Abstract

The physical-layer properties of the classical optical fiber channel provide an inherent, unique, random and reciprocal source for secure key generation and distribution (SKGD). However, the key generation rate (KGR) is generally less than kbit/s in the reported SKGD schemes. In this paper, an accelerated SKGD scheme based on active polarization scrambling is proposed in the classical optical fiber channel. A combination of unique birefringence distribution of optical fiber channel and active scrambling of instant state of polarization (SOP) enables a fast and random SOP fluctuation to be securely shared between the legitimate users for accelerated SKGD. The proposed SKGD scheme is experimentally demonstrated over 24-km standard single-mode fiber (SSMF), where a KGR of 200-kbit/s with an error-free operation is achieved after the post-processing procedure. Moreover, the possible fiber-tapping attacks are theoretically and experimentally analyzed for the security robustness of the proposed scheme. The results imply that a faster SKGD scheme could be achieved by incorporating an active polarization scrambling mechanism into the random properties of the fiber channel.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Error-free secure key generation and distribution using dynamic Stokes parameters

Liuming Zhang, Adnan A. E. Hajomer, Xuelin Yang, and Weisheng Hu
Opt. Express 27(20) 29207-29216 (2019)

Accelerated secure key distribution based on localized and asymmetric fiber interferometers

Chaoran Huang, Philip Y. Ma, Eric C. Blow, Prateek Mittal, and Paul R. Prucnal
Opt. Express 27(22) 32096-32110 (2019)

Physical layer secret key generation for fiber-optical networks

Konstantin Kravtsov, Zhenxing Wang, Wade Trappe, and Paul R. Prucnal
Opt. Express 21(20) 23756-23771 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Katz and Y. Lindell, Introduction to modern cryptography (Chapman and Hall/CRC, 2014).
  2. R. E. Blahut, Cryptography and secure communication (Cambridge University, 2014).
  3. B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
    [Crossref]
  4. A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Inform. 2(1), 15023 (2016).
    [Crossref]
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  6. A. Argyris, E. Pikasis, and D. Syvridis, “Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators,” J. Lightwave Technol. 34(22), 5325–5331 (2016).
    [Crossref]
  7. H. Koizumi, S. Morikatsu, H. Aida, T. Nozawa, I. Kakesu, A. Uchida, K. Yoshimura, J. Muramatsu, and P. Davis, “Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor laser,” Opt. Express 21(15), 17869–17893 (2013).
    [Crossref]
  8. N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection,” Opt. Lett. 42(6), 1055–1058 (2017).
    [Crossref]
  9. C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. Commun. 6(1), 312–319 (2016).
    [Crossref]
  10. C. Xue, N. Jiang, K. Qiu, and Y. Lv, “Key distribution based on synchronization in bandwidth-enhanced random bit generators with dynamic post-processing,” Opt. Express 23(11), 14510–14519 (2015).
    [Crossref]
  11. K. Kravtsov, Z. Wang, W. Trappe, and P. R. Prucnal, “Physical-layer secret key generation for fiber-optic networks,” Opt. Express 21(20), 23756–23771 (2013).
    [Crossref]
  12. Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
    [Crossref]
  13. A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
    [Crossref]
  14. L. Zhang, A. A. E. Hajomer, X. Yang, and W. Hu, “Error-free secure key generation and distribution using dynamic Stokes parameters,” Opt. Express 27(20), 29207–29216 (2019).
    [Crossref]
  15. I. U. Zaman, A. B. Lopez, M. A. A. Faruque, and O. Boyraz, “Physical-layer cryptographic key generation by exploiting PMD of an optical fiber link,” J. Lightwave Technol. 36(24), 5903–5911 (2018).
    [Crossref]
  16. S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
    [Crossref]
  17. T. R. Woliński, “Polarization in optical fibers,” Acta Phys. Pol., A 95(5), 749–760 (1999).
    [Crossref]
  18. A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
    [Crossref]
  19. K. Ren, H. Su, and Q. Wang, “Secret key generation exploiting channel characteristics in wireless communications,” IEEE Wireless Commun. 18(4), 6–12 (2011).
    [Crossref]
  20. C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
    [Crossref]
  21. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.
  22. T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.
  23. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
    [Crossref]
  24. M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
    [Crossref]
  25. J. B. Geddes, K. M. Short, and K. Black, “Extraction of signals from chaotic laser data,” Phys. Rev. Lett. 83(25), 5389–5392 (1999).
    [Crossref]
  26. C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
    [Crossref]

