Abstract

We experimentally fabricate circular core 3-dimensional (3D) crossover single-mode polymer optical waveguides using a photomask free unique fabrication technique named the Mosquito method for realizing channel shuffling. The 3D crossover structure is accomplished by forming four cores (2 ch. × 2 ch.) with different heights: the last two channels cross over the first two channels with horizontal and vertical core bending. We compare the insertion losses between the fabricated 3D single-mode crossover waveguide and 3D S-bend core waveguides fabricated separately, which correspond to the lower and upper channels in the crossover waveguide. Then, we investigate the effect of the core crossover on the loss, and find that almost negligible additional loss is observed. The average insertion losses of this 6-cm long 3D crossover single-mode waveguide are 3.95 and 3.81 dB at 1310 nm, and 5.74 and 4.80 dB at 1550-nm wavelength, for the lower and upper channels, respectively. The interchannel crosstalk in this crossover waveguide is observed to be lower than −40 dB, while the 1 dB radial alignment tolerance is ± 1.7 and ± 2.1 µm at 1310 and 1550 nm, respectively. These results suggest that the fabricated circular core single-mode 3D crossover polymer waveguides could have a great impact for high-bandwidth-density on-board and inter-chip optical interconnect applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method

Ryota Kinoshita, Daisuke Suganuma, and Takaaki Ishigure
Opt. Express 22(7) 8426-8437 (2014)

Circular-core single-mode polymer waveguide for high-density and high-speed optical interconnects application at 1550 nm

Xiao Xu, Lin Ma, Shoulin Jiang, and Zuyuan He
Opt. Express 25(21) 25689-25696 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
    [Crossref]
  2. N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
    [Crossref]
  3. T. Bechtold and D. Hohlfeld, “Multi-physical simulation of high performance computing platform integrating polymer waveguides,” in Proceeding of IEEE conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, (IEEE, 2016), pp. 1/6–6/6.
  4. N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightwave Technol. 33(4), 882–888 (2015).
    [Crossref]
  5. F. E. Doany, C. L. Schow, B. G. Lee, R. A. Budd, C. W. Baks, C. K. Tsang, J. U. Knickerbocker, R. Dangel, B. Chan, H. Lin, C. Carver, J. Haung, J. Berry, D. Bajkowski, F. Libsch, and J. A. Kash, “Terabit/s-class optical PCB links incorporating 360-Gb/s bidirectional 850 nm parallel optical transceivers,” J. Lightwave Technol. 30(4), 560–571 (2012).
    [Crossref]
  6. N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
    [Crossref]
  7. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20(2), 153–161 (1971).
    [Crossref]
  8. P. Y. Chen, D. H. Lawrie, P. C. Yew, and D. A. Padua, “Interconnection networks using shuffles,” Computer 14(12), 55–64 (1981).
    [Crossref]
  9. K. Abe, Y. Oizumi, Y Taira, and T. Ishigure, “Low loss channel-shuffling polymer waveguides: design and fabrication,” in Proceeding of IEEE Electronic Components and Technology Conference (IEEE, 2017), pp. 526–531.
  10. Y. Koike, Y. Takezawa, and Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27(3), 486–491 (1988).
    [Crossref]
  11. H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2016), pp. 149–150.
  12. R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
    [Crossref]
  13. O. F. Rasel and T. Ishigure, “Fabrication for 3-dimensionally shuffled polymer waveguide with GI circular core using the Mosquito method,” in Proceeding of IEEE Photonics Conference (IEEE, 2017), pp. 657–658.
  14. O. F. Rasel, A. Yamauchi, and T. Ishigure, “Low-loss 3-dimensional shuffling graded-index (GI) polymer optical waveguides for optical printed circuit boards,” IEICE Trans. Electron. E101.C(7), 509–517 (2018).
    [Crossref]
  15. A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
    [Crossref]
  16. M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
    [Crossref]
  17. J. Lv, X. Hao, and F. Chen, “Three-dimensional waveguide coupler/beam splitter in lithium niobate crystals by femtosecond laser writing,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO), (OSA, 2017), paper JTu5A.72.
  18. Y. Abe, M. Kobayashi, M. Hirayama, and R. Nagase, “scalable optical fiber wiring system for over 10,000-fiber shuffler,” IEICE Trans. Electron. E88-C(8), 1755–1763 (2005).
    [Crossref]
  19. A. R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. Ken Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
    [Crossref]
  20. S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler,” Opt. Express 16(25), 20803–20808 (2008).
    [Crossref]
  21. R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high-performance computers,” Opt. Express 23(4), 4736–4750 (2015).
    [Crossref]
  22. R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
    [Crossref]
  23. K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express 25(8), 8524–8533 (2017).
    [Crossref]
  24. O. F. Rasel and T. Ishigure, “3-dimensional channel-shuffling single-mode polymer waveguides: design and fabrication,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2018), pp.143–144.

