Abstract

Continuous-variable position-momentum entanglement (or Einstein-Podolsky-Rosen entanglement) of two particles has played important roles in the fundamental study of quantum physics as well as in the progress of quantum information. In this paper, we propose a scheme to generate Einstein-Podolsky-Rosen (EPR) position-momentum entangled photon pairs efficiently via spontaneous four-wave mixing (SFWM) process in a hot rubidium gas cell. The EPR entanglement between the photon pair is measured and characterized by using the ghost interference and the ghost imaging method. Due to the simplicity of the experimental setup and the high photon pair generation rate, our EPR entangled photon source may has potential applications in quantum imaging, hyperentanglement preparation and atomic ensemble based quantum information processing and quantum communication protocols.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of two-color Einstein–Podolsky–Rosen entanglement in a hot vapor cell

Kai Wang, Shuai Shi, Wei Zhang, Yinghao Ye, Yichen Yu, Mingxin Dong, Yueyang Zhai, Dongsheng Ding, and Baosen Shi
OSA Continuum 2(7) 2260-2265 (2019)

Two-color hyper-entangled photon pairs generation in a cold 85Rb atomic ensemble

Ming-Xin Dong, Wei Zhang, Shuai Shi, Kai Wang, Zhi-Yuan Zhou, Shi-Long Liu, Dong-Sheng Ding, and Bao-Sen Shi
Opt. Express 25(9) 10145-10152 (2017)

Experimental realization of positively momentum-correlated photon pairs from a long periodically poled lithium tantalate crystal

Malin Zhong, Ping Xu, Liangliang Lu, and Shining Zhu
J. Opt. Soc. Am. B 32(10) 2081-2085 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
    [Crossref]
  2. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
    [Crossref]
  3. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69(1), 012304 (2004).
    [Crossref]
  4. T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
    [Crossref]
  5. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
    [Crossref]
  6. J. Li, S.-Y. Zhu, and G. S. Agarwal, “Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics,” Phys. Rev. Lett. 121(20), 203601 (2018).
    [Crossref]
  7. Z. Zhang, M. O. Scully, and G. S. Agarwal, “Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium,” Phys. Rev. Research 1(2), 023021 (2019).
    [Crossref]
  8. K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
    [Crossref]
  9. G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
    [Crossref]
  10. T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
    [Crossref]
  11. D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
    [Crossref]
  12. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
    [Crossref]
  13. M. Dabrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272 (2017).
    [Crossref]
  14. M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
    [Crossref]
  15. W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
    [Crossref]
  16. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref]
  17. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
    [Crossref]
  18. M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
    [Crossref]
  19. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
    [Crossref]
  20. J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
    [Crossref]
  21. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433 (2012).
    [Crossref]
  22. C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
    [Crossref]
  23. L. Podhora, P. Obšil, I. Straka, M. Ježek, and L. Slodička, “Nonclassical photon pairs from warm atomic vapor using a single driving laser,” Opt. Express 25(25), 31230 (2017).
    [Crossref]
  24. C. Wang, Y. Gu, Y. Yu, D. Wei, P. Zhang, H. Gao, and F. Li, “Efficient generation of non-classical photon pairs in a hot atomic ensemble,” Chin. Opt. Lett. 16(8), 082701 (2018).
    [Crossref]
  25. Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon, “Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system,” Opt. Express 24(24), 28083 (2016).
    [Crossref]
  26. J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
    [Crossref]
  27. M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72(1), 013810 (2005).
    [Crossref]
  28. Y. Yu, C. Wang, J. Liu, J. Wang, M. Cao, D. Wei, H. Gao, and F. Li, “Ghost imaging with different frequencies through non-degenerated four-wave mixing,” Opt. Express 24(16), 18290 (2016).
    [Crossref]
  29. D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
    [Crossref]
  30. D.-G. Im, Y. Kim, and Y.-H. Kim, “Periodic revival of frustrated two-photon creation via interference,” Opt. Express 27(5), 7593 (2019).
    [Crossref]
  31. H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98(14), 140402 (2007).
    [Crossref]
  32. L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
    [Crossref]
  33. K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
    [Crossref]
  34. J. Park, H. Kim, and H. S. Moon, “Polarization-Entangled Photons from a Warm Atomic Ensemble Using a Sagnac Interferometer,” Phys. Rev. Lett. 122(14), 143601 (2019).
    [Crossref]
  35. T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
    [Crossref]
  36. H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
    [Crossref]
  37. S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
    [Crossref]

2019 (5)

Z. Zhang, M. O. Scully, and G. S. Agarwal, “Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium,” Phys. Rev. Research 1(2), 023021 (2019).
[Crossref]