2019 (2)

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

L. Zhang, A. A. E. Hajomer, X. Yang, and W. Hu, “Error-free secure key generation and distribution using dynamic Stokes parameters,” Opt. Express 27(20), 29207–29216 (2019).
[Crossref]

2018 (3)

I. U. Zaman, A. B. Lopez, M. A. A. Faruque, and O. Boyraz, “Physical-layer cryptographic key generation by exploiting PMD of an optical fiber link,” J. Lightwave Technol. 36(24), 5903–5911 (2018).
[Crossref]

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

2017 (2)

N. Jiang, C. Xue, Y. Lv, and K. Qiu, “Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection,” Opt. Lett. 42(6), 1055–1058 (2017).
[Crossref]

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

2016 (4)

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. Commun. 6(1), 312–319 (2016).
[Crossref]

A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Inform. 2(1), 15023 (2016).
[Crossref]

A. Argyris, E. Pikasis, and D. Syvridis, “Gb/s one-time-pad data encryption with synchronized chaos-based true random bit generators,” J. Lightwave Technol. 34(22), 5325–5331 (2016).
[Crossref]

2015 (1)

2013 (2)

2011 (1)

K. Ren, H. Su, and Q. Wang, “Secret key generation exploiting channel characteristics in wireless communications,” IEEE Wireless Commun. 18(4), 6–12 (2011).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2001 (1)

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

1999 (2)

J. B. Geddes, K. M. Short, and K. Black, “Extraction of signals from chaotic laser data,” Phys. Rev. Lett. 83(25), 5389–5392 (1999).
[Crossref]

T. R. Woliński, “Polarization in optical fibers,” Acta Phys. Pol., A 95(5), 749–760 (1999).
[Crossref]

1995 (1)

C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
[Crossref]

1983 (1)

S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[Crossref]

1949 (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Aida, H.

Argyris, A.

Babaie, M.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Banks, D.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Barker, E.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
[Crossref]

Black, K.

J. B. Geddes, K. M. Short, and K. Black, “Extraction of signals from chaotic laser data,” Phys. Rev. Lett. 83(25), 5389–5392 (1999).
[Crossref]

Blahut, R. E.

R. E. Blahut, Cryptography and secure communication (Cambridge University, 2014).

Blondel, M.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Boyraz, O.

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
[Crossref]

Bromberg, Y.

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

Cao, H.

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

Carnicer, A.

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

Charbon, E.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
[Crossref]

Davis, P.

Defosse, Y.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Dray, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Duplys, P.

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

Faruque, M. A. A.

Geddes, J. B.

J. B. Geddes, K. M. Short, and K. Black, “Extraction of signals from chaotic laser data,” Phys. Rev. Lett. 83(25), 5389–5392 (1999).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Guillaume, R.

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

Güneysu, T.

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

Hajomer, A. A. E.

L. Zhang, A. A. E. Hajomer, X. Yang, and W. Hu, “Error-free secure key generation and distribution using dynamic Stokes parameters,” Opt. Express 27(20), 29207–29216 (2019).
[Crossref]

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

Heckert, A.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Homulle, H. A. R.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Hu, W.

L. Zhang, A. A. E. Hajomer, X. Yang, and W. Hu, “Error-free secure key generation and distribution using dynamic Stokes parameters,” Opt. Express 27(20), 29207–29216 (2019).
[Crossref]

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

Huth, C.

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

Incandela, R. M.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Javidi, B.

