Abstract

A self-referenced electrical method is proposed for measuring the frequency responses of high-speed photodetectors (PDs) through segmental up-conversion based on low-speed photonic sampling. The proposed method provides a very narrow linewidth and ultra-wideband optical stimulus by the segmental electro-optic up-conversion, and eliminates the uneven responses of mode-locked laser diode (MLLD) and electro-optic modulator (MOD) based on the symmetric frequency photonic sampling, which is free of any extra calibration. Moreover, it achieves ultra-wide and scalable frequency response measurement of PDs with 2M-fold measuring frequency range, where the symmetric sweeping frequency up to Nfr/2 of MOD enables the measuring frequency range of M × N×fr. For a proof-of-concept, two commercial PDs are measured with a sampling rate of 96.9 MS/s and a symmetric frequency-swept modulation up to 1.4575 GHz and 2.475 GHz, and their frequency responses are evaluated up to 29.07 GHz (=10 × 30 × fr) and 49.419 GHz (=10 × 51 × fr), respectively. The consistency between our method and conventional methods verifies that the scalable self-referenced measurement provides a simple but accurate method for the performance characterization of high-speed PDs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency response measurement of high-speed electro-optic phase modulators via a single scan based on low-speed photonic sampling and low-frequency detection

Yujia Zhang, Yangxue Ma, Zhiyao Zhang, Lingjie Zhang, Zhen Zeng, Shangjian Zhang, and Yong Liu
Opt. Express 27(22) 32370-32377 (2019)

Cross-referenced deadband-free microwave frequency measurement with cascaded-four-wave-mixing-based photonic harmonic down-conversion

Xinhai Zou, Shangjian Zhang, Heng Wang, Yangxue Ma, Xuyan Zhang, Zhiyao Zhang, and Yong Liu
Opt. Express 27(17) 23714-23724 (2019)

Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters

Yangxue Ma, Dong Liang, Di Peng, Zhiyao Zhang, Yali Zhang, Shangjian Zhang, and Yong Liu
Opt. Express 25(3) 2355-2368 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  3. H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
    [Crossref]
  4. A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
    [Crossref]
  5. A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20(6), 57–63 (2014).
    [Crossref]
  6. L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
    [Crossref]
  7. A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
    [Crossref]
  8. C. Koch, “Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference-frequency servo control,” IEEE T. Ultrason. Ferr. 57(5), 1169–1174 (2010).
    [Crossref]
  9. T. Dennis and P. D. Hale, “High-accuracy photoreceiver frequency response measurements at 1.55 µm by use of a heterodyne phase-locked loop,” Opt. Express 19(21), 20103–20114 (2011).
    [Crossref]
  10. X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
    [Crossref]
  11. W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
    [Crossref]
  12. E. Eichen, J. Schlafer, W. Rideout, and J. Mccabe, “Wide-bandwidth receiver photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,” J. Lightwave Technol. 8(6), 912–916 (1990).
    [Crossref]
  13. F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
    [Crossref]
  14. D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photonics Technol. Lett. 6(10), 1258–1260 (1994).
    [Crossref]
  15. B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
    [Crossref]
  16. X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
    [Crossref]
  17. X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
    [Crossref]
  18. Q. Y. Ye, C. Yang, and Y. H. Chong, “Measuring the frequency response of photodiode using phase-modulated interferometric detection,” IEEE Photonics Technol. Lett. 26(1), 29–32 (2014).
    [Crossref]
  19. M. Yoshioka, S. Sato, and T. Kikuchi, “A method for measuring the frequency response of photodetector modules using twice-modulated light,” J. Lightwave Technol. 23(6), 2112–2117 (2005).
    [Crossref]
  20. K. Inagaki, T. Kawanishi, and M. Izutsu, “Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator,” IEICE Electron. Expr. 9(4), 220–226 (2012).
    [Crossref]
  21. M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
    [Crossref]
  22. H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
    [Crossref]
  23. S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
    [Crossref]
  24. Y. X. Ma, Z. Y. Zhang, S. J. Zhang, J. Yuan, Z. P. Zhang, D. B. Fu, J. A. Wang, and Y. Liu, “Self-calibrating microwave characterization of broadband Mach–Zehnder electro-optic modulator employing low-speed photonic down-conversion sampling and low-frequency detection,” J. Lightwave Technol. 37(11), 2668–2674 (2019).
    [Crossref]
  25. S. J. Zhang, C. Zhang, H. Wang, Y. Liu, J. D. Peters, and J. E. Bowers, “On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers,” Opt. Express 25(12), 13340–13350 (2017).
    [Crossref]

