Abstract

We propose and experimentally demonstrate an ytterbium-doped fiber laser emitting the single high-order cylindrical vector beams with a high efficiency and a high modal purity based on adaptive modal gain control. By the combination of a high-order pump with a self-designed ytterbium-ring doped fiber, modal dependent gain was tailored and specific transverse mode can be selected in the laser cavity. A model based on multimode propagation-rate equations is built up to demonstrate the behaviors of transverse mode competition in the fiber laser. Modal dependent gain of high-order mode pump are simulated numerically, which agree well with our experiment results. The slope efficiency of the fiber laser reaches 79.61% with a low threshold of 47.73mw. The purity of the generated high-order CVBs are in excess of 95%. Such a strategy enables the controllability of modal gain in a fiber laser and reveals the potential to offer a new and promising way to achieve a high-power fiber laser with an arbitrary single high-order transverse modes output.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

Cylindrical vector beam fiber laser with a symmetric two-mode fiber coupler

Yang Xu, Su Chen, Zhiqiang Wang, Bing Sun, Hongdan Wan, and Zuxing Zhang
Photon. Res. 7(12) 1479-1484 (2019)

Intracavity cylindrical vector beam generation from all-PM Er-doped mode-locked fiber laser

Yuwei Zhao, Jintao Fan, Haosen Shi, Yuepeng Li, Youjian Song, and Minglie Hu
Opt. Express 27(6) 8808-8818 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
    [Crossref]
  3. R. Chen, J. Wang, X. Zhang, A. Wang, H. Ming, F. Li, D. Chung, and Q. Zhan, “High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating,” Opt. Lett. 43(4), 755–758 (2018).
    [Crossref]
  4. Y. Zhou, K. Yan, R. Chen, C. Gu, L. Xu, A. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
    [Crossref]
  5. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion,” Opt. Lett. 41(21), 5082–5085 (2016).
    [Crossref]
  6. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
    [Crossref]
  7. Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica 5(2), 86–92 (2018).
    [Crossref]
  8. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [Crossref]
  9. D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368(5), 402–407 (2007).
    [Crossref]
  10. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32(13), 1455–1461 (1999).
    [Crossref]
  11. W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, and X. Yuan, “Approach to multiplexing fiber communication with cylindrical vector beams,” Opt. Lett. 42(13), 2579–2582 (2017).
    [Crossref]
  12. D. lin, N. Baktash, S. Alam, and D. J. Richardson, “106W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam,” Opt. Lett. 43(20), 4957–4960 (2018).
    [Crossref]
  13. D. Flamm, C. Schulze, D. Naidoo, S. Schröter, A. Forbes, and M. Duparré, “All-digital holographic tool for mode excitation and analysis in optical fibers,” J. Lightwave Technol. 31(7), 1023–1032 (2013).
    [Crossref]
  14. C. Yang, Z. Y. Zhou, Y. Li, Y. H. Li, S. L. Liu, S. K. Liu, Z. H. Xu, G. C. Guo, and B. S. Shi, “Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop,” Opt. Lett. 44(2), 219–222 (2019).
    [Crossref]
  15. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
    [Crossref]
  16. K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
    [Crossref]
  17. H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
    [Crossref]
  18. T. Wang, F. Shi, Y. Huang, J. Wen, Z. Luo, F. Pang, T. Wang, and X. Zeng, “High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams,” Opt. Express 26(9), 11850–11858 (2018).
    [Crossref]
  19. N. K. Viswanathan and V. V. G. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
    [Crossref]
  20. S. Pidishety, S. Pachava, P. Gregg, S. Ramachandran, G. Brambilla, and B. Srinivasan, “Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler,” Opt. Lett. 42(21), 4347–4350 (2017).
    [Crossref]
  21. S. Pidishety, B. Srinivasan, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photonics Technol. Lett. 29(1), 31–34 (2017).
    [Crossref]
  22. Y. Zhao, J. Fan, H. Shi, Y. Li, Y. Song, and M. Hu, “Intracavity cylindrical vector beam generation from all-PM Er-doped mode-locked fiber laser,” Opt. Express 27(6), 8808–8818 (2019).
    [Crossref]
  23. Y. Jung, Q. Kang, R. Sidharthan, D. Ho, S. Yoo, P. Gregg, S. Ramachandran, S.-U. Alam, and D. J. Richardson, “Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber,” J. Lightwave Technol. 35(3), 430–436 (2017).
    [Crossref]
  24. S. Pidishety, S. Zhu, Y. Feng, B. Srinivasan, and J. Nilsson, “Raman amplification of optical beam carrying orbital angular momentum in a multimode step-index fiber,” Opt. Lett. 44(7), 1658–1661 (2019).
    [Crossref]
  25. S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber,” Opt. Express 26(18), 23295–23304 (2018).
    [Crossref]
  26. Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM Modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
    [Crossref]
  27. M. Gong, Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, “Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers,” Opt. Express 15(6), 3236–3246 (2007).
    [Crossref]
  28. N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable high-order mode pump,” Opt. Express 19(17), 16601–16611 (2011).
    [Crossref]
  29. Z. Lin, A. Wang, L. Xu, B. Sun, C. Gu, and H. Ming, “Analysis of generating cylindrical vector beams using a few-mode fiber Bragg grating,” J. Lightwave Technol. 30(22), 3540–3544 (2012).
    [Crossref]
  30. M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
    [Crossref]
  31. I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34(9), 1570–1577 (1998).
    [Crossref]
  32. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
    [Crossref]
  33. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “efficiency and bandwidth of the mode converter,” Opt. Lett. 37(4), 464–466 (2012).
    [Crossref]
  34. T. Liu, S.-P. Chen, and J. Hou, “Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair,” Opt. Lett. 41(24), 5692–5695 (2016).
    [Crossref]

