Abstract

We investigate the effect of nitrogen-vacancy (NV) centers in single crystal diamond on nonlinear optical effects using 40 fs femtosecond laser pulses. The near-infrared femtosecond pulses allow us to study purely nonlinear optical effects, such as optical Kerr effect (OKE) and two-photon absorption (TPA), related to unique optical transitions by electronic structures with NV centers. It is found that both nonlinear optical effects are enhanced by the introduction of NV centers in the N$^{+}$ dose levels of 2.0$\times$10$^{11}$ and 1.0$\times$10$^{12}$ N$^{+}$/cm$^{2}$. In particular, our data demonstrate that the OKE signal is strongly enhanced for the heavily implanted type-IIa diamond. We suggest that the strong enhancement of the OKE is possibly originated from cascading OKE, where the high-density NV centers effectively break the inversion symmetry near the surface region of diamond.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical depth localization of nitrogen-vacancy centers in diamond with nanometer accuracy

Andreas J. Häußler, Pascal Heller, Liam P. McGuinness, Boris Naydenov, and Fedor Jelezko
Opt. Express 22(24) 29986-29995 (2014)

Laser spectroscopic characterization of negatively charged nitrogen-vacancy (NV) centers in diamond

Shova D. Subedi, Vladimir V. Fedorov, Jeremy Peppers, Dmitry V. Martyshkin, Sergey B. Mirov, Linbo Shao, and Marko Loncar
Opt. Mater. Express 9(5) 2076-2087 (2019)

Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect

Hong-Quan Zhao, Masazumi Fujiwara, and Shigeki Takeuchi
Opt. Express 20(14) 15628-15635 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
    [Crossref]
  2. M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
    [Crossref]
  3. K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
    [Crossref]
  4. H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
    [Crossref]
  5. Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
    [Crossref]
  6. N. Naka, T. Kitamura, J. Omachi, and M. Kuwata-Gonokami, “Low-temperature excitons produced by two-photon excitation in high-purity diamond crystals,” Phys. Status Solidi B 245(12), 2676–2679 (2008).
    [Crossref]
  7. K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
    [Crossref]
  8. K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
    [Crossref]
  9. H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
    [Crossref]
  10. S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, “Terahertz sum-frequency excitation of a raman-active phonon,” Phys. Rev. Lett. 119(12), 127402 (2017).
    [Crossref]
  11. Y. R. Shen, “Nonlinear optical susceptibilities,” in Principles of Nonlinear Optics, (Wiley-Interscience, 1984).
  12. B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
    [Crossref]
  13. J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
    [Crossref]
  14. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16(7), 499–501 (1991).
    [Crossref]
  15. F. Trojánek, K. Zídek, B. Dzurnák, M. Kozák, and P. Malý, “Nonlinear optical properties of nanocrystalline diamond,” Opt. Express 18(2), 1349–1357 (2010).
    [Crossref]
  16. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  17. G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
    [Crossref]
  18. R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
    [Crossref]
  19. J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
    [Crossref]
  20. M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Frequency comb generation at thz frequencies by coherent phonon excitation in si,” Nat. Photonics 6(4), 243–247 (2012).
    [Crossref]
  21. J. P. Biersack and J. F. Ziegler, “The stopping and range of ions in solids,” in Ion Implantation Techniques, H. Ryssel and H. Glawischnig, eds. (Springer, 1982).
  22. D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
    [Crossref]
  23. S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
    [Crossref]
  24. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
    [Crossref]
  25. H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).
  26. X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
    [Crossref]
  27. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
    [Crossref]
  28. A. M. Zaitsev, “Refraction,” in Optical Properties of Diamond, (Springer, 2001).
  29. M. Kozák, F. Trojánek, B. Dzurňák, and P. Malý, “Two- and three-photon absorption in chemical vapor deposition diamond,” J. Opt. Soc. Am. B 29(5), 1141–1145 (2012).
    [Crossref]
  30. E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
    [Crossref]
  31. A. Wotherspoon, J. W. Steeds, B. Catmull, and J. Butler, “Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond,” Diamond Relat. Mater. 12(3-7), 652–657 (2003).
    [Crossref]
  32. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
    [Crossref]
  33. A. T. Collins, “The fermi level in diamond,” J. Phys.: Condens. Matter 14(14), 3743–3750 (2002).
    [Crossref]
  34. G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
    [Crossref]
  35. S. D. Subedi, V. V. Fedorov, J. Peppers, D. V. Martyshkin, S. B. Mirov, L. Shao, and M. Loncar, “Laser spectroscopic characterization of negatively charged nitrogen-vacancy (NV$^{-}$−) centers in diamond,” Opt. Mater. Express 9(5), 2076–2087 (2019).
    [Crossref]
  36. N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
    [Crossref]
  37. S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
    [Crossref]
  38. S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Meriles, “Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond,” Nano Lett. 18(6), 4046–4052 (2018).
    [Crossref]
  39. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
    [Crossref]
  40. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
    [Crossref]
  41. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
    [Crossref]

