Abstract

Precision interferometry is the leading method for extremely sensitive measurements in gravitational wave astronomy. Thermal noise of dielectric coatings poses a limitation to the sensitivity of these interferometers. To decrease coating thermal noise, new crystalline GaAs/AlGaAs multilayer mirrors have been developed. To date, the surface figure and thickness uniformity of these alternative low-loss coatings has not been investigated. Surface figure errors, for example, cause small angle scattering and thereby limit the sensitivity of an interferometer. Here we measure the surface figure of highly reflective, substrate-transferred, crystalline GaAs/AlGaAs coatings with a custom scanning reflectance system. We exploit the fact that the reflectivity varies with the thickness of the coating. To increase penetration into the coating, we used a 1550 nm laser on a highly reflective coating designed for a center wavelength of 1064 nm. The RMS thickness variation of a two inch optic was measured to be 0.41 $\pm$ 0.05 nm. This result is within 10% of the thickness uniformity, of 0.37 nm RMS, achieved with ion-beam sputtered coatings for the aLIGO detector. We additionally measured a lower limit of the laser induced damage threshold of 64 MW/cm$^2$ for GaAs/AlGaAs coatings at a wavelength of 1064 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mechanical ringdown studies of large-area substrate-transferred GaAs/AlGaAs crystalline coatings

Steven D. Penn, Maya M. Kinley-Hanlon, Ian A. O. MacMillan, Paula Heu, David Follman, Christoph Deutsch, Garrett D. Cole, and Gregory M. Harry
J. Opt. Soc. Am. B 36(4) C15-C21 (2019)

Optical performance of large-area crystalline coatings

Manuel Marchiò, Raffaele Flaminio, Laurent Pinard, Daniéle Forest, Christoph Deutsch, Paula Heu, David Follman, and Garrett D. Cole
Opt. Express 26(5) 6114-6125 (2018)

High-performance near- and mid-infrared crystalline coatings

Garrett D. Cole, Wei Zhang, Bryce J. Bjork, David Follman, Paula Heu, Christoph Deutsch, Lindsay Sonderhouse, John Robinson, Chris Franz, Alexei Alexandrovski, Mark Notcutt, Oliver H. Heckl, Jun Ye, and Markus Aspelmeyer
Optica 3(6) 647-656 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Aufmuth and K. Danzmann, “Gravitational wave detectors,” New J. Phys. 7, 202 (2005).
    [Crossref]
  2. G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Classical Quantum Gravity 27(8), 084006 (2010).
    [Crossref]
  3. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
    [Crossref]
  4. G. D. Cole, W. Zhang, B. J. Bjork, D. Follman, P. Heu, C. Deutsch, L. Sonderhouse, J. Robinson, C. Franz, A. Alexandrovski, M. Notcutt, O. H. Heckl, J. Ye, and M. Aspelmeyer, “High-performance near- and mid-infrared crystalline coatings,” Optica 3(6), 647–656 (2016).
    [Crossref]
  5. M. Marchiò, R. Flaminio, L. Pinard, D. Forest, C. Deutsch, P. Heu, D. Follman, and G. D. Cole, “Optical performance of large-area crystalline coatings,” Opt. Express 26(5), 6114–6125 (2018).
    [Crossref]
  6. G. Billingsley, “Advanced ligo end test mass(etm),” https://dcc.ligo.org/LIGO-E080512/public (2009).
  7. L. Pinard, C. Michel, B. Sassolas, L. Balzarini, J. Degallaix, V. Dolique, R. Flaminio, D. Forest, M. Granata, B. Lagrange, N. Straniero, J. Teillon, and G. Cagnoli, “Mirrors used in the LIGO interferometers for first detection of gravitational waves,” Appl. Opt. 56(4), C11–C15 (2017).
    [Crossref]
  8. The LIGO Scientific Collaboration, “Advanced LIGO,” Classical Quantum Gravity 32(7), 074001 (2015).
    [Crossref]
  9. S. J. Orfanidis, “multidiel,” http://eceweb1.rutgers.edu/orfanidi/ewa/ (2016).
  10. S. J. Orfanidis, “Electromagnetic waves and antennas,” http://eceweb1.rutgers.edu/orfanidi/ewa/ewa-2up.pdf (2013).
  11. H. A. MacLeod, Thin-Film Optical Filters (Series in Optics and Optoelectronics) (CRC Press, 2010).
  12. J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
    [Crossref]
  13. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  14. U. P. V Holy and T Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers (Springer, 1999).
  15. J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).
  16. G. W. DeBell, “Ion beam sputtered coatings for high fluence applications,” in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. Soileau, and C. J. Stolz, eds. (SPIE, 2005).
  17. X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
    [Crossref]
  18. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12(4), 661–664 (1973).
    [Crossref]
  19. M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
    [Crossref]

