T. Martin, “T-matrix method for closely adjacent obstacles,” J. Quant. Spectrosc. Radiat. Transfer 234, 40–46 (2019).

[Crossref]

D. Theobald, A. Egel, G. Gomard, and U. Lemmer, “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles,” Phys. Rev. A 96(3), 033822 (2017).

[Crossref]

J. Markkanen and A. J. Yuffa, “Fast superposition T-matrix solution for clusters with arbitrarily-shaped constituent particles,” J. Quant. Spectrosc. Radiat. Transfer 189, 181–188 (2017).

[Crossref]

M. R. A. Majić, B. Auguié, and E. C. Le Ru, “Spheroidal harmonic expansions for the solution of Laplace’s equation for a point source near a sphere,” Phys. Rev. E 95(3), 033307 (2017).

[Crossref]

W. Somerville, B. Auguié, and E. Le Ru, “SMARTIES: User-friendly codes for fast and accurate calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 174, 39–55 (2016).

[Crossref]

B. Auguié, W. R. C. Somerville, S. Roache, and E. C. Le Ru, “Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle,” J. Opt. 18(7), 075007 (2016).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Accurate and convergent T-matrix calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 160, 29–35 (2015).

[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

L. Bi and P. Yang, “Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 138, 17–35 (2014).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

N. G. Khlebtsov, “T-matrix method in plasmonics: An overview,” J. Quant. Spectrosc. Radiat. Transfer 123, 184–217 (2013).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles,” J. Quant. Spectrosc. Radiat. Transfer 123, 153–168 (2013).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Severe loss of precision in calculations of T-matrix integrals,” J. Quant. Spectrosc. Radiat. Transfer 113(7), 524–535 (2012).

[Crossref]

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109(15), 2656–2663 (2008).

[Crossref]

B. Stout, J. C. Auger, and A. Devilez, “Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25(10), 2549–2557 (2008).

[Crossref]

Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of au colloids and their interactions with functional amino acids,” J. Phys. Chem. B 108(13), 4046–4052 (2004).

[Crossref]

V. G. Farafonov, “Applicability of the T-matrix method and its modifications,” Opt. Spectrosc. 92(5), 748–760 (2002).

[Crossref]

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple-scattering problems,” J. Mod. Opt. 49(13), 2129–2152 (2002).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999).

[Crossref]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transfer 55(5), 535–575 (1996).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996).

[Crossref]

Y.-Q. Jin and X. Huang, “Numerical T-matrix solution for polarized scattering from a cluster of spatially oriented, nonspherical scatterers,” Q. Appl. Math. 12(3), 154–158 (1996).

[Crossref]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London, Ser. A 433(1889), 599–614 (1991).

[Crossref]

D. Amos, “Algorithm 644, a portable package for Bessel functions of a complex argument and nonnegative order,” ACM Trans. Math. Softw. 12(3), 265–273 (1986).

[Crossref]

D. Maystre and M. Cadilhac, “Singularities of the continuation of fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26(9), 2201–2204 (1985).

[Crossref]

B. Peterson and S. Ström, “T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3),” Phys. Rev. D 8(10), 3661–3678 (1973).

[Crossref]

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3(4), 825–839 (1971).

[Crossref]

P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45(6), 1417–1429 (1969).

[Crossref]

R. Millar, “Rayleigh hypothesis in scattering problems,” Electron. Lett. 5(17), 416–417 (1969).

[Crossref]

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53(8), 805–812 (1965).

[Crossref]

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20(1), 33–40 (1962).

[Crossref]

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19(1), 15–24 (1961).

[Crossref]

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

D. Amos, “Algorithm 644, a portable package for Bessel functions of a complex argument and nonnegative order,” ACM Trans. Math. Softw. 12(3), 265–273 (1986).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109(15), 2656–2663 (2008).

[Crossref]

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple-scattering problems,” J. Mod. Opt. 49(13), 2129–2152 (2002).

[Crossref]

M. R. A. Majić, B. Auguié, and E. C. Le Ru, “Spheroidal harmonic expansions for the solution of Laplace’s equation for a point source near a sphere,” Phys. Rev. E 95(3), 033307 (2017).

[Crossref]

W. Somerville, B. Auguié, and E. Le Ru, “SMARTIES: User-friendly codes for fast and accurate calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 174, 39–55 (2016).

[Crossref]

B. Auguié, W. R. C. Somerville, S. Roache, and E. C. Le Ru, “Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle,” J. Opt. 18(7), 075007 (2016).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Accurate and convergent T-matrix calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 160, 29–35 (2015).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles,” J. Quant. Spectrosc. Radiat. Transfer 123, 153–168 (2013).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Severe loss of precision in calculations of T-matrix integrals,” J. Quant. Spectrosc. Radiat. Transfer 113(7), 524–535 (2012).