2018 (3)

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
[Crossref]

O. F. Rasel, A. Yamauchi, and T. Ishigure, “Low-loss 3-dimensional shuffling graded-index (GI) polymer optical waveguides for optical printed circuit boards,” IEICE Trans. Electron. E101.C(7), 509–517 (2018).
[Crossref]

R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

2017 (2)

K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express 25(8), 8524–8533 (2017).
[Crossref]

A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
[Crossref]

2015 (2)

2014 (2)

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref]

M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

2013 (1)

2012 (2)

2008 (1)

2006 (1)

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

2005 (1)

Y. Abe, M. Kobayashi, M. Hirayama, and R. Nagase, “scalable optical fiber wiring system for over 10,000-fiber shuffler,” IEICE Trans. Electron. E88-C(8), 1755–1763 (2005).
[Crossref]

1988 (1)

1981 (1)

P. Y. Chen, D. H. Lawrie, P. C. Yew, and D. A. Padua, “Interconnection networks using shuffles,” Computer 14(12), 55–64 (1981).
[Crossref]

1971 (1)

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20(2), 153–161 (1971).
[Crossref]

Abe, K.

K. Abe, Y. Oizumi, Y Taira, and T. Ishigure, “Low loss channel-shuffling polymer waveguides: design and fabrication,” in Proceeding of IEEE Electronic Components and Technology Conference (IEEE, 2017), pp. 526–531.

Abe, Y.

Y. Abe, M. Kobayashi, M. Hirayama, and R. Nagase, “scalable optical fiber wiring system for over 10,000-fiber shuffler,” IEICE Trans. Electron. E88-C(8), 1755–1763 (2005).
[Crossref]

Amb, C. M.

Bajkowski, D.

Baks, C. W.

Bamiedakis, N.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
[Crossref]

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightwave Technol. 33(4), 882–888 (2015).
[Crossref]

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

Bechtold, T.

T. Bechtold and D. Hohlfeld, “Multi-physical simulation of high performance computing platform integrating polymer waveguides,” in Proceeding of IEEE conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, (IEEE, 2016), pp. 1/6–6/6.

Berry, J.

Buckmann, T.

M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Budd, R. A.

Carver, C.

Chan, B.

Chen, F.

J. Lv, X. Hao, and F. Chen, “Three-dimensional waveguide coupler/beam splitter in lithium niobate crystals by femtosecond laser writing,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO), (OSA, 2017), paper JTu5A.72.

Chen, J.

Chen, P. Y.

P. Y. Chen, D. H. Lawrie, P. C. Yew, and D. A. Padua, “Interconnection networks using shuffles,” Computer 14(12), 55–64 (1981).
[Crossref]

Chu, D.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
[Crossref]

Clapp, T. V.

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

Dangel, A. R.

Dangel, R.

DeGroot, J. V.

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

DeShazer, D. J.

Doany, F. E.

Fang, Q.

Freymann, G.

A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
[Crossref]

Gruhler, N.

M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Gustavsson, J. S.

Hao, X.

J. Lv, X. Hao, and F. Chen, “Three-dimensional waveguide coupler/beam splitter in lithium niobate crystals by femtosecond laser writing,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO), (OSA, 2017), paper JTu5A.72.