2019 (1)

2018 (3)

S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Meriles, “Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond,” Nano Lett. 18(6), 4046–4052 (2018).
[Crossref]

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

2017 (6)

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
[Crossref]

S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, “Terahertz sum-frequency excitation of a raman-active phonon,” Phys. Rev. Lett. 119(12), 127402 (2017).
[Crossref]

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
[Crossref]

2016 (4)

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref]

2015 (2)

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

2014 (1)

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

2013 (1)

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
[Crossref]

2012 (3)

M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Frequency comb generation at thz frequencies by coherent phonon excitation in si,” Nat. Photonics 6(4), 243–247 (2012).
[Crossref]

M. Kozák, F. Trojánek, B. Dzurňák, and P. Malý, “Two- and three-photon absorption in chemical vapor deposition diamond,” J. Opt. Soc. Am. B 29(5), 1141–1145 (2012).
[Crossref]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

2011 (2)

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

2010 (4)

F. Trojánek, K. Zídek, B. Dzurnák, M. Kozák, and P. Malý, “Nonlinear optical properties of nanocrystalline diamond,” Opt. Express 18(2), 1349–1357 (2010).
[Crossref]

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
[Crossref]

2008 (1)

N. Naka, T. Kitamura, J. Omachi, and M. Kuwata-Gonokami, “Low-temperature excitons produced by two-photon excitation in high-purity diamond crystals,” Phys. Status Solidi B 245(12), 2676–2679 (2008).
[Crossref]

2006 (1)

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

2003 (1)

A. Wotherspoon, J. W. Steeds, B. Catmull, and J. Butler, “Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond,” Diamond Relat. Mater. 12(3-7), 652–657 (2003).
[Crossref]

2002 (2)

A. T. Collins, “The fermi level in diamond,” J. Phys.: Condens. Matter 14(14), 3743–3750 (2002).
[Crossref]

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

2000 (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

1992 (1)

1991 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1982 (1)

G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
[Crossref]

Abe, E.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Aihara, Y.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Almeida, J. M. P.

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

An, T.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Aslam, N.

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
[Crossref]

Awschalom, D. D.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

Babinec, T. M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Biersack, J. P.

J. P. Biersack and J. F. Ziegler, “The stopping and range of ions in solids,” in Ion Implantation Techniques, H. Ryssel and H. Glawischnig, eds. (Springer, 1982).

Bourgeois, E.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Braje, D.

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

Budker, D.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Butler, J.

A. Wotherspoon, J. W. Steeds, B. Catmull, and J. Butler, “Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond,” Diamond Relat. Mater. 12(3-7), 652–657 (2003).
[Crossref]

Catmull, B.

A. Wotherspoon, J. W. Steeds, B. Catmull, and J. Butler, “Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond,” Diamond Relat. Mater. 12(3-7), 652–657 (2003).
[Crossref]

Chu, Y.