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

D.-G. Im, Y. Kim, and Y.-H. Kim, “Periodic revival of frustrated two-photon creation via interference,” Opt. Express 27(5), 7593 (2019).
[Crossref]

J. Park, H. Kim, and H. S. Moon, “Polarization-Entangled Photons from a Warm Atomic Ensemble Using a Sagnac Interferometer,” Phys. Rev. Lett. 122(14), 143601 (2019).
[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

2018 (6)

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

C. Wang, Y. Gu, Y. Yu, D. Wei, P. Zhang, H. Gao, and F. Li, “Efficient generation of non-classical photon pairs in a hot atomic ensemble,” Chin. Opt. Lett. 16(8), 082701 (2018).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

J. Li, S.-Y. Zhu, and G. S. Agarwal, “Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics,” Phys. Rev. Lett. 121(20), 203601 (2018).
[Crossref]

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

2017 (2)

2016 (4)

Y. Yu, C. Wang, J. Liu, J. Wang, M. Cao, D. Wei, H. Gao, and F. Li, “Ghost imaging with different frequencies through non-degenerated four-wave mixing,” Opt. Express 24(16), 18290 (2016).
[Crossref]

Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon, “Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system,” Opt. Express 24(24), 28083 (2016).
[Crossref]

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

2015 (1)

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

2013 (1)

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

2012 (2)

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433 (2012).
[Crossref]

2011 (3)

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

2010 (1)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

2009 (2)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[Crossref]

2008 (1)

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

2007 (1)

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98(14), 140402 (2007).
[Crossref]

2005 (1)

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72(1), 013810 (2005).
[Crossref]

2004 (3)

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69(1), 012304 (2004).
[Crossref]

M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

1995 (2)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

1992 (1)

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Agarwal, G. S.

Z. Zhang, M. O. Scully, and G. S. Agarwal, “Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium,” Phys. Rev. Research 1(2), 023021 (2019).
[Crossref]

J. Li, S.-Y. Zhu, and G. S. Agarwal, “Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics,” Phys. Rev. Lett. 121(20), 203601 (2018).
[Crossref]

Andersen, U. L.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Bennink, R. S.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69(1), 012304 (2004).
[Crossref]

Boyd, R. W.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Boyer, V.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[Crossref]

Brida, G.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Cao, M.

Cavalcanti, E. G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Chen, J. F.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

Chen, P.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Cho, Y.-W.

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Chough, Y.-T.

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Chow, T. K. A.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

D’Angelo, M.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72(1), 013810 (2005).
[Crossref]

M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Dabrowski, M.

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

M. Dabrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272 (2017).
[Crossref]

Delaubert, V.

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Ding, D. S.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Ding, D.-S.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433 (2012).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
[Crossref]

Doherty, A. C.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98(14), 140402 (2007).
[Crossref]

Dong, M.-X.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Du, S.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

Duhme, J.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Eberle, T.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Franz, T.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Gao, H.

Genovese, M.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Gomes, R. M.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Gu, Y.

Guo, G. C.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Guo, G.-C.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433 (2012).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
[Crossref]

Guo, X.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

Händchen, V.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Harb, C.

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Howell, J. C.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Ihn, Y. S.

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

Im, D.-G.

Janousek, J.

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Jeong, T.

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Ježek, M.

Jones, S. J.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98(14), 140402 (2007).
[Crossref]

Kim, H.

J. Park, H. Kim, and H. S. Moon, “Polarization-Entangled Photons from a Warm Atomic Ensemble Using a Sagnac Interferometer,” Phys. Rev. Lett. 122(14), 143601 (2019).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon, “Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system,” Opt. Express 24(24), 28083 (2016).
[Crossref]

Kim, Y.

Kim, Y.-H.

D.-G. Im, Y. Kim, and Y.-H. Kim, “Periodic revival of frustrated two-photon creation via interference,” Opt. Express 27(5), 7593 (2019).
[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Kimble, H. J.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

Kulik, S. P.

M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Lam, P. K.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69(1), 012304 (2004).
[Crossref]

Lee, J.-C.

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Lee, S. M.

Lee, Y.-S.

Leszczynski, A.

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

Lett, P. D.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[Crossref]

Leuchs, G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Li, F.

Li, J.

J. Li, S.-Y. Zhu, and G. S. Agarwal, “Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics,” Phys. Rev. Lett. 121(20), 203601 (2018).
[Crossref]

Lipka, M.

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

Liu, J.

Liu, S.-L.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

Loy, M. M. T.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

Marino, A. M.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[Crossref]

Mazelanik, M.