2019 (4)

2018 (7)

S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber,” Opt. Express 26(18), 23295–23304 (2018).
[Crossref]

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

T. Wang, F. Shi, Y. Huang, J. Wen, Z. Luo, F. Pang, T. Wang, and X. Zeng, “High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams,” Opt. Express 26(9), 11850–11858 (2018).
[Crossref]

D. lin, N. Baktash, S. Alam, and D. J. Richardson, “106W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam,” Opt. Lett. 43(20), 4957–4960 (2018).
[Crossref]

R. Chen, J. Wang, X. Zhang, A. Wang, H. Ming, F. Li, D. Chung, and Q. Zhan, “High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating,” Opt. Lett. 43(4), 755–758 (2018).
[Crossref]

Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica 5(2), 86–92 (2018).
[Crossref]

2017 (5)

2016 (3)

2015 (1)

2013 (1)

2012 (2)

2011 (2)

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable high-order mode pump,” Opt. Express 19(17), 16601–16611 (2011).
[Crossref]

2009 (2)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

N. K. Viswanathan and V. V. G. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
[Crossref]

2008 (1)

2007 (3)

2004 (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[Crossref]

1999 (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

1998 (1)

I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34(9), 1570–1577 (1998).
[Crossref]

Alam, S.

Alam, S.-U.

Alfano, R. R.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Bai, N.

Baktash, N.

Bouhelier, A.

Brambilla, G.

S. Pidishety, S. Pachava, P. Gregg, S. Ramachandran, G. Brambilla, and B. Srinivasan, “Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler,” Opt. Lett. 42(21), 4347–4350 (2017).
[Crossref]

S. Pidishety, B. Srinivasan, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photonics Technol. Lett. 29(1), 31–34 (2017).
[Crossref]

Bruyant, A.

Cao, M.

M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
[Crossref]

Chen, R.

R. Chen, J. Wang, X. Zhang, A. Wang, H. Ming, F. Li, D. Chung, and Q. Zhan, “High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating,” Opt. Lett. 43(4), 755–758 (2018).
[Crossref]

Y. Zhou, K. Yan, R. Chen, C. Gu, L. Xu, A. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

Chen, S.-P.

Chung, D.

Colas des Francs, G.

Cox, M. A.

Demas, J.

Dereux, A.

Duparré, M.

Fan, J.

Feng, Y.

Flamm, D.

Forbes, A.

Gao, F.

Gao, S.

Gong, M.

Gregg, P.

Gu, C.

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Y. Zhou, K. Yan, R. Chen, C. Gu, L. Xu, A. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
[Crossref]

Z. Lin, A. Wang, L. Xu, B. Sun, C. Gu, and H. Ming, “Analysis of generating cylindrical vector beams using a few-mode fiber Bragg grating,” J. Lightwave Technol. 30(22), 3540–3544 (2012).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “efficiency and bandwidth of the mode converter,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref]

Guo, G. C.

Gupta, D. N.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368(5), 402–407 (2007).
[Crossref]

Hardy, A. A.

I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34(9), 1570–1577 (1998).
[Crossref]

Heckenberg, N. R.

Ho, D.

Hong, S.

Hou, J.

Hu, M.

Huang, C.

Huang, L.

Huang, Y.

Ignatovich, F.

Inavalli, V. V. G.

Ip, E.

Jiang, B.

Jung, Y.

Kang, Q.

Kant, N.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368(5), 402–407 (2007).
[Crossref]

Kelson, I.

I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34(9), 1570–1577 (1998).
[Crossref]

Kim, D. E.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368(5), 402–407 (2007).
[Crossref]

Kozawa, Y.

Lei, T.

Li, C.

Li, F.

Li, G.

Li, H.

M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
[Crossref]

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Li, P.

Li, Y.

Li, Y. H.

Li, Z.

Liao, S.

Lim, E. L.

lin, D.