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Clevenson, H.

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

Collins, A. T.

A. T. Collins, “The fermi level in diamond,” J. Phys.: Condens. Matter 14(14), 3743–3750 (2002).
[Crossref]

Constantinescu, A. M.

M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Frequency comb generation at thz frequencies by coherent phonon excitation in si,” Nat. Photonics 6(4), 243–247 (2012).
[Crossref]

Dadap, J. I.

De Boni, L.

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

DeSalvo, R.

Dhomkar, S.

S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Meriles, “Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond,” Nano Lett. 18(6), 4046–4052 (2018).
[Crossref]

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref]

Dobrovitski, V. V.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

Downer, M. C.

Dzurnák, B.

Emmanouilidou, E.

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

Englund, D.

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

Fang, Y.

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Fedorov, V. V.

Focht, G. B.

Fons, P.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Fuchs, G. D.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

Fujita, R.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Gali, A.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Godfried, H. P.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Gulka, M.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Hagan, D. J.

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Hall, C. E.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Hase, M.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Frequency comb generation at thz frequencies by coherent phonon excitation in si,” Nat. Photonics 6(4), 243–247 (2012).
[Crossref]

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Hatano, M.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Hayashi, K.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Hemmer, P. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Henshaw, J.

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref]

Heremans, F. J.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

Houwman, E. P.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Hruby, J.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Ishi-Hayase, J.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Ishioka, K.

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Itoh, K. M.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Jarmola, A.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Jayakumar, H.

S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Meriles, “Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond,” Nano Lett. 18(6), 4046–4052 (2018).
[Crossref]

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref]

Jayich, A. C. B.

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

Jelezko, F.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
[Crossref]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
[Crossref]

Jenkins, A.

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

Ji, W.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Kampfrath, T.

S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, “Terahertz sum-frequency excitation of a raman-active phonon,” Phys. Rev. Lett. 119(12), 127402 (2017).
[Crossref]

Kano, H.

Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
[Crossref]

Kato, H.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Katsuragawa, M.

M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Frequency comb generation at thz frequencies by coherent phonon excitation in si,” Nat. Photonics 6(4), 243–247 (2012).
[Crossref]

Kaxiras, E.

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Kayanuma, Y.

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Khan, M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Kikuchi, D.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Kim, Y.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Kitajima, M.

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Kitamura, T.

N. Naka, T. Kitamura, J. Omachi, and M. Kuwata-Gonokami, “Low-temperature excitons produced by two-photon excitation in high-purity diamond crystals,” Phys. Status Solidi B 245(12), 2676–2679 (2008).
[Crossref]

Kolobov, A. V.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Kosaka, H.

Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
[Crossref]

Kozák, M.

Kuroiwa, R.

Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
[Crossref]

Kuwata-Gonokami, M.

N. Naka, T. Kitamura, J. Omachi, and M. Kuwata-Gonokami, “Low-temperature excitons produced by two-photon excitation in high-purity diamond crystals,” Phys. Status Solidi B 245(12), 2676–2679 (2008).
[Crossref]

Laraoui, A.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Li, H. P.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Liu, S.

X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
[Crossref]

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Liu, X.

X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
[Crossref]

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Loncar, M.

S. D. Subedi, V. V. Fedorov, J. Peppers, D. V. Martyshkin, S. B. Mirov, L. Shao, and M. Loncar, “Laser spectroscopic characterization of negatively charged nitrogen-vacancy (NV$^{-}$−) centers in diamond,” Opt. Mater. Express 9(5), 2076–2087 (2019).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Lukin, M. D.

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Maehrlein, S.

S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, “Terahertz sum-frequency excitation of a raman-active phonon,” Phys. Rev. Lett. 119(12), 127402 (2017).
[Crossref]

Makino, T.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Malý, P.

Martineau, P. M.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Martyshkin, D. V.

Maze, J. R.