Haung, J.

Hirayama, M.

Y. Abe, M. Kobayashi, M. Hirayama, and R. Nagase, “scalable optical fiber wiring system for over 10,000-fiber shuffler,” IEICE Trans. Electron. E88-C(8), 1755–1763 (2005).
[Crossref]

Hofrichter, J.

Hohlfeld, D.

T. Bechtold and D. Hohlfeld, “Multi-physical simulation of high performance computing platform integrating polymer waveguides,” in Proceeding of IEEE conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, (IEEE, 2016), pp. 1/6–6/6.

Horst, F.

Ingham, J. D.

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

Ishigure, T.

O. F. Rasel, A. Yamauchi, and T. Ishigure, “Low-loss 3-dimensional shuffling graded-index (GI) polymer optical waveguides for optical printed circuit boards,” IEICE Trans. Electron. E101.C(7), 509–517 (2018).
[Crossref]

K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express 25(8), 8524–8533 (2017).
[Crossref]

R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded-index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express 22(7), 8426–8437 (2014).
[Crossref]

H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2016), pp. 149–150.

K. Abe, Y. Oizumi, Y Taira, and T. Ishigure, “Low loss channel-shuffling polymer waveguides: design and fabrication,” in Proceeding of IEEE Electronic Components and Technology Conference (IEEE, 2017), pp. 526–531.

O. F. Rasel and T. Ishigure, “Fabrication for 3-dimensionally shuffled polymer waveguide with GI circular core using the Mosquito method,” in Proceeding of IEEE Photonics Conference (IEEE, 2017), pp. 657–658.

O. F. Rasel and T. Ishigure, “3-dimensional channel-shuffling single-mode polymer waveguides: design and fabrication,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2018), pp.143–144.

Jubin, D.

Kash, J. A.

Ken Weidner, W.

Kinoshita, R.

Knickerbocker, J. U.

Kobayashi, M.

Y. Abe, M. Kobayashi, M. Hirayama, and R. Nagase, “scalable optical fiber wiring system for over 10,000-fiber shuffler,” IEICE Trans. Electron. E88-C(8), 1755–1763 (2005).
[Crossref]

Koike, Y.

Kwong, D. L.

La Porta, A.

Landowski, A.

A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
[Crossref]

Larsson, A.

Lawrie, D. H.

P. Y. Chen, D. H. Lawrie, P. C. Yew, and D. A. Padua, “Interconnection networks using shuffles,” Computer 14(12), 55–64 (1981).
[Crossref]

Lee, B. G.

Libsch, F.

Lin, H.

Lo, G. Q.

Lv, J.

J. Lv, X. Hao, and F. Chen, “Three-dimensional waveguide coupler/beam splitter in lithium niobate crystals by femtosecond laser writing,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO), (OSA, 2017), paper JTu5A.72.

Meier, N.

Miller, D. A. B.

Nagase, R.

Y. Abe, M. Kobayashi, M. Hirayama, and R. Nagase, “scalable optical fiber wiring system for over 10,000-fiber shuffler,” IEICE Trans. Electron. E88-C(8), 1755–1763 (2005).
[Crossref]

Offrein, B. J.

Ohtsuka, Y.

Oizumi, Y.

K. Abe, Y. Oizumi, Y Taira, and T. Ishigure, “Low loss channel-shuffling polymer waveguides: design and fabrication,” in Proceeding of IEEE Electronic Components and Technology Conference (IEEE, 2017), pp. 526–531.

Padua, D. A.

P. Y. Chen, D. H. Lawrie, P. C. Yew, and D. A. Padua, “Interconnection networks using shuffles,” Computer 14(12), 55–64 (1981).
[Crossref]

Penty, R. V.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
[Crossref]

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightwave Technol. 33(4), 882–888 (2015).
[Crossref]

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

Pernice, W.

M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Porta, A. L.

R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

Rasel, O. F.