[Crossref]

L. Bi and P. Yang, “Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 138, 17–35 (2014).

[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of au colloids and their interactions with functional amino acids,” J. Phys. Chem. B 108(13), 4046–4052 (2004).

[Crossref]

D. Maystre and M. Cadilhac, “Singularities of the continuation of fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26(9), 2201–2204 (1985).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

W. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press series on electromagnetic waves (Van Nostrand Reinhold, 1990).

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20(1), 33–40 (1962).

[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

A. Doicu, T. Wriedt, and Y. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

D. Theobald, A. Egel, G. Gomard, and U. Lemmer, “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles,” Phys. Rev. A 96(3), 033822 (2017).

[Crossref]

A. Doicu, T. Wriedt, and Y. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier, 2009).

V. G. Farafonov, “Applicability of the T-matrix method and its modifications,” Opt. Spectrosc. 92(5), 748–760 (2002).

[Crossref]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999).

[Crossref]

Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of au colloids and their interactions with functional amino acids,” J. Phys. Chem. B 108(13), 4046–4052 (2004).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

D. Theobald, A. Egel, G. Gomard, and U. Lemmer, “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles,” Phys. Rev. A 96(3), 033822 (2017).

[Crossref]

J. Grand and E. C. Le Ru, “Practical implementation of accurate finite-element calculations for electromagnetic scattering by nanoparticles,” Plasmonics (2019).

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

Y.-Q. Jin and X. Huang, “Numerical T-matrix solution for polarized scattering from a cluster of spatially oriented, nonspherical scatterers,” Q. Appl. Math. 12(3), 154–158 (1996).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

Y.-Q. Jin and X. Huang, “Numerical T-matrix solution for polarized scattering from a cluster of spatially oriented, nonspherical scatterers,” Q. Appl. Math. 12(3), 154–158 (1996).

[Crossref]

N. G. Khlebtsov, “T-matrix method in plasmonics: An overview,” J. Quant. Spectrosc. Radiat. Transfer 123, 184–217 (2013).

[Crossref]

G. Videen and M. Kocifaj, Optics of cosmic dust, vol. 79 (Springer Science & Business Media, 2002).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple-scattering problems,” J. Mod. Opt. 49(13), 2129–2152 (2002).

[Crossref]

W. Somerville, B. Auguié, and E. Le Ru, “SMARTIES: User-friendly codes for fast and accurate calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 174, 39–55 (2016).

[Crossref]

M. R. A. Majić, B. Auguié, and E. C. Le Ru, “Spheroidal harmonic expansions for the solution of Laplace’s equation for a point source near a sphere,” Phys. Rev. E 95(3), 033307 (2017).

[Crossref]

B. Auguié, W. R. C. Somerville, S. Roache, and E. C. Le Ru, “Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle,” J. Opt. 18(7), 075007 (2016).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Accurate and convergent T-matrix calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 160, 29–35 (2015).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles,” J. Quant. Spectrosc. Radiat. Transfer 123, 153–168 (2013).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Severe loss of precision in calculations of T-matrix integrals,” J. Quant. Spectrosc. Radiat. Transfer 113(7), 524–535 (2012).

[Crossref]

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier, 2009).

J. Grand and E. C. Le Ru, “Practical implementation of accurate finite-element calculations for electromagnetic scattering by nanoparticles,” Plasmonics (2019).

D. Theobald, A. Egel, G. Gomard, and U. Lemmer, “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles,” Phys. Rev. A 96(3), 033822 (2017).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109(15), 2656–2663 (2008).

[Crossref]

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).

[Crossref]

Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of au colloids and their interactions with functional amino acids,” J. Phys. Chem. B 108(13), 4046–4052 (2004).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996).

[Crossref]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transfer 55(5), 535–575 (1996).

[Crossref]

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11(11), 2851–2861 (1994).

[Crossref]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London, Ser. A 433(1889), 599–614 (1991).

[Crossref]

M. R. A. Majić, B. Auguié, and E. C. Le Ru, “Spheroidal harmonic expansions for the solution of Laplace’s equation for a point source near a sphere,” Phys. Rev. E 95(3), 033307 (2017).

[Crossref]

J. Markkanen and A. J. Yuffa, “Fast superposition T-matrix solution for clusters with arbitrarily-shaped constituent particles,” J. Quant. Spectrosc. Radiat. Transfer 189, 181–188 (2017).

[Crossref]

T. Martin, “T-matrix method for closely adjacent obstacles,” J. Quant. Spectrosc. Radiat. Transfer 234, 40–46 (2019).

[Crossref]

D. Maystre and M. Cadilhac, “Singularities of the continuation of fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26(9), 2201–2204 (1985).