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Meijer, J.

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
[Crossref]

Mendonca, C. R.

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

Meredith, G. R.

G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
[Crossref]

Meriles, C. A.

S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Meriles, “Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond,” Nano Lett. 18(6), 4046–4052 (2018).
[Crossref]

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref]

Minami, F.

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

Mirov, S. B.

Mizuochi, N.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Mondal, R.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Monnai, Y.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Muniz, S. R.

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

Murakami, S.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Naka, N.

N. Naka, T. Kitamura, J. Omachi, and M. Kuwata-Gonokami, “Low-temperature excitons produced by two-photon excitation in high-purity diamond crystals,” Phys. Status Solidi B 245(12), 2676–2679 (2008).
[Crossref]

Nakamura, K. G.

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Naydenov, B.

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
[Crossref]

Nelissen, W. G. M.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Nesladek, M.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Neumann, P.

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
[Crossref]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Ni, N.

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

Niikura, N.

Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
[Crossref]

Norimatsu, K.

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Nothaft, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Ogura, M.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Ohya, K.

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Okano, Y.

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

Okushi, H.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Omachi, J.

N. Naka, T. Kitamura, J. Omachi, and M. Kuwata-Gonokami, “Low-temperature excitons produced by two-photon excitation in high-purity diamond crystals,” Phys. Status Solidi B 245(12), 2676–2679 (2008).
[Crossref]

Oncebay, C.

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

Ovartchaiyapong, P.

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

Paarmann, A.

S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, “Terahertz sum-frequency excitation of a raman-active phonon,” Phys. Rev. Lett. 119(12), 127402 (2017).
[Crossref]

Pelliccione, M.

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

Peng, X.

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
[Crossref]

Peppers, J.

Petek, H.

M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Frequency comb generation at thz frequencies by coherent phonon excitation in si,” Nat. Photonics 6(4), 243–247 (2012).
[Crossref]

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Pezzagna, S.

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
[Crossref]

Prananto, D.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

Reetz, C.

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

Reitze, D. H.

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Saijo, S.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Saito, Y.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Saitoh, E.

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Sasaki, H.

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Sasaki, K.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Scarsbrook, G. A.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Schenkel, T.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

Schröder, T.

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

Sekiguchi, Y.

Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
[Crossref]

Shao, L.

Sheik-Bahae, M.

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
[Crossref]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, Y. R.

Y. R. Shen, “Nonlinear optical susceptibilities,” in Principles of Nonlinear Optics, (Wiley-Interscience, 1984).

Shikano, Y.

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Siqueira, J. P.

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

Siyushev, P.

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Song, Y.

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Steeds, J. W.

A. Wotherspoon, J. W. Steeds, B. Catmull, and J. Butler, “Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond,” Diamond Relat. Mater. 12(3-7), 652–657 (2003).
[Crossref]

Stegeman, G.

Stryland, E. W. V.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Subedi, S. D.

Takahashi, H.

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Takeuchi, D.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Tanaka, R.

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

Tang, S. H.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Teale, C.

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

Togan, E.

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Tominaga, J.

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Toyli, D. M.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

Trifonov, A.

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Trojánek, F.

Trusheim, M. E.

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

Tsuruta, T.

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Twitchen, D. J.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Uozumi, S.

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

Van Stryland, E. W.

Vanherzeele, H.

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

Waldherr, G.

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
[Crossref]

Watanabe, H.

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Weis, C. D.

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

Whitehead, A. J.

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

Wolf, M.

S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, “Terahertz sum-frequency excitation of a raman-active phonon,” Phys. Rev. Lett. 119(12), 127402 (2017).
[Crossref]

Wotherspoon, A.

A. Wotherspoon, J. W. Steeds, B. Catmull, and J. Butler, “Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond,” Diamond Relat. Mater. 12(3-7), 652–657 (2003).
[Crossref]

Wrachtrup, J.

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
[Crossref]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
[Crossref]

Wu, X.