2019 (1)

2017 (1)

2016 (2)

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

2015 (1)

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

2014 (2)

Q. Y. Ye, C. Yang, and Y. H. Chong, “Measuring the frequency response of photodiode using phase-modulated interferometric detection,” IEEE Photonics Technol. Lett. 26(1), 29–32 (2014).
[Crossref]

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20(6), 57–63 (2014).
[Crossref]

2013 (1)

2012 (3)

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

K. Inagaki, T. Kawanishi, and M. Izutsu, “Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator,” IEICE Electron. Expr. 9(4), 220–226 (2012).
[Crossref]

2011 (1)

2010 (2)

C. Koch, “Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference-frequency servo control,” IEEE T. Ultrason. Ferr. 57(5), 1169–1174 (2010).
[Crossref]

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

2009 (3)

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

2005 (2)

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

M. Yoshioka, S. Sato, and T. Kikuchi, “A method for measuring the frequency response of photodetector modules using twice-modulated light,” J. Lightwave Technol. 23(6), 2112–2117 (2005).
[Crossref]

2004 (1)

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

1994 (1)

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photonics Technol. Lett. 6(10), 1258–1260 (1994).
[Crossref]

1993 (1)

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[Crossref]

1990 (1)

E. Eichen, J. Schlafer, W. Rideout, and J. Mccabe, “Wide-bandwidth receiver photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,” J. Lightwave Technol. 8(6), 912–916 (1990).
[Crossref]

1989 (1)

W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
[Crossref]

Bach, H. G.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Baney, D. M.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photonics Technol. Lett. 6(10), 1258–1260 (1994).
[Crossref]

Beling, A.

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20(6), 57–63 (2014).
[Crossref]

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Bimberg, D.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[Crossref]

Böttcher, E. H.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[Crossref]

Bowers, J. E.

Campbell, J. C.

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20(6), 57–63 (2014).
[Crossref]

Capmany, J.

Chen, S. F.

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

Chong, Y. H.

Q. Y. Ye, C. Yang, and Y. H. Chong, “Measuring the frequency response of photodiode using phase-modulated interferometric detection,” IEEE Photonics Technol. Lett. 26(1), 29–32 (2014).
[Crossref]

Dennis, T.

Ebert, W.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Eichen, E.

E. Eichen, J. Schlafer, W. Rideout, and J. Mccabe, “Wide-bandwidth receiver photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,” J. Lightwave Technol. 8(6), 912–916 (1990).
[Crossref]

W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
[Crossref]

Feng, X. J.

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

Fu, D. B.

Fu, J.

M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
[Crossref]

Gasulla, I.

Hale, P. D.

Han, W.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

He, L. B.

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

Heng, Y.

M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
[Crossref]

Huang, H.

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

Huang, Y. Q.

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

Inagaki, K.

K. Inagaki, T. Kawanishi, and M. Izutsu, “Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator,” IEICE Electron. Expr. 9(4), 220–226 (2012).
[Crossref]

Izutsu, M.

K. Inagaki, T. Kawanishi, and M. Izutsu, “Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator,” IEICE Electron. Expr. 9(4), 220–226 (2012).
[Crossref]

Kawanishi, T.

K. Inagaki, T. Kawanishi, and M. Izutsu, “Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator,” IEICE Electron. Expr. 9(4), 220–226 (2012).
[Crossref]

Ke, J. H.

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

Kikuchi, T.

Koch, C.

C. Koch, “Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference-frequency servo control,” IEEE T. Ultrason. Ferr. 57(5), 1169–1174 (2010).
[Crossref]

Kuhl, D.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[Crossref]

Kunkel, R.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Lacourse, J.

W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
[Crossref]

Li, H. P.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

Li, W.

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

Ling, Q.

M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
[Crossref]

Liu, J. G.

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

Liu, S.

M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
[Crossref]

Liu, Y.