O. F. Rasel, A. Yamauchi, and T. Ishigure, “Low-loss 3-dimensional shuffling graded-index (GI) polymer optical waveguides for optical printed circuit boards,” IEICE Trans. Electron. E101.C(7), 509–517 (2018).
[Crossref]

O. F. Rasel and T. Ishigure, “Fabrication for 3-dimensionally shuffled polymer waveguide with GI circular core using the Mosquito method,” in Proceeding of IEEE Photonics Conference (IEEE, 2017), pp. 657–658.

O. F. Rasel and T. Ishigure, “3-dimensional channel-shuffling single-mode polymer waveguides: design and fabrication,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2018), pp.143–144.

Schow, C. L.

Schumann, M.

M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Seifried, M.

R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

Shi, F.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
[Crossref]

Soganci, I. M.

Song, J.

Stone, H. S.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20(2), 153–161 (1971).
[Crossref]

Suganuma, D.

Swatowski, B. W.

Taira, Y

K. Abe, Y. Oizumi, Y Taira, and T. Ishigure, “Low loss channel-shuffling polymer waveguides: design and fabrication,” in Proceeding of IEEE Electronic Components and Technology Conference (IEEE, 2017), pp. 526–531.

Takezawa, Y.

Tao, S. H.

Toda, H.

H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2016), pp. 149–150.

Tsang, C. K.

Wegener, M.

M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Weiss, J.

Westbergh, P.

White, I. H.

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
[Crossref]

N. Bamiedakis, J. Chen, P. Westbergh, J. S. Gustavsson, A. Larsson, R. V. Penty, and I. H. White, “40 Gb/s data transmission over a 1-m long multimode polymer spiral waveguide for board-level optical interconnects,” J. Lightwave Technol. 33(4), 882–888 (2015).
[Crossref]

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

Widera, A.

A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
[Crossref]

Wingerter, S.

A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
[Crossref]

Yamauchi, A.

O. F. Rasel, A. Yamauchi, and T. Ishigure, “Low-loss 3-dimensional shuffling graded-index (GI) polymer optical waveguides for optical printed circuit boards,” IEICE Trans. Electron. E101.C(7), 509–517 (2018).
[Crossref]

Yasuhara, K.

Yew, P. C.

P. Y. Chen, D. H. Lawrie, P. C. Yew, and D. A. Padua, “Interconnection networks using shuffles,” Computer 14(12), 55–64 (1981).
[Crossref]

Yu, F.

Yu, M. B.

Zepp, D.

A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
[Crossref]

APL Photonics (1)

A. Landowski, D. Zepp, S. Wingerter, G. Freymann, and A. Widera, “Direct laser written polymer waveguides with out of plane couplers for optical chips,” APL Photonics 2(10), 106102 (2017).
[Crossref]

Appl. Opt. (1)

Computer (1)

P. Y. Chen, D. H. Lawrie, P. C. Yew, and D. A. Padua, “Interconnection networks using shuffles,” Computer 14(12), 55–64 (1981).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–11 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Bamiedakis, F. Shi, D. Chu, R. V. Penty, and I. H. White, “High-speed data transmission over flexible multimode polymer waveguides under flexure,” IEEE Photonics Technol. Lett. 30(14), 1329–1332 (2018).
[Crossref]

IEEE Trans. Comput. (1)

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20(2), 153–161 (1971).
[Crossref]

IEICE Trans. Electron. (2)

Y. Abe, M. Kobayashi, M. Hirayama, and R. Nagase, “scalable optical fiber wiring system for over 10,000-fiber shuffler,” IEICE Trans. Electron. E88-C(8), 1755–1763 (2005).
[Crossref]

O. F. Rasel, A. Yamauchi, and T. Ishigure, “Low-loss 3-dimensional shuffling graded-index (GI) polymer optical waveguides for optical printed circuit boards,” IEICE Trans. Electron. E101.C(7), 509–517 (2018).
[Crossref]

J. Lightwave Technol. (3)

Light: Sci. Appl. (1)

M. Schumann, T. Buckmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light: Sci. Appl. 3(6), e175 (2014).
[Crossref]

Opt. Express (5)

Proc. SPIE (1)

N. Bamiedakis, J. D. Ingham, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Multimode polymer waveguides for high-speed optical interconnects,” Proc. SPIE 10567, 146 (2006).
[Crossref]

Other (6)

J. Lv, X. Hao, and F. Chen, “Three-dimensional waveguide coupler/beam splitter in lithium niobate crystals by femtosecond laser writing,” in Proceeding of Conference on Lasers and Electro-Optics (CLEO), (OSA, 2017), paper JTu5A.72.