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Yamasaki, S.

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Yi, T.

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Yin, M.

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Zaitsev, A. M.

A. M. Zaitsev, “Refraction,” in Optical Properties of Diamond, (Springer, 2001).

Zangara, P. R.

S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Meriles, “Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond,” Nano Lett. 18(6), 4046–4052 (2018).
[Crossref]

Zhang, B.

X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
[Crossref]

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Zhang, J.

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Zhang, Y.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Zhong, Q.

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
[Crossref]

Zídek, K.

Ziegler, J. F.

J. P. Biersack and J. F. Ziegler, “The stopping and range of ions in solids,” in Ion Implantation Techniques, H. Ryssel and H. Glawischnig, eds. (Springer, 1982).

Appl. Phys. B: Lasers Opt. (1)

M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single z-scan method,” Appl. Phys. B: Lasers Opt. 70(4), 587–591 (2000).
[Crossref]

Appl. Phys. Express (1)

D. Kikuchi, D. Prananto, K. Hayashi, A. Laraoui, N. Mizuochi, M. Hatano, E. Saitoh, Y. Kim, C. A. Meriles, and T. An, “Long-distance excitation of nitrogen-vacancy centers in diamond via surface spin waves,” Appl. Phys. Express 10(10), 103004 (2017).
[Crossref]

Appl. Phys. Lett. (1)

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Diamond Relat. Mater. (1)

A. Wotherspoon, J. W. Steeds, B. Catmull, and J. Butler, “Photoluminescence and positron annihilation measurements of nitrogen doped CVD diamond,” Diamond Relat. Mater. 12(3-7), 652–657 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Chem. Phys. (1)

G. R. Meredith, “Second-order cascading in third-order nonlinear optical processes,” J. Chem. Phys. 77(12), 5863–5871 (1982).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

A. T. Collins, “The fermi level in diamond,” J. Phys.: Condens. Matter 14(14), 3743–3750 (2002).
[Crossref]

J. Phys.: Conf. Ser. (1)

X. Liu, B. Zhang, Q. Zhong, X. Peng, and S. Liu, “Ultrafast dynamics of photoexcited free carriers in CVD diamonds,” J. Phys.: Conf. Ser. 867, 012013 (2017).
[Crossref]

Nano Lett. (1)

S. Dhomkar, H. Jayakumar, P. R. Zangara, and C. A. Meriles, “Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond,” Nano Lett. 18(6), 4046–4052 (2018).
[Crossref]

Nat. Commun. (1)

E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, “Photoelectric detection of electron spin resonance of nitrogen-vacancy centers in diamond,” Nat. Commun. 6(1), 8577 (2015).
[Crossref]

Nat. Nanotechnol. (2)

M. Pelliccione, A. Jenkins, P. Ovartchaiyapong, C. Reetz, E. Emmanouilidou, N. Ni, and A. C. B. Jayich, “Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor,” Nat. Nanotechnol. 11(8), 700–705 (2016).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref]

Nat. Photonics (5)

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5(7), 397–405 (2011).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lončar, “Diamond nonlinear photonics,” Nat. Photonics 8(5), 369–374 (2014).
[Crossref]

N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, “Electrically driven single-photon source at room temperature in diamond,” Nat. Photonics 6(5), 299–303 (2012).
[Crossref]

Y. Sekiguchi, N. Niikura, R. Kuroiwa, H. Kano, and H. Kosaka, “Optical holonomic single quantum gates with a geometric spin under a zero field,” Nat. Photonics 11(5), 309–314 (2017).
[Crossref]

M. Hase, M. Katsuragawa, A. M. Constantinescu, and H. Petek, “Frequency comb generation at thz frequencies by coherent phonon excitation in si,” Nat. Photonics 6(4), 243–247 (2012).
[Crossref]

Nat. Phys. (2)

G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spin coherence of a single nitrogen–vacancy centre in diamond,” Nat. Phys. 6(9), 668–672 (2010).
[Crossref]