Y. X. Ma, Z. Y. Zhang, S. J. Zhang, J. Yuan, Z. P. Zhang, D. B. Fu, J. A. Wang, and Y. Liu, “Self-calibrating microwave characterization of broadband Mach–Zehnder electro-optic modulator employing low-speed photonic down-conversion sampling and low-frequency detection,” J. Lightwave Technol. 37(11), 2668–2674 (2019).
[Crossref]

S. J. Zhang, C. Zhang, H. Wang, Y. Liu, J. D. Peters, and J. E. Bowers, “On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers,” Opt. Express 25(12), 13340–13350 (2017).
[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

Lloret, J.

Lu, R. G.

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

Ma, Y. X.

Man, J. W.

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

Mccabe, J.

E. Eichen, J. Schlafer, W. Rideout, and J. Mccabe, “Wide-bandwidth receiver photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,” J. Lightwave Technol. 8(6), 912–916 (1990).
[Crossref]

Mekonnen, G. G.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Meland, E.

W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
[Crossref]

Miao, A.

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

Mora, J.

Newton, S. A.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photonics Technol. Lett. 6(10), 1258–1260 (1994).
[Crossref]

Niu, F.

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

Pan, S.

M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
[Crossref]

Peters, J. D.

Qi, X. Q.

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

Ren, M.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

Ren, S. Y.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[Crossref]

Ren, X. M.

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

Rideout, W.

E. Eichen, J. Schlafer, W. Rideout, and J. Mccabe, “Wide-bandwidth receiver photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,” J. Lightwave Technol. 8(6), 912–916 (1990).
[Crossref]

W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
[Crossref]

Sales, S.

Sancho, J.

Sato, S.

Schlaak, W.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Schlafer, J.

E. Eichen, J. Schlafer, W. Rideout, and J. Mccabe, “Wide-bandwidth receiver photodetector frequency response measurements using amplified spontaneous emission from a semiconductor optical amplifier,” J. Lightwave Technol. 8(6), 912–916 (1990).
[Crossref]

W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
[Crossref]

Schmidt, D.

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Seeger, A.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Sorin, W. V.

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photonics Technol. Lett. 6(10), 1258–1260 (1994).
[Crossref]

Stollberg, M.

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

Wang, H.

S. J. Zhang, C. Zhang, H. Wang, Y. Liu, J. D. Peters, and J. E. Bowers, “On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers,” Opt. Express 25(12), 13340–13350 (2017).
[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

Wang, J. A.

Wang, L. X.

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

Wang, R.

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

Wang, S.

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

Wu, X. M.

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

Xie, F. Z.

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[Crossref]

Xie, L.

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

Xu, H.

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

Xue, M.

M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
[Crossref]

Yang, C.

Q. Y. Ye, C. Yang, and Y. H. Chong, “Measuring the frequency response of photodiode using phase-modulated interferometric detection,” IEEE Photonics Technol. Lett. 26(1), 29–32 (2014).
[Crossref]

Yang, P.

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

Yao, J. P.

Ye, Q. Y.

Q. Y. Ye, C. Yang, and Y. H. Chong, “Measuring the frequency response of photodiode using phase-modulated interferometric detection,” IEEE Photonics Technol. Lett. 26(1), 29–32 (2014).
[Crossref]

Yoshioka, M.

Yuan, J.

Zhang, B. H.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

Zhang, C.

Zhang, H. G.

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

Zhang, S. J.

Y. X. Ma, Z. Y. Zhang, S. J. Zhang, J. Yuan, Z. P. Zhang, D. B. Fu, J. A. Wang, and Y. Liu, “Self-calibrating microwave characterization of broadband Mach–Zehnder electro-optic modulator employing low-speed photonic down-conversion sampling and low-frequency detection,” J. Lightwave Technol. 37(11), 2668–2674 (2019).
[Crossref]

S. J. Zhang, C. Zhang, H. Wang, Y. Liu, J. D. Peters, and J. E. Bowers, “On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers,” Opt. Express 25(12), 13340–13350 (2017).
[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

Zhang, X. X.

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

Zhang, Y. L.

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

Zhang, Z. P.

Zhang, Z. Y.

Y. X. Ma, Z. Y. Zhang, S. J. Zhang, J. Yuan, Z. P. Zhang, D. B. Fu, J. A. Wang, and Y. Liu, “Self-calibrating microwave characterization of broadband Mach–Zehnder electro-optic modulator employing low-speed photonic down-conversion sampling and low-frequency detection,” J. Lightwave Technol. 37(11), 2668–2674 (2019).
[Crossref]

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

Zhong, B.