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

Jiang, N.

Kakesu, I.

Katz, J.

J. Katz and Y. Lindell, Introduction to modern cryptography (Chapman and Hall/CRC, 2014).

Keattisak, S.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

Koizumi, H.

Kravtsov, K.

Leigh, S.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Levenson, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Li, G.

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

Lindell, Y.

J. Katz and Y. Lindell, Introduction to modern cryptography (Chapman and Hall/CRC, 2014).

Lopez, A. B.

Lv, Y.

Maurer, U. M.

C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
[Crossref]

Megret, P.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Montanaro, A.

A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Inform. 2(1), 15023 (2016).
[Crossref]

Morikatsu, S.

Muramatsu, J.

Nechvatal, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Nozawa, T.

Ornlarp, S.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

Patra, B.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Pikasis, E.

Popoff, S. M.

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

Prucnal, P. R.

Qiu, K.

Rashleigh, S.

S. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[Crossref]

Redding, B.

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

Ren, K.

K. Ren, H. Su, and Q. Wang, “Secret key generation exploiting channel characteristics in wireless communications,” IEEE Wireless Commun. 18(4), 6–12 (2011).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Rogers, A.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Rukhin, A.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Samuel, I. A.

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

Sebastiano, F.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Shahmohammadi, M.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Shannon, C. E.

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Short, K. M.

J. B. Geddes, K. M. Short, and K. Black, “Extraction of signals from chaotic laser data,” Phys. Rev. Lett. 83(25), 5389–5392 (1999).
[Crossref]

Smid, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Song, L.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Soto, J.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Staszewski, R. B.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Strohm, T.

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

Su, H.

K. Ren, H. Su, and Q. Wang, “Secret key generation exploiting channel characteristics in wireless communications,” IEEE Wireless Commun. 18(4), 6–12 (2011).
[Crossref]

Sultan, A.

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

Syvridis, D.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Trappe, W.

Uchida, A.

van. Dijk, J. P. G.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Vangel, M.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Vladimirescu, A.

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

Vo, S.

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

Wang, Q.

K. Ren, H. Su, and Q. Wang, “Secret key generation exploiting channel characteristics in wireless communications,” IEEE Wireless Commun. 18(4), 6–12 (2011).
[Crossref]

Wang, Z.

Wolinski, T. R.

T. R. Woliński, “Polarization in optical fibers,” Acta Phys. Pol., A 95(5), 749–760 (1999).
[Crossref]

Wuilpart, M.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

Wuthigorn, T.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

Xue, C.

Yang, X.

L. Zhang, A. A. E. Hajomer, X. Yang, and W. Hu, “Error-free secure key generation and distribution using dynamic Stokes parameters,” Opt. Express 27(20), 29207–29216 (2019).
[Crossref]

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

Yoshimura, K.

Zaman, I. U.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zhang, L.

Zhao, N.

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

Acta Phys. Pol., A (1)

T. R. Woliński, “Polarization in optical fibers,” Acta Phys. Pol., A 95(5), 749–760 (1999).
[Crossref]

Adv. Opt. Photonics (1)

A. Carnicer and B. Javidi, “Optical security and authentication using nanoscale and thin-film structures,” Adv. Opt. Photonics 9(2), 218–256 (2017).
[Crossref]

Bell Syst. Tech. J. (1)

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Comput. Netw. (1)

C. Huth, R. Guillaume, T. Strohm, P. Duplys, I. A. Samuel, and T. Güneysu, “Information reconciliation schemes in physical-layer security: A survey,” Comput. Netw. 109, 84–104 (2016).
[Crossref]

IEEE J. Solid-State Circuits (1)

B. Patra, R. M. Incandela, J. P. G. van. Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS circuits and systems for quantum computing applications,” IEEE J. Solid-State Circuits 53(1), 309–321 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. A. E. Hajomer, X. Yang, A. Sultan, and W. Hu, “Key distribution based on phase fluctuation between polarization modes in optical channel,” IEEE Photonics Technol. Lett. 30(8), 704–707 (2018).
[Crossref]