H. Clevenson, M. E. Trusheim, C. Teale, T. Schröder, D. Braje, and D. Englund, “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nat. Phys. 11(5), 393–397 (2015).
[Crossref]

New J. Phys. (3)

N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, “Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection,” New J. Phys. 15(1), 013064 (2013).
[Crossref]

S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12(6), 065017 (2010).
[Crossref]

J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Optik (1)

B. Zhang, S. Liu, X. Wu, T. Yi, Y. Fang, J. Zhang, Q. Zhong, X. Peng, X. Liu, and Y. Song, “Ultrafast dynamics of carriers and nonlinear refractive index in bulk polycrystalline diamond,” Optik 130, 1073–1079 (2017).
[Crossref]

Phys. Rev. B (2)

K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta, H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y. Shikano, and Y. Kayanuma, “Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond,” Phys. Rev. B 94(2), 024303 (2016).
[Crossref]

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66(16), 165217 (2002).
[Crossref]

Phys. Rev. Lett. (1)

S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, “Terahertz sum-frequency excitation of a raman-active phonon,” Phys. Rev. Lett. 119(12), 127402 (2017).
[Crossref]

Phys. Status Solidi B (1)

N. Naka, T. Kitamura, J. Omachi, and M. Kuwata-Gonokami, “Low-temperature excitons produced by two-photon excitation in high-purity diamond crystals,” Phys. Status Solidi B 245(12), 2676–2679 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, “Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Rev. Sci. Instrum. 87(5), 053904 (2016).
[Crossref]

Sci. Adv. (1)

S. Dhomkar, J. Henshaw, H. Jayakumar, and C. A. Meriles, “Long-term data storage in diamond,” Sci. Adv. 2(10), e1600911 (2016).
[Crossref]

Sci. Rep. (3)

H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma, Y. Shikano, and K. G. Nakamura, “Coherent control theory and experiment of optical phonons in diamond,” Sci. Rep. 8(1), 9609 (2018).
[Crossref]

J. M. P. Almeida, C. Oncebay, J. P. Siqueira, S. R. Muniz, L. De Boni, and C. R. Mendonca, “Nonlinear optical spectrum of diamond at femtosecond regime,” Sci. Rep. 7(1), 14320 (2017).
[Crossref]

R. Mondal, Y. Saito, Y. Aihara, P. Fons, A. V. Kolobov, J. Tominaga, S. Murakami, and M. Hase, “A cascading nonlinear magneto-optical effect in topological insulators,” Sci. Rep. 8(1), 3908 (2018).
[Crossref]

Other (4)

Y. R. Shen, “Nonlinear optical susceptibilities,” in Principles of Nonlinear Optics, (Wiley-Interscience, 1984).

A. M. Zaitsev, “Refraction,” in Optical Properties of Diamond, (Springer, 2001).

H. P. Godfried, G. A. Scarsbrook, D. J. Twitchen, E. P. Houwman, W. G. M. Nelissen, A. J. Whitehead, C. E. Hall, and P. M. Martineau, “Optical quality diamond material,” US Patent 8,936,774 B2 (2015).