Lin, J.

Lin, Z.

Liu, S. K.

Liu, S. L.

Liu, T.

Luo, Z.

Mao, D.

Matsunaga, D.

Mei, T.

Mi, Y.

M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
[Crossref]

Milione, G.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Ming, H.

Naidoo, D.

Nape, I.

Ndagano, B.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Nieminen, T. A.

Nilsson, J.

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Nolan, D. A.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Novotny, L.

Pachava, S.

Pang, F.

Petrov, D.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[Crossref]

Pidishety, S.

Qiao, W.

Ramachandran, S.

Ren, G.

M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
[Crossref]

Richardson, D. J.

Rosales-Guzman, C.

Rubinsztein-Dunlop, H.

Sato, S.

Schröter, S.

Schulze, C.

Shi, B. S.

Shi, F.

Shi, H.

Sidharthan, R.

Song, Y.

Srinivasan, B.

Su, J.

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Suk, H.

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368(5), 402–407 (2007).
[Crossref]

Sun, B.

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Tang, M.

M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
[Crossref]

Viswanathan, N. K.

Volpe, G.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[Crossref]

Wang, A.

Wang, J.

Wang, T.

Weeber, J. C.

Wei, K.

Wen, J.

Wiederrecht, G. P.

Wu, L.

M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
[Crossref]

Wu, Z.

Xu, L.

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Y. Zhou, K. Yan, R. Chen, C. Gu, L. Xu, A. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
[Crossref]

Z. Lin, A. Wang, L. Xu, B. Sun, C. Gu, and H. Ming, “Analysis of generating cylindrical vector beams using a few-mode fiber Bragg grating,” J. Lightwave Technol. 30(22), 3540–3544 (2012).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “efficiency and bandwidth of the mode converter,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref]

Xu, Z. H.

Yan, K.

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Y. Zhou, K. Yan, R. Chen, C. Gu, L. Xu, A. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
[Crossref]

Yan, P.

Yang, C.

Yao, P.

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
[Crossref]

Yoo, S.

Yuan, X.

Yuan, Y.

Zeng, X.

Zhan, Q.

Zhang, G.

Zhang, H.

Zhang, R.

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Zhang, W.

Zhang, X.

Zhang, Y.

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Zhao, J.

Zhao, Y.

Zhou, Y.

Y. Zhou, K. Yan, R. Chen, C. Gu, L. Xu, A. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

K. Yan, J. Lin, Y. Zhou, C. Gu, L. Xu, A. Wang, P. Yao, and Q. Zhan, “Bi2Te3 based passively Q-switched fiber laser with cylindrical vector beam emission,” Appl. Opt. 55(11), 3026–3029 (2016).
[Crossref]

Zhou, Z. Y.

Zhu, S.

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

H. Li, K. Yan, Y. Zhang, C. Gu, P. Yao, L. Xu, R. Zhang, and J. Su, “Low-threshold high-efficiency all-fiber laser generating cylindrical vector beams operated in LP11 mode throughout the entire cavity,” Appl. Phys. Express 11(12), 122502 (2018).
[Crossref]

Appl. Phys. Lett. (1)

Y. Zhou, K. Yan, R. Chen, C. Gu, L. Xu, A. Wang, and Q. Zhan, “Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating,” Appl. Phys. Lett. 110(16), 161104 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

I. Kelson and A. A. Hardy, “Strongly pumped fiber lasers,” IEEE J. Quantum Electron. 34(9), 1570–1577 (1998).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Pidishety, B. Srinivasan, and G. Brambilla, “All-fiber fused coupler for stable generation of radially and azimuthally polarized beams,” IEEE Photonics Technol. Lett. 29(1), 31–34 (2017).
[Crossref]

J. Lightwave Technol. (4)

J. Phys. D: Appl. Phys. (1)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D: Appl. Phys. 32(13), 1455–1461 (1999).
[Crossref]

Opt. Commun. (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

M. Tang, H. Li, L. Huang, M. Cao, Y. Mi, L. Wu, and G. Ren, “Erbium-ring-doped fiber laser for transverse vector modes output,” Opt. Laser Technol. 115, 233–238 (2019).
[Crossref]

Opt. Lett. (12)

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
[Crossref]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref]

N. K. Viswanathan and V. V. G. Inavalli, “Generation of optical vector beams using a two-mode fiber,” Opt. Lett. 34(8), 1189–1191 (2009).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “efficiency and bandwidth of the mode converter,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref]

S. Pidishety, S. Zhu, Y. Feng, B. Srinivasan, and J. Nilsson, “Raman amplification of optical beam carrying orbital angular momentum in a multimode step-index fiber,” Opt. Lett. 44(7), 1658–1661 (2019).
[Crossref]

D. lin, N. Baktash, S. Alam, and D. J. Richardson, “106W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam,” Opt. Lett. 43(20), 4957–4960 (2018).
[Crossref]

