equilibrium (LTE) and the area density (Nl) is a constant, which is also confirmed by the experimental results of Cu and Al. Thus, a rapid spectral line selection criterion for SAF-LIBS applications is derived: only when the doublet intensity ratios measured at the initial and final stages of plasma induced by the boundary sample with the highest element content lie on both sides of the theoretical ratio, the doublet lines can reach quasi-optically thin during plasma evolution and are suitable for SAF-LIBS measurements. This new criterion is helpful to promote the practicality and industrial application of SAF-LIBS technology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range

J. J. Hou, L. Zhang, Y. Zhao, W. G. Ma, L. Dong, W. B. Yin, L. T. Xiao, and S. T. Jia
Opt. Express 27(3) 3409-3421 (2019)

Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements

Jiajia Hou, Lei Zhang, Wangbao Yin, Shunchun Yao, Yang Zhao, Weiguang Ma, Lei Dong, Liantuan Xiao, and Suotang Jia
Opt. Express 25(19) 23024-23034 (2017)

Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri
Appl. Opt. 51(20) 4612-4621 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
    [Crossref]
  2. K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 1–7 (2012).
    [Crossref]
  3. Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
    [Crossref]
  4. M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63(10), 1177–1182 (2008).
    [Crossref]
  5. S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
    [Crossref]
  6. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
    [Crossref]
  7. R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
    [Crossref]
  8. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Press, Cambridge, 2007).
  9. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
    [Crossref]
  10. F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
    [Crossref]
  11. A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
    [Crossref]
  12. L. Sun and H. Yu, “Correction of Self-Absorption Effect in Calibration-Free Laser Induced Breakdown Spectroscopy by Induced Reference Method,” Talanta 79(2), 388–395 (2009).
    [Crossref]
  13. B. A. Alfarraj, C. R. Bhatt, F. Y. Yueh, and J. P. Singh, “Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS),” Appl. Spectrosc. 71(4), 640–650 (2017).
    [Crossref]
  14. T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
    [Crossref]
  15. J. J. Hou, L. Zhang, W. B. Yin, S. C. Yao, Y. Zhao, W. G. Ma, L. Dong, L. T. Xiao, and S. T. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
    [Crossref]
  16. J. J. Hou, L. Zhang, Y. Zhao, W. G. Ma, L. Dong, W. B. Yin, L. T. Xiao, and S. T. Jia, “Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range,” Opt. Express 27(3), 3409–3421 (2019).
    [Crossref]
  17. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
    [Crossref]
  18. Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental selfabsorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
    [Crossref]

2019 (2)

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

J. J. Hou, L. Zhang, Y. Zhao, W. G. Ma, L. Dong, W. B. Yin, L. T. Xiao, and S. T. Jia, “Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range,” Opt. Express 27(3), 3409–3421 (2019).
[Crossref]

2018 (1)

2017 (2)

2014 (1)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

2013 (1)

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

2012 (2)

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 1–7 (2012).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
[Crossref]

2011 (1)

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

2009 (1)

L. Sun and H. Yu, “Correction of Self-Absorption Effect in Calibration-Free Laser Induced Breakdown Spectroscopy by Induced Reference Method,” Talanta 79(2), 388–395 (2009).
[Crossref]

2008 (1)

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63(10), 1177–1182 (2008).
[Crossref]

2006 (1)

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

2005 (1)

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

2003 (1)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

2002 (2)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Alfarraj, B. A.

Amamou, H.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

Aryal, K.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 1–7 (2012).
[Crossref]

Bhatt, C. R.

Bois, A.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

Borges, F. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

Bredice, F.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

Bulajic, D.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Chen, K.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Collins, R. W.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 1–7 (2012).
[Crossref]

Corsi, M.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Cristoforetti, G.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Di Rocco, H. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

Ding, H. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Dong, L.

Dong, M. R.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Duan, J.

Dvir, E.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63(10), 1177–1182 (2008).
[Crossref]

El Sherbini, A. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

El Sherbini, Th. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

Farid, N.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Ferhat, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

Fu, Y. T.

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

Gaft, M.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63(10), 1177–1182 (2008).
[Crossref]

Gu, W. L.

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

Guo, L.

Hai, R.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Hao, Z.

Hegazy, H.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

Hou, J. J.

Hou, Z. Y.

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Jia, S. T.

Khatri, H.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 1–7 (2012).
[Crossref]

Legnaioli, S.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Li, J.

Li, J. Y.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Li, L. Z.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
[Crossref]

Li, T. Q.

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

Li, X.

Li, Z.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
[Crossref]

Liu, J. H.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Lu, J. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Lu, Y.

Luo, G. N.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Ma, W. G.

Marsillac, S.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 1–7 (2012).
[Crossref]

Matheron, P.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

Modiano, H.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63(10), 1177–1182 (2008).
[Crossref]

Ni, W. D.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
[Crossref]

Palleschi, V.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Pan, S. H.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Pardini, L.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

Redon, R.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

Ripert, M.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

Rossetto, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

Salvetti, A.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Schone, U.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63(10), 1177–1182 (2008).
[Crossref]

Singh, J. P.