J. P. Biersack and J. F. Ziegler, “The stopping and range of ions in solids,” in Ion Implantation Techniques, H. Ryssel and H. Glawischnig, eds. (Springer, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) The experimental set-up for Z-scan measurement using the closed aperture mode. (b) Schematics of femtosecond pump-probe experiment with the reflection mode. The difference of the photocurrent of the two Si-pin detectors was amplified, and averaged in a digital oscilloscope using the scanning time delay at 20 Hz.
Fig. 2.
Fig. 2. Schematic for the production of NV centers by N$^{+}$ ion implantation and subsequent annealing in diamond crystalline samples. The N$^{+}$ ions implanted into diamond produce vacancies (V), which are required to make nitrogen-vacancy (NV) centers. Annealing the diamond sample induces diffusion of the vacancies, which can then be trapped by the implanted nitrogen atoms.
Fig. 3.
Fig. 3. Closed-aperture Z-scan results at $I_{0}\approx$20 mJ/cm$^{2}$ obtained for the pure diamond crystal and NV center introduced diamond at different dose levels, (a) non-implanted, (b) 2.0$\times$10$^{11}$N$^{+}$/cm$^{2}$, and (c) 1.0$\times$10$^{12}$ N$^{+}$/cm$^{2}$. The black solid lines represent the fit to the data using Eq. (2).
Fig. 4.
Fig. 4. Pump-probe reflectivity results obtained for the different dose levels of CVD diamond crystals at $I_{0}\approx$30 mJ/cm$^{2}$.
Fig. 5.
Fig. 5. Pump fluence dependence of the $|\Delta R/R|$ signal observed in diamond samples. The solid curves are the fit using a function of $aI_{0} + bI_{0}^{2}$.
Fig. 6.
Fig. 6. Energy diagram for the NV$^-$ and NV$^0$ states in diamond. The NV introduced samples have natively the mid-gap electronic state of the negatively charged nitrogen-vacancy, i.e., NV$^-$ state (Left panel). The energy levels of the NV$^-$ and NV$^0$ states are defined by the binding energy of the NV center. The Fermi level of our sample in the NV$^-$ state (the nitrogen concentration of $\sim$10$^{17}$cm$^{-3}$) would be $\approx$4 eV above the valence band (VB) [33], and thereby electrons are populated at the $^{3}$A$_{2}$ ground state in the equilibrium. The lifetime of the $^{3}$E state is generally nanosecond time scale [34], however, in the present non-resonant case, intermediate state given by the dashed line should have very short lifetime (an order of the pulse length) and it does not significantly contribute to the TPA signal. The pumping action promotes an electron from the $^{3}$A$_{2}$ ground state into the conduction band (CB) via TPA (transition ①), resulting in generation of a free electron, which is immediately followed by the formation of the neutrally charged NV$^0$ state (Ionization; right panel). Since femtosecond laser pulses can follow the ultrafast carrier dynamics in the CB, a part of the free carriers can absorb a probe photon (free carrier absorption; transition ② ) when the pump and probe pulses overlap each other at $t$ = 0, resulting in the negative peak signal on $\Delta R/R$. For the NV$^0$ state, unlike in the case of irradiation of green laser, TPA (or one-phonon excitation) from the $^{2}$E ground state with a 1.55 eV probe photon (transition ③) is hard to occur because of the energy mismatch and therefore recombination process via further excitation of electron from the VB into the $^{2}$E ground state (transition ④) is not available.

Tables (2)

Tables Icon

Table 1. The fitting parameters obtained using Eq. (2). The standard deviation of coefficients were obtained during the fitting procedure with Igor Pro.

Tables Icon

Table 2. The nonlinear refraction coefficient, $n_{2}$, and the nonlinear absorption coefficient, $\beta$, obtained for different N$^{+}$ dose levels, by using the fitting parameters described in the main text. The standard deviations of coefficients were obtained during the fitting procedure with Igor Pro.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = χ b u l k ( 3 ) + χ N V ( 3 ) + χ N V ( 2 ) χ N V ( 2 ) ,
T ( z , Δ ϕ 0 , Δ ψ 0 ) = 1 + 4 x ( x 2 + 9 ) ( x 2 + 1 ) Δ ϕ 0 2 ( x 2 + 3 ) ( x 2 + 9 ) ( x 2 + 1 ) Δ ψ 0 ,
Δ R R = 4 n 0 2 1 Δ n 0.84 ( Δ n O K E + Δ n T P A ) ,
Δ n T P A = 2 π e 2 N n 0 m ω 2 = 2 π e 2 n 0 m ω 2 β I 0 2 2 ω τ p = κ β I 0 2 .

Metrics