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, “Measurement of the spatial distribution of birefringence in optical fibers,” IEEE Photonics Technol. Lett. 13(8), 836–838 (2001).
[Crossref]

IEEE Trans. Commun. (1)

C. Xue, N. Jiang, Y. Lv, and K. Qiu, “Secure key distribution based on dynamic chaos synchronization of cascaded semiconductor laser systems,” IEEE Trans. Commun. 6(1), 312–319 (2016).
[Crossref]

IEEE Trans. Inf. Theory (1)

C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995).
[Crossref]

IEEE Wireless Commun. (1)

K. Ren, H. Su, and Q. Wang, “Secret key generation exploiting channel characteristics in wireless communications,” IEEE Wireless Commun. 18(4), 6–12 (2011).
[Crossref]

J. Lightwave Technol. (3)

npj Quantum Inform. (1)

A. Montanaro, “Quantum algorithms: an overview,” npj Quantum Inform. 2(1), 15023 (2016).
[Crossref]

Opt. Eng. (1)

Y. Bromberg, B. Redding, S. M. Popoff, N. Zhao, G. Li, and H. Cao, “Remote key establishment by random mode mixing in multimode fibers and optical reciprocity,” Opt. Eng. 58(01), 1 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. B. Geddes, K. M. Short, and K. Black, “Extraction of signals from chaotic laser data,” Phys. Rev. Lett. 83(25), 5389–5392 (1999).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Other (4)

J. Katz and Y. Lindell, Introduction to modern cryptography (Chapman and Hall/CRC, 2014).

R. E. Blahut, Cryptography and secure communication (Cambridge University, 2014).

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” in Special Publication, Revision 1a (2010), paper 800-22.

T. Wuthigorn, S. Keattisak, and S. Ornlarp, “Secret key reconciliation using BCH code in quantum key distribution,” in International Symposium on Communications and Information Technologies (IEEE, 2007), pp. 1482–1485.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of the proposed accelerated SKGD with an active polarization scrambler.
Fig. 2.
Fig. 2. SOP evolution with respect to the length of SSMF.
Fig. 3.
Fig. 3. Experimental setup of the proposed SKGD.
Fig. 4.
Fig. 4. Comparison of the measured waveforms by Alice and Bob. (a). waveforms; (b). Cross-correlation and auto-correlation functions.
Fig. 5.
Fig. 5. Cross-correlation variation with respect to the wavelength.
Fig. 6.
Fig. 6. Performances of secure key. (a). KGR and KER variation versus ɛ; (b). KER versus correlation coefficient; (c). Entropy of generated key versus ɛ; (d). Down sampling factor versus the randomness of the generated key.
Fig. 7.
Fig. 7. Schematic diagram of fiber-tapping attacks.
Fig. 8.
Fig. 8. Comparison of the measurements by Bob, Eve and Alice. (a). Waveforms; (b). Cross-correlation function.
Fig. 9.
Fig. 9. Comparison of the measurements by Bob and Eve. (a). Waveforms; (b). Cross-correlation function.
Fig. 10.
Fig. 10. Comparison of the measurements by Alice and Eve. (a). Waveforms; (b). Cross-correlation function.

Tables (3)

Tables Icon

Table 1. Results of statistical NIST tests.

Tables Icon

Table 2. The mutual information between Bob and Eve.

Tables Icon

Table 3. Comparison of the reported SKGD schemes in optical fiber channel.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ = ( β x β y ) L
S o u t = M S i n
I = ( 1 / 2 ) [ 1 + cos 2 α sin 2 δ + | γ | sin 2 α sin 2 δ cos( Φ + Φ S ) ]
Q ( y ) = { 1 i f y > q + , q ± = mean ± ε × variance 0 i f y < q
I ( B ; E ) = a = 0 1 b = 0 1 p B , E ( a , b ) log 2 p B , E ( a , b ) p B ( a ) p E ( b )

Metrics