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

Moon, H. S.

J. Park, H. Kim, and H. S. Moon, “Polarization-Entangled Photons from a Warm Atomic Ensemble Using a Sagnac Interferometer,” Phys. Rev. Lett. 122(14), 143601 (2019).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Y.-S. Lee, S. M. Lee, H. Kim, and H. S. Moon, “Highly bright photon-pair generation in Doppler-broadened ladder-type atomic system,” Opt. Express 24(24), 28083 (2016).
[Crossref]

Morizur, J. F.

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Obšil, P.

Okamoto, R.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

Ono, T.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Park, J.

J. Park, H. Kim, and H. S. Moon, “Polarization-Entangled Photons from a Warm Atomic Ensemble Using a Sagnac Interferometer,” Phys. Rev. Lett. 122(14), 143601 (2019).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Park, K.-K.

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Parniak, M.

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

M. Dabrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272 (2017).
[Crossref]

Peng, K. C.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Podhora, L.

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Pooser, R. C.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[Crossref]

Ralph, T. C.

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69(1), 012304 (2004).
[Crossref]

Reid, M. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Rubin, M. H.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72(1), 013810 (2005).
[Crossref]

Ruo Berchera, I.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Schnabel, R.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69(1), 012304 (2004).
[Crossref]

Scully, M. O.

Z. Zhang, M. O. Scully, and G. S. Agarwal, “Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium,” Phys. Rev. Research 1(2), 023021 (2019).
[Crossref]

Sergienko, A. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shi, B. S.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Shi, B.-S.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433 (2012).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
[Crossref]

Shi, S.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Shih, Y.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72(1), 013810 (2005).
[Crossref]

M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

Shu, C.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Slodicka, L.

Souto Ribeiro, P. H.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Straka, I.

Strekalov, D. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Su, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

Sun, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

Takeuchi, S.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

Tasca, D. S.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Toscano, F.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Treps, N.

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Valencia, A.

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72(1), 013810 (2005).
[Crossref]

Wagner, K.

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Walborn, S. P.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Wang, C.

Wang, J.

Wang, K.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Wasilewski, W.

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

M. Dabrowski, M. Parniak, and W. Wasilewski, “Einstein-Podolsky-Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272 (2017).
[Crossref]

Wei, D.

Werner, R. F.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

Wiseman, H. M.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98(14), 140402 (2007).
[Crossref]

Wong, G. K. L.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

Xiao, Y.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Yan, H.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

Ye, Y. H.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Yu, Y.

Yu, Y. C.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Zhang, P.

Zhang, S.

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

Zhang, W.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Zhang, Z.

Z. Zhang, M. O. Scully, and G. S. Agarwal, “Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium,” Phys. Rev. Research 1(2), 023021 (2019).
[Crossref]

Zhao, L.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

Zhao, T.-M.

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Zhou, Z.-Y.

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433 (2012).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
[Crossref]

Zhu, L.

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Zhu, S.-Y.

J. Li, S.-Y. Zhu, and G. S. Agarwal, “Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics,” Phys. Rev. Lett. 121(20), 203601 (2018).
[Crossref]

Zou, H.

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Zou, X.-B.

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20(10), 11433 (2012).
[Crossref]

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
[Crossref]

AIP Adv. (1)

D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, X.-B. Zou, and G.-C. Guo, “Two-color ghost interference with photon pairs generated in hot atoms,” AIP Adv. 2(3), 032177 (2012).
[Crossref]

Chin. Opt. Lett. (1)

Nat. Commun. (2)

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

C. Shu, P. Chen, T. K. A. Chow, L. Zhu, Y. Xiao, M. M. T. Loy, and S. Du, “Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapor cell,” Nat. Commun. 7(1), 12783 (2016).
[Crossref]

Nat. Photonics (1)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Nature (1)

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Phys. Rev. A (8)

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69(1), 012304 (2004).
[Crossref]

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner, and R. Schnabel, “Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source,” Phys. Rev. A 83(5), 052329 (2011).
[Crossref]

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

M. Dabrowski, M. Mazelanik, M. Parniak, A. Leszczyński, M. Lipka, and W. Wasilewski, “Certification of high-dimensional entanglement and Einstein-Podolsky-Rosen steering with cold atomic quantum memory,” Phys. Rev. A 98(4), 042126 (2018).
[Crossref]

W. Zhang, M.-X. Dong, D.-S. Ding, S. Shi, K. Wang, S.-L. Liu, Z.-Y. Zhou, G.-C. Guo, and B.-S. Shi, “Einstein-Podolsky-Rosen entanglement between separated atomic ensembles,” Phys. Rev. A 100(1), 012347 (2019).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M.-X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