Sobral, H.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

Sun, L.

L. Sun and H. Yu, “Correction of Self-Absorption Effect in Calibration-Free Laser Induced Breakdown Spectroscopy by Induced Reference Method,” Talanta 79(2), 388–395 (2009).
[Crossref]

Tang, S.

Tang, Y.

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Press, Cambridge, 2007).

Tognoni, E.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

Villagran-Muniz, M.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

Wang, Z.

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
[Crossref]

West, L.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
[Crossref]

Wu, J.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Xiao, L. T.

Yao, S. C.

Yin, W. B.

Yu, H.

L. Sun and H. Yu, “Correction of Self-Absorption Effect in Calibration-Free Laser Induced Breakdown Spectroscopy by Induced Reference Method,” Talanta 79(2), 388–395 (2009).
[Crossref]

Yu, J. L.

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

Yuan, T. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Yueh, F. Y.

Zeng, X.

Zeng, X. Y.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zhang, L.

Zhao, D. Y.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Zhao, Y.

Zhou, W. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zhu, Z.

Anal. Chim. Acta (1)

T. Q. Li, Z. Y. Hou, Y. T. Fu, J. L. Yu, W. L. Gu, and Z. Wang, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference,” Anal. Chim. Acta 1058(13), 39–47 (2019).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Front. Phys. (1)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Int. J. Photoenergy (1)

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 1–7 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transfer 75(6), 747–763 (2002).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transfer 77(4), 365–372 (2003).
[Crossref]

Opt. Express (3)

Spectrochim. Acta, Part B (6)

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta, Part B 57(2), 339–353 (2002).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta, Part B 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 60(12), 1573–1579 (2005).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta, Part B 87(87), 147–152 (2013).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta, Part B 68(2), 58–64 (2012).
[Crossref]

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta, Part B 63(10), 1177–1182 (2008).
[Crossref]

Talanta (1)

L. Sun and H. Yu, “Correction of Self-Absorption Effect in Calibration-Free Laser Induced Breakdown Spectroscopy by Induced Reference Method,” Talanta 79(2), 388–395 (2009).
[Crossref]

Other (1)

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Press, Cambridge, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Relationships between K and T corresponding to Cu I 521.82 nm and Al I 396.15 nm.
Fig. 2.
Fig. 2. Relationships between y and x corresponding to the Cu I doublet and the Al I doublet, where x = K1/Δλ0, and y=(SA1)'SA2-(SA2)'SA1.
Fig. 3.
Fig. 3. Temporal evolutions of ICu 521.82 nm/ICu 515.32 nm with Cu content in the range of 3–60%.
Fig. 4.
Fig. 4. Temporal evolutions of IAl 396.15 nm/ IAl 394.40 nm with Al content in the range of 5–19%.

Tables (1)

Tables Icon

Table 1. Spectroscopic parameters of the Cu I and Al I doublets.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S A = I ( λ 0 ) I 0 ( λ 0 )  =  ( 1 e k ( λ 0 ) l ) k ( λ 0 ) l  =  ( 1 e K / Δ λ 0 ) K / Δ λ 0 ,
K = N l 4 π 2 c A g k λ 0 4 Z ( T ) e E i k B T = C 0 A g k λ 0 4 e E i k B T g 1 e E 1 k B T + g 2 e E 2 k B T + + g j e E j k B T + ,
I ¯ ( λ ) I ¯ 0 ( λ ) = ( S A ) β ,
I ¯ 1,0 I ¯ 2,0 = ( λ n m ,Z λ k i ,Z )( A k i ,Z A n m ,Z )( g k ,Z g n ,Z )exp( E k ,Z E n ,Z k B T ),
I ¯ 1 I ¯ 2 = I ¯ 1, 0 S A 1 β I ¯ 2, 0 S A 2 β  =  C 1 ( S A 1 S A 2 ) β ,
( I ¯ 1 / I ¯ 1 I ¯ 2 I ¯ 2 )  =  C 1 d ( S A 1 β / S A 1 β S A 2 β S A 2 β ) d t  =  C 1 β ( S A 1 S A 2 ) β  - 1 ( ( S A 1 ) S A 2 S A 1 ( S A 2 ) S A 2 2 ) .
( S A 1 )  =  ( K 1 + Δ λ 0 ) e K 1 / Δ λ 0 Δ λ 0 K 1 2 × K 1  =  ( x + 1 ) e x 1 Δ λ 0 x 2 × K 1 ,
( S A 2 )  =  ( K 2 + Δ λ 0 ) e K 2 / Δ λ 0 Δ λ 0 K 2 2 × K 2  =  ( C 2 x + 1 ) e C 2 x 1 Δ λ 0 C 2 x 2 × K 1 ,
( S A 1 ) S A 2 S A 1 ( S A 2 )  =  [ e x ( 1 e C 2 x ) C 2 e C 2 x ( 1 e x ) ] C 2 K 1 2 × Δ λ 0 K 1 .