[Crossref]

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[Crossref]

R. Millar, “Rayleigh hypothesis in scattering problems,” Electron. Lett. 5(17), 416–417 (1969).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109(15), 2656–2663 (2008).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996).

[Crossref]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transfer 55(5), 535–575 (1996).

[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).

[Crossref]

Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of au colloids and their interactions with functional amino acids,” J. Phys. Chem. B 108(13), 4046–4052 (2004).

[Crossref]

B. Peterson and S. Ström, “T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3),” Phys. Rev. D 8(10), 3661–3678 (1973).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

B. Auguié, W. R. C. Somerville, S. Roache, and E. C. Le Ru, “Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle,” J. Opt. 18(7), 075007 (2016).

[Crossref]

T. Rother, Electromagnetic wave scattering on nonspherical particles (Springer, 2009).

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

W. Somerville, B. Auguié, and E. Le Ru, “SMARTIES: User-friendly codes for fast and accurate calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 174, 39–55 (2016).

[Crossref]

B. Auguié, W. R. C. Somerville, S. Roache, and E. C. Le Ru, “Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle,” J. Opt. 18(7), 075007 (2016).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Accurate and convergent T-matrix calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 160, 29–35 (2015).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles,” J. Quant. Spectrosc. Radiat. Transfer 123, 153–168 (2013).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Severe loss of precision in calculations of T-matrix integrals,” J. Quant. Spectrosc. Radiat. Transfer 113(7), 524–535 (2012).

[Crossref]

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19(1), 15–24 (1961).

[Crossref]

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).

[Crossref]

B. Stout, J. C. Auger, and A. Devilez, “Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25(10), 2549–2557 (2008).

[Crossref]

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple-scattering problems,” J. Mod. Opt. 49(13), 2129–2152 (2002).

[Crossref]

B. Peterson and S. Ström, “T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3),” Phys. Rev. D 8(10), 3661–3678 (1973).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

D. Theobald, A. Egel, G. Gomard, and U. Lemmer, “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles,” Phys. Rev. A 96(3), 033822 (2017).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transfer 55(5), 535–575 (1996).

[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

G. Videen and M. Kocifaj, Optics of cosmic dust, vol. 79 (Springer Science & Business Media, 2002).

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3(4), 825–839 (1971).

[Crossref]

P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45(6), 1417–1429 (1969).

[Crossref]

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53(8), 805–812 (1965).

[Crossref]

A. Doicu, T. Wriedt, and Y. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

L. Bi and P. Yang, “Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 138, 17–35 (2014).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

J. Markkanen and A. J. Yuffa, “Fast superposition T-matrix solution for clusters with arbitrarily-shaped constituent particles,” J. Quant. Spectrosc. Radiat. Transfer 189, 181–188 (2017).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of au colloids and their interactions with functional amino acids,” J. Phys. Chem. B 108(13), 4046–4052 (2004).

[Crossref]

D. Amos, “Algorithm 644, a portable package for Bessel functions of a complex argument and nonnegative order,” ACM Trans. Math. Softw. 12(3), 265–273 (1986).

[Crossref]

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330(3), 377–445 (1908).

[Crossref]

R. Saija, M. A. Iati, F. Borghese, P. Denti, S. Aiello, and C. Cecchi-Pestellini, “Beyond Mie theory: The transition matrix approach in interstellar dust modeling,” Astrophys. J. 559(2), 993–1004 (2001).

[Crossref]

R. Millar, “Rayleigh hypothesis in scattering problems,” Electron. Lett. 5(17), 416–417 (1969).

[Crossref]

J. G. Radney, R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister, “Dependence of soot optical properties on particle morphology: Measurements and model comparisons,” Environ. Sci. Technol. 48(6), 3169–3176 (2014).

[Crossref]

P. C. Waterman, “New formulation of acoustic scattering,” J. Acoust. Soc. Am. 45(6), 1417–1429 (1969).

[Crossref]

D. Maystre and M. Cadilhac, “Singularities of the continuation of fields and validity of Rayleigh’s hypothesis,” J. Math. Phys. 26(9), 2201–2204 (1985).

[Crossref]

T. A. Nieminen, V. L. Loke, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix method for modelling optical tweezers,” J. Mod. Opt. 58(5-6), 528–544 (2011).

[Crossref]

B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field calculations in multiple-scattering problems,” J. Mod. Opt. 49(13), 2129–2152 (2002).

[Crossref]

B. Auguié, W. R. C. Somerville, S. Roache, and E. C. Le Ru, “Numerical investigation of the Rayleigh hypothesis for electromagnetic scattering by a particle,” J. Opt. 18(7), 075007 (2016).

[Crossref]

Y. lin Xu, “Scattering Mueller matrix of an ensemble of variously shaped small particles,” J. Opt. Soc. Am. A 20(11), 2093–2105 (2003).