2018 (1)

2017 (1)

2016 (1)

2015 (1)

The LIGO Scientific Collaboration, “Advanced LIGO,” Classical Quantum Gravity 32(7), 074001 (2015).
[Crossref]

2013 (1)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

2012 (1)

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

2010 (2)

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Classical Quantum Gravity 27(8), 084006 (2010).
[Crossref]

2005 (1)

P. Aufmuth and K. Danzmann, “Gravitational wave detectors,” New J. Phys. 7, 202 (2005).
[Crossref]

1997 (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

1973 (1)

1965 (1)

Alexandrovski, A.

Aspelmeyer, M.

Aufmuth, P.

P. Aufmuth and K. Danzmann, “Gravitational wave detectors,” New J. Phys. 7, 202 (2005).
[Crossref]

Balzarini, L.

Baumbach, T

U. P. V Holy and T Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers (Springer, 1999).

Billingsley, G.

G. Billingsley, “Advanced ligo end test mass(etm),” https://dcc.ligo.org/LIGO-E080512/public (2009).

Bjork, B. J.

Bloembergen, N.

Cagnoli, G.

Chen, C. Y.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Cole, G. D.

Danzmann, K.

P. Aufmuth and K. Danzmann, “Gravitational wave detectors,” New J. Phys. 7, 202 (2005).
[Crossref]

DeBell, G. W.

G. W. DeBell, “Ion beam sputtered coatings for high fluence applications,” in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. Soileau, and C. J. Stolz, eds. (SPIE, 2005).

Degallaix, J.

Deutsch, C.

Dolique, V.

Flaminio, R.

Follman, D.

Forest, D.

Franz, C.

Granata, M.

Harry, G. M.

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Classical Quantum Gravity 27(8), 084006 (2010).
[Crossref]

Heckl, O. H.

Heu, P.

Hill, S. M.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Holy, U. P. V

U. P. V Holy and T Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers (Springer, 1999).

Kao, Y. C.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Koldunov, M. F.

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

Köser, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Kuo, J. M.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Lagrange, B.

Li, J.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Li, W.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Lu, J.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

MacLeod, H. A.

H. A. MacLeod, Thin-Film Optical Filters (Series in Optics and Optoelectronics) (CRC Press, 2010).

Malitson, I. H.

Manenkov, A. A.

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

Marchiò, M.

Martin, M. J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Michel, C.

Middlebrooks, J. A.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Ni, X. W.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

Notcutt, M.

Orfanidis, S. J.

S. J. Orfanidis, “multidiel,” http://eceweb1.rutgers.edu/orfanidi/ewa/ (2016).

S. J. Orfanidis, “Electromagnetic waves and antennas,” http://eceweb1.rutgers.edu/orfanidi/ewa/ewa-2up.pdf (2013).

Pinard, L.

Pinsukanja, P. R.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Rheims, J.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Robinson, J.

Sassolas, B.

Shen, Z. H.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

Sonderhouse, L.

Straniero, N.

Teillon, J.

Vargason, K. W.

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

Wang, X.

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

Wriedt, T.

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Ye, J.

Zhang, W.

Appl. Opt. (2)

Classical Quantum Gravity (2)

G. M. Harry, “Advanced LIGO: the next generation of gravitational wave detectors,” Classical Quantum Gravity 27(8), 084006 (2010).
[Crossref]

The LIGO Scientific Collaboration, “Advanced LIGO,” Classical Quantum Gravity 32(7), 074001 (2015).
[Crossref]

J. Appl. Phys. (1)

X. Wang, Z. H. Shen, J. Lu, and X. W. Ni, “Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes,” J. Appl. Phys. 108(3), 033103 (2010).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

J. Rheims, J. Köser, and T. Wriedt, “Refractive-index measurements in the near-IR using an abbe refractometer,” Meas. Sci. Technol. 8(6), 601–605 (1997).
[Crossref]

Nat. Photonics (1)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

New J. Phys. (1)

P. Aufmuth and K. Danzmann, “Gravitational wave detectors,” New J. Phys. 7, 202 (2005).
[Crossref]

Opt. Eng. (1)