C. Yang, Z. Y. Zhou, Y. Li, Y. H. Li, S. L. Liu, S. K. Liu, Z. H. Xu, G. C. Guo, and B. S. Shi, “Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop,” Opt. Lett. 44(2), 219–222 (2019).
[Crossref]

R. Chen, J. Wang, X. Zhang, A. Wang, H. Ming, F. Li, D. Chung, and Q. Zhan, “High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating,” Opt. Lett. 43(4), 755–758 (2018).
[Crossref]

W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “High-order optical vortex generation in a few-mode fiber via cascaded acoustically driven vector mode conversion,” Opt. Lett. 41(21), 5082–5085 (2016).
[Crossref]

T. Liu, S.-P. Chen, and J. Hou, “Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair,” Opt. Lett. 41(24), 5692–5695 (2016).
[Crossref]

W. Qiao, T. Lei, Z. Wu, S. Gao, Z. Li, and X. Yuan, “Approach to multiplexing fiber communication with cylindrical vector beams,” Opt. Lett. 42(13), 2579–2582 (2017).
[Crossref]

S. Pidishety, S. Pachava, P. Gregg, S. Ramachandran, G. Brambilla, and B. Srinivasan, “Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler,” Opt. Lett. 42(21), 4347–4350 (2017).
[Crossref]

Optica (1)

Phys. Lett. A (1)

D. N. Gupta, N. Kant, D. E. Kim, and H. Suk, “Electron acceleration to GeV energy by a radially polarized laser,” Phys. Lett. A 368(5), 402–407 (2007).
[Crossref]

Phys. Rev. Lett. (1)

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Ytterbium-ring doped fiber
Fig. 2.
Fig. 2. Schematic of fiber laser
Fig. 3.
Fig. 3. (a) The RIP of the ring-core fiber overlaid with the normalized signal intensity profile of supported modes. (b-d) Modal gain of each signal modes at 1060nm varied with 976 nm pump powers in (b) LP01, p (c) LP11, p (d) LP21, p
Fig. 4.
Fig. 4. The distribution of MDG of three LP signal modes with three LP pump modes.
Fig. 5.
Fig. 5. Schematic illustration of the fiber laser
Fig. 6.
Fig. 6. (a) Measured spectra of the FM-FBG. The pink line are the reflection spectra of the FMFBG. The blue line shows that the optical spectrum of the output laser. (b) Optical output power versus absorbed pump power. The solid red line is a linear fit for the output over the threshold.
Fig. 7.
Fig. 7. (a) Intensity profiles of the pump LP21 modes captured at the end of the fiber. Intensity profiles of 2nd order laser CVB output versus pump power (b) 40mw (c) 70mw (d) 180mw
Fig. 8.
Fig. 8. (a) Intensity profiles of the 2nd order CVBs without a polarizer and (b)–(e) after passing through a linear polarizer with four transmission axis orientations denoted by the white arrows.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { n 0 , 0 r < R i n n h i g h , R i n r < R a ( Yb  - doped Region ) n l o w , R a r < R b n 0 , R b r < R c l a d
N 2 ( r , φ , z ) N 0 = i [ P p i + ( z ) + P p i ( z ) ] σ a p , i Γ p i ( r , φ ) h ν p + j [ P s j + ( z ) + P s j ( z ) ] σ a s , i Γ s j ( r , φ ) h ν s i [ P p i + ( z ) + P p i ( z ) ] σ e p , i Γ p i ( r , φ ) h ν p + 1 τ + j [ P s j + ( z ) + P s j ( z ) ] σ e s , j Γ s j ( r , φ ) h ν s
± d P p i ± ( z ) d z = { 0 2 π R i n R a [ σ e q N 2 ( r , φ , z ) σ a p N 1 ( r , φ , z ) ] Γ p i ( r , φ ) r d r d φ } P p i ± ( z ) α p i P p i ± ( z )
± d P s j ± ( z ) d z = { 0 2 π R i n R a [ σ e s N 2 ( r , φ , z ) σ a s N 1 ( r , φ , z ) ] Γ s i ( r , φ ) r d r d φ } P s j ± ( z ) α s j P s j ± ( z )
Γ p i ( r , φ ) = ψ i ( r , φ ) 0 2 π R i n R a r ψ i ( r , φ ) d r d φ
Γ s i ( r , φ ) = ψ j ( r , φ ) 0 2 π R i n R a r ψ j ( r , φ ) d r d φ
P p i + ( z = 0 ) = P p i
P s i + ( z = 0 ) = R 1 ( λ i ) P s i ( z = 0 )
P s i ( z = L ) = R 2 P + s i ( z = L )
η p j , s i = 0 2 π R i n R a r d r d φ Γ p i ( r , φ ) Γ s j ( r , φ )

Metrics