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

Zhu, N. H.

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

Zou, X. H.

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. G. Bach, A. Beling, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Ebert, A. Seeger, M. Stollberg, and W. Schlaak, “InP-based waveguide-integrated photodetector with 100-GHz bandwidth,” IEEE J. Sel. Top. Quantum Electron. 10(4), 668–672 (2004).
[Crossref]

A. Beling and J. C. Campbell, “High-speed photodiodes,” IEEE J. Sel. Top. Quantum Electron. 20(6), 57–63 (2014).
[Crossref]

IEEE Photonics J. (1)

X. M. Wu, J. W. Man, L. Xie, J. G. Liu, Y. Liu, and N. H. Zhu, “A new method for measuring the frequency response of broadband optoelectronic devices,” IEEE Photonics J. 4(5), 1679–1685 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (8)

X. M. Wu, J. W. Man, L. Xie, Y. Liu, X. Q. Qi, L. X. Wang, J. G. Liu, and N. H. Zhu, “Novel method for frequency response measurement of optoelectronic devices,” IEEE Photonics Technol. Lett. 24(7), 575–577 (2012).
[Crossref]

Q. Y. Ye, C. Yang, and Y. H. Chong, “Measuring the frequency response of photodiode using phase-modulated interferometric detection,” IEEE Photonics Technol. Lett. 26(1), 29–32 (2014).
[Crossref]

A. Beling, H. G. Bach, G. G. Mekonnen, R. Kunkel, and D. Schmidt, “Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity,” IEEE Photonics Technol. Lett. 17(10), 2152–2154 (2005).
[Crossref]

X. J. Feng, P. Yang, L. B. He, F. Niu, B. Zhong, and H. Xu, “Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications,” IEEE Photonics Technol. Lett. 28(12), 1360–1362 (2016).
[Crossref]

W. Rideout, E. Eichen, J. Schlafer, J. Lacourse, and E. Meland, “Relative intensity noise in semiconductor optical amplifiers,” IEEE Photonics Technol. Lett. 1(12), 438–440 (1989).
[Crossref]

D. M. Baney, W. V. Sorin, and S. A. Newton, “High-frequency photodiode characterization using a filtered intensity noise technique,” IEEE Photonics Technol. Lett. 6(10), 1258–1260 (1994).
[Crossref]

B. H. Zhang, N. H. Zhu, W. Han, J. H. Ke, H. G. Zhang, M. Ren, W. Li, and L. Xie, “Development of swept frequency method for measuring frequency response of photodetectors based on harmonic analysis,” IEEE Photonics Technol. Lett. 21(7), 459–461 (2009).
[Crossref]

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, H. P. Li, and Y. Liu, “Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors,” IEEE Photonics Technol. Lett. 27(9), 1014–1017 (2015).
[Crossref]

IEEE T. Ultrason. Ferr. (1)

C. Koch, “Measuring the photodetector frequency response for ultrasonic applications by a heterodyne system with difference-frequency servo control,” IEEE T. Ultrason. Ferr. 57(5), 1169–1174 (2010).
[Crossref]

IEICE Electron. Expr. (1)

K. Inagaki, T. Kawanishi, and M. Izutsu, “Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator,” IEICE Electron. Expr. 9(4), 220–226 (2012).
[Crossref]

J. Appl. Phys. (1)

F. Z. Xie, D. Kuhl, E. H. Böttcher, S. Y. Ren, and D. Bimberg, “Wide-band frequency response measurements of photodetectors using low-level photocurrent noise detection,” J. Appl. Phys. 73(12), 8641–8646 (1993).
[Crossref]

J. Lightwave Technol. (5)

Microw. Opt. Technol. Lett. (2)

L. X. Wang, N. H. Zhu, J. H. Ke, W. Li, S. F. Chen, and L. Xie, “Improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system,” Microw. Opt. Technol. Lett. 52(10), 2199–2203 (2010).
[Crossref]

A. Miao, Y. Q. Huang, H. Huang, R. Wang, S. Wang, and X. M. Ren, “Wideband calibration of photodetector frequency response based on optical heterodyne measurement,” Microw. Opt. Technol. Lett. 51(1), 44–48 (2009).
[Crossref]