M. F. Koldunov and A. A. Manenkov, “Theory of laser-induced inclusion-initiated damage in optical materials,” Opt. Eng. 51(12), 121811 (2012).
[Crossref]

Opt. Express (1)

Optica (1)

Other (7)

G. Billingsley, “Advanced ligo end test mass(etm),” https://dcc.ligo.org/LIGO-E080512/public (2009).

U. P. V Holy and T Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers (Springer, 1999).

J. Li, S. M. Hill, J. A. Middlebrooks, C. Y. Chen, W. Li, J. M. Kuo, K. W. Vargason, Y. C. Kao, and P. R. Pinsukanja, “Highly uniform vcsels grown by multi-wafer production mbe,” in International Conference on Compound Semiconductor Manufacturing Technology (CS MANTEC), (2018).

G. W. DeBell, “Ion beam sputtered coatings for high fluence applications,” in Laser-Induced Damage in Optical Materials: 2005, G. J. Exarhos, A. H. Guenther, K. L. Lewis, D. Ristau, M. Soileau, and C. J. Stolz, eds. (SPIE, 2005).

S. J. Orfanidis, “multidiel,” http://eceweb1.rutgers.edu/orfanidi/ewa/ (2016).

S. J. Orfanidis, “Electromagnetic waves and antennas,” http://eceweb1.rutgers.edu/orfanidi/ewa/ewa-2up.pdf (2013).

H. A. MacLeod, Thin-Film Optical Filters (Series in Optics and Optoelectronics) (CRC Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Simulated reflectivity spectrum of two high reflectivity GaAs/AlGaAs coatings with 35.5 bilayers at normal incidence. One designed for 1064 nm wavelength (blue) and the other differing by an increased thickness of each layer by 0.5% (red).
Fig. 2.
Fig. 2. The GaAs/AlGaAs coating consisting of 35.5 bilayers bonded to a fused silica substrate. Glycerol is used as an index-matched bonding fluid to bond the mirror to a ground fused silica substrate. The transmitted laser light is scattered at the ground surface of the second substrate instead of being directly reflected towards the power meter. The refractive index difference between fused silica (fs) [12] and glycerol (gly) [13] at a wavelength of 1550 nm is $\Delta n=0.02$.
Fig. 3.
Fig. 3. A laser is collimated by a lens (L$_1$), then polarized by a polarization plate ($\lambda /2$) and a polarizing beam splitter (PBS). It is then focused by L$_2$ (f = 500 mm) onto the sample M mounted on a translation stage (TS). A reference beam is picked of by the PBS and measured by a power meter (P$_{ref}$). $L_3$ (f = 500 mm) collimates the reflected beam which is measured by P$_{refl}$. The transmitted power can be measured with P$_{trans}$.
Fig. 4.
Fig. 4. Thickness uniformity of the two inch GaAs/AlGaAs sample. Scan resolution of 10 measurements per cm. The Zernike polynomials of zeroth, first, and second order were subtracted. The outermost 2 mm as well as a defect near the rim were ignored for the RMS calculation.
Fig. 5.
Fig. 5. Layout of the seven 15 cm diameter GaAs wafers within the Veeco Gen2000 MBE chamber. The thickness uniformity across the platen is determined by measuring the thickness of 13 1 cm diameter witness pieces (indicated by the small circles in the central and orbital wafers). Additionally we have performed a position-dependent reflectivity measurement via spectrophotomery on one of the orbital wafers (upper right position).
Fig. 6.
Fig. 6. Extracted thickness uniformity for the epitaxial coating across the growth platen fitted to the X-ray diffraction measurements on the small witness pieces.
Fig. 7.
Fig. 7. A 1064 nm laser protected by a Faraday isolator (FI) is widened and collimated by a pair of lenses (L$_1$ with f = 50 mm and L$_2$ with f = 200 mm). The laser then is focused by L$_3$ (f = 140 mm) onto a GaAs/AlGaAs mirror (M$_1$). The reflected beam is steered by another mirror (M$_2$) to a power meter (P$_{ref}$). Further a CCD camera in combination with L$_4$ is used to observe the scattered light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n H t H = n L t L = λ 0 4 [ 11 ]
l 2 = λ 4 n + l 1
α 2 = arcsin n n 0 1 ( t s λ ( 4 n ) 1 + t s ( 1 ( n 0 n 1 sin α 1 ) 2 ) 1 ) 2 ,

Metrics