M. D’Angelo, A. Valencia, M. H. Rubin, and Y. Shih, “Resolution of quantum and classical ghost imaging,” Phys. Rev. A 72(1), 013810 (2005).
[Crossref]

Phys. Rev. Lett. (12)

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98(14), 140402 (2007).
[Crossref]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the Biphoton Temporal Waveform with Spatial Light Modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref]

J. Park, H. Kim, and H. S. Moon, “Polarization-Entangled Photons from a Warm Atomic Ensemble Using a Sagnac Interferometer,” Phys. Rev. Lett. 122(14), 143601 (2019).
[Crossref]

T.-M. Zhao, Y. S. Ihn, and Y.-H. Kim, “Direct Generation of Narrow-band Hyperentangled Photons,” Phys. Rev. Lett. 122(12), 123607 (2019).
[Crossref]

H. Yan, S. Zhang, J. F. Chen, M. M. T. Loy, G. K. L. Wong, and S. Du, “Generation of narrow-band hyperentangled nondegenerate paired photons,” Phys. Rev. Lett. 106(3), 033601 (2011).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, “Identifying entanglement using quantum ghost interference and imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

J. Li, S.-Y. Zhu, and G. S. Agarwal, “Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics,” Phys. Rev. Lett. 121(20), 203601 (2018).
[Crossref]

Phys. Rev. Research (1)

Z. Zhang, M. O. Scully, and G. S. Agarwal, “Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium,” Phys. Rev. Research 1(2), 023021 (2019).
[Crossref]

Phys. Rev. X (1)

K.-K. Park, Y.-W. Cho, Y.-T. Chough, and Y.-H. Kim, “Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble,” Phys. Rev. X 8(2), 021016 (2018).
[Crossref]

Rev. Mod. Phys. (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Science (1)

K. Wagner, J. Janousek, V. Delaubert, H. Zou, C. Harb, N. Treps, J. F. Morizur, P. K. Lam, and H. A. Bachor, “Entangling the Spatial Properties of Laser Beams,” Science 321(5888), 541–543 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Sketch of experimental setup. EPR position-momentum entanglement photon pairs are generated via ladder type SFWM in a 20 mm long $^{87} \mathrm {Rb}$ atomic gas cell. Dashed inset: profile of an effective double slit when a collimated Gaussian beam passes through 1 mm plastic block. (SMF, single mode fiber; FC, fiber collimator; PBS, polarizing beam splitter; HWP, half-wave plate; L$_{1}$, lenses with focal length of $f_{1}=300$ mm; L$_{2}$, lens with focal length of $f_{2}=35$ mm; X$_{a(b)}$ is the transverse position of SMF$_{3(2)}$.
Fig. 2.
Fig. 2. The coincidence counts between $\omega _{\mathrm {as}}$ and $\omega _{\mathrm {s}}$ photons with 60 s collection time. The horizontal coordinate is the relative time delay between $\omega _{\mathrm {as}}$ and $\omega _{\mathrm {s}}$ photons and vertical coordinate is the cross correlation function $G_{\mathrm {as,s}}^{(2)}(\tau )$.
Fig. 3.
Fig. 3. Experimental results for ghost interference (a)-(d) and ghost imaging (e)-(h). The 1$/ e^{2}$ pump beam diameter at the center of the vapor cell from (a)-(d) and (e)-(h) is 1700 $\mu \mathrm {m}$, 1000 $\mu \mathrm {m}$, 500 $\mu \mathrm {m}$, 330 $\mu \mathrm {m}$, respectively. Each point of the experimental data is accumulated of 60(80) s for the ghost interference (ghost imaging) measurement. The black dots are normalized coincidence counts after subtracting the uncorrelated noise while the red curves come from theoretical fitting.

Tables (1)

Tables Icon

Table 1. ( Δ x ) 2 ( Δ p + ) 2 in unit of 2 with different pump beam size

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G ( 2 ) ( X a ) = | d κ s d κ a s E ~ + ( | κ + | ) E ~ ( | κ | / 2 ) T ( λ a s f 1 2 π κ a s ) exp ( i f 1 f 2 κ s X a ) | 2
G ( 2 ) ( X b ) = | d κ s d κ a s E ~ + ( | κ + | ) E ~ ( | κ | / 2 ) T ( λ a s f 1 2 π κ a s ) × δ ( κ s ω s c f 1 X b ) | 2
( Δ x ) 2 ( Δ p + ) 2 < 2
( Δ x ) 2 ( Δ p + ) 2 < 2 / 4

Metrics