O. F. Rasel and T. Ishigure, “Fabrication for 3-dimensionally shuffled polymer waveguide with GI circular core using the Mosquito method,” in Proceeding of IEEE Photonics Conference (IEEE, 2017), pp. 657–658.

T. Bechtold and D. Hohlfeld, “Multi-physical simulation of high performance computing platform integrating polymer waveguides,” in Proceeding of IEEE conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, (IEEE, 2016), pp. 1/6–6/6.

O. F. Rasel and T. Ishigure, “3-dimensional channel-shuffling single-mode polymer waveguides: design and fabrication,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2018), pp.143–144.

K. Abe, Y. Oizumi, Y Taira, and T. Ishigure, “Low loss channel-shuffling polymer waveguides: design and fabrication,” in Proceeding of IEEE Electronic Components and Technology Conference (IEEE, 2017), pp. 526–531.

H. Toda and T. Ishigure, “Index profile design of graded-index core tapered polymer waveguide for low loss light coupling,” in Proceeding of IEEE CPMT Symposium Japan, (IEEE, 2016), pp. 149–150.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Schematic details of the Mosquito method.
Fig. 2.
Fig. 2. Condition of single-mode circular core diameters: (a) GI circular core and (b) SI circular core.
Fig. 3.
Fig. 3. Sample design of the 3D crossover structures: (a) top view, (b) side view, and (c) magnified image of S-bend curves.
Fig. 4.
Fig. 4. Measurement setup for bending loss: (a) S-bend waveguide with bending angle 5°, and (b) straight waveguide.
Fig. 5.
Fig. 5. Simulated and experimentally measured bending losses as a function of bending radius.
Fig. 6.
Fig. 6. Schematic design of the 3-dimensional channel-shuffling needle-tip paths: (a) top view and (b) side view.
Fig. 7.
Fig. 7. Top view of the single-mode 3D crossover waveguide.
Fig. 8.
Fig. 8. (a) Start and (b) end facets of the cross-sectional images, and (c) magnified image of one core.
Fig. 9.
Fig. 9. Images of cross-sections and magnified cores: (a) and (b) are for the lower channel waveguide, and (c) and (d) are for the upper channel waveguide, respectively.
Fig. 10.
Fig. 10. NFPs and Gaussian curve fitting to the normalized intensity profiles at (A) 1550 nm and (B) 1310 nm.
Fig. 11.
Fig. 11. Mode-field diameter dependence on the core diameter.
Fig. 12.
Fig. 12. Insertion losses for 6-cm long 3D crossover single-mode waveguide at (a) 1310 nm and (b) 1550 nm.
Fig. 13.
Fig. 13. Average insertion losses for 6-cm long 3D S-bend single-mode waveguides.
Fig. 14.
Fig. 14. Schematic arrangement for alignment tolerance measurement.
Fig. 15.
Fig. 15. Results of alignment tolerances.
Fig. 16.
Fig. 16. Interchannel crosstalk for 6-cm long single-mode 3D crossover waveguide at (a) 1310 nm and (b) 1550 nm.

Tables (5)

Tables Icon

Table 1. Coordinates in mm of the points assigned in Fig. 4(a) when bending radius and angle are 10 mm and 5°, respectively

Tables Icon

Table 2. Coordinates in mm of the points assigned on Ch. 2 and Ch. 3 in Fig. 6(a)

Tables Icon

Table 3. The measured MFDs for waveguides and fiber

Tables Icon

Table 4. Insertion losses of the 3D crossover single-mode waveguide

Tables Icon

Table 5. Insertion losses of the 3D S-bend waveguides

Metrics