[Crossref]

B. Stout, J. C. Auger, and A. Devilez, “Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations,” J. Opt. Soc. Am. A 25(10), 2549–2557 (2008).

[Crossref]

D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11(11), 2851–2861 (1994).

[Crossref]

D. W. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13(11), 2266–2278 (1996).

[Crossref]

Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The surface chemistry of au colloids and their interactions with functional amino acids,” J. Phys. Chem. B 108(13), 4046–4052 (2004).

[Crossref]

R. Gill, L. Tian, W. R. C. Somerville, E. C. Le Ru, H. van Amerongen, and V. Subramaniam, “Silver nanoparticle aggregates as highly efficient plasmonic antennas for fluorescence enhancement,” J. Phys. Chem. C 116(31), 16687–16693 (2012).

[Crossref]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: A review,” J. Quant. Spectrosc. Radiat. Transfer 55(5), 535–575 (1996).

[Crossref]

T. Martin, “T-matrix method for closely adjacent obstacles,” J. Quant. Spectrosc. Radiat. Transfer 234, 40–46 (2019).

[Crossref]

W. Somerville, B. Auguié, and E. Le Ru, “SMARTIES: User-friendly codes for fast and accurate calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 174, 39–55 (2016).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Severe loss of precision in calculations of T-matrix integrals,” J. Quant. Spectrosc. Radiat. Transfer 113(7), 524–535 (2012).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “A new numerically stable implementation of the T-matrix method for electromagnetic scattering by spheroidal particles,” J. Quant. Spectrosc. Radiat. Transfer 123, 153–168 (2013).

[Crossref]

N. G. Khlebtsov, “T-matrix method in plasmonics: An overview,” J. Quant. Spectrosc. Radiat. Transfer 123, 184–217 (2013).

[Crossref]

W. R. C. Somerville, B. Auguié, and E. C. Le Ru, “Accurate and convergent T-matrix calculations of light scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transfer 160, 29–35 (2015).

[Crossref]

L. Bi and P. Yang, “Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 138, 17–35 (2014).

[Crossref]

L. Liu, M. I. Mishchenko, and W. P. Arnott, “A study of radiative properties of fractal soot aggregates using the superposition T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 109(15), 2656–2663 (2008).

[Crossref]

J. Markkanen and A. J. Yuffa, “Fast superposition T-matrix solution for clusters with arbitrarily-shaped constituent particles,” J. Quant. Spectrosc. Radiat. Transfer 189, 181–188 (2017).

[Crossref]

V. G. Farafonov, “Applicability of the T-matrix method and its modifications,” Opt. Spectrosc. 92(5), 748–760 (2002).

[Crossref]

D. Theobald, A. Egel, G. Gomard, and U. Lemmer, “Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles,” Phys. Rev. A 96(3), 033822 (2017).

[Crossref]

H. U. Yang, J. D’Archangel, M. L. Sundheimer, E. Tucker, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of silver,” Phys. Rev. B 91(23), 235137 (2015).

[Crossref]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60(8), 6086–6102 (1999).

[Crossref]

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3(4), 825–839 (1971).

[Crossref]

B. Peterson and S. Ström, “T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3),” Phys. Rev. D 8(10), 3661–3678 (1973).

[Crossref]

M. R. A. Majić, B. Auguié, and E. C. Le Ru, “Spheroidal harmonic expansions for the solution of Laplace’s equation for a point source near a sphere,” Phys. Rev. E 95(3), 033307 (2017).

[Crossref]

P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53(8), 805–812 (1965).

[Crossref]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London, Ser. A 433(1889), 599–614 (1991).

[Crossref]

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19(1), 15–24 (1961).

[Crossref]

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20(1), 33–40 (1962).

[Crossref]

Y.-Q. Jin and X. Huang, “Numerical T-matrix solution for polarized scattering from a cluster of spatially oriented, nonspherical scatterers,” Q. Appl. Math. 12(3), 154–158 (1996).

[Crossref]

A. Doicu, T. Wriedt, and Y. Eremin, Light Scattering by Systems of Particles (Springer, 2006).

E. C. Le Ru and P. G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects (Elsevier, 2009).

J. Grand and E. C. Le Ru, “Practical implementation of accurate finite-element calculations for electromagnetic scattering by nanoparticles,” Plasmonics (2019).

T. Rother, Electromagnetic wave scattering on nonspherical particles (Springer, 2009).

G. Videen and M. Kocifaj, Optics of cosmic dust, vol. 79 (Springer Science & Business Media, 2002).

W. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press series on electromagnetic waves (Van Nostrand Reinhold, 1990).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, absorption, and emission of light by small particles (Cambridge University, 2002).