Opt. Commun. (1)

H. Wang, S. J. Zhang, X. H. Zou, Y. L. Zhang, R. G. Lu, Z. Y. Zhang, X. X. Zhang, and Y. Liu, “Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors,” Opt. Commun. 373, 110–113 (2016).
[Crossref]

Opt. Express (2)

Other (1)

M. Xue, S. Liu, Q. Ling, Y. Heng, J. Fu, and S. Pan, “Ultrahigh-resolution optoelectronic vector analysis for characterization of high-speed integrated coherent receivers,” IEEE T. Instrum. Meas., 1 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of the proposed method based on low-speed photonic sampling, MLLD: mode-locked laser diode, PC: polarization controller, MOD: electro-optic modulator, MS: microwave source, PD: photodetector, DUT: device under test, ESA: electrical spectrum analyzer.
Fig. 2.
Fig. 2. Measured electrical spectra of the output symmetric frequency photonic sampling signals after photodetector in the first segment, in the case of different modulation frequencies.
Fig. 3.
Fig. 3. Measured relative responsivity in ten segments and the final frequency response after stitching.
Fig. 4.
Fig. 4. Measured frequency response of PD with our method (red line), the two-tone heterodyne method (black line) and the optical noise-beating method (wine line), and the data provided by Agilent (open circles), where the electrical spectrum related to the AC intensity pn of MLLD and the responsivity R of PD is also shown for comparison.
Fig. 5.
Fig. 5. Measured frequency response of the second PD with our method (red line) and two-tone heterodyne method (open circles).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = l = N 1 N 2 q l e j 2 π ( f 0 + l f r ) t
P ( t ) = E ( t ) E ( t )  =  p 0 + 2 n = 1 N 1 + N 2 p n cos ( 2 π n f r t )
l = N 1 N 2 q l 2  =  p 0 l = N 1 N 2 n q l q l + n = p n
i P D ( t ) = R P ( t ) 1 2 [ 1 + m ( f ) cos ( 2 π f t ) ]  =  1 2 { p 0 R ( 0 )  +  p 0 m ( f ) R ( f ) cos ( 2 π f t )  + 2 n = 1 N 1 + N 2 p n R ( n f r ) cos ( 2 π n f r t )  +  n = 1 N 1 + N 2 p n m ( f ) R ( n f r ± f ) cos [ 2 π ( n f r ± f ) t ] }
A ( n f r ) = p n R ( n f r ) , n = 1 , 2 , , N 1 + N 2
A ( n f r ± f ) = 1 2 p n m ( f ) R ( n f r ± f ) , n = 1 , 2 , , N 1 + N 2
R [ ( N i N + j ) f r ] R [ ( N i N + 1 ) f r ] = A [ ( N i N + j ) f r ] A [ ( N i N + 1 ) f r ] p N i N + 1 p N i N + j , ( j = 1 N , i = 1 M )
A [ ( N i N + j ) f r ± f j ]  =  1 2 p N i N + j m ( f j ) R [ ( N i N + j ) f r ± f j ]
A [ ( N i N + j ) f r ± f j ]  =  1 2 p N i N + j m ( f j ) R [ ( N i N + j ) f r ± f j ]
( p N i N + 1 p N i N + j ) 2 = A [ ( N i N + 1 ) f r + f j ] A [ ( N i N + 1 ) f r + f j ] A [ ( N i N + j ) f r f j ] A [ ( N i N + j ) f r f j ]
R [ ( N i N + 1 ) f r ] R ( f r ) = A [ ( N i N + 1 ) f r ] A ( f r ) l = 1 i 1 p N l N + 1 p N l + 1
δ ( p N i N + 1 / p N i N + 1 p N i N + j p N i N + j ) p N i N + 1 / p N i N + 1 p N i N + j p N i N + j  =  1 2 { δ A [ ( N i N + 1 ) f r + f j ] A [ ( N i N + 1 ) f r + f j ]  +  δ A [ ( N i N + j ) f r f j ] A [ ( N i N + j ) f r f j ]  +  δ A [ ( N i N + 1 ) f r + f j ] A [ ( N i N + 1 ) f r + f j ]  +  δ A [ ( N i N + j ) f r f j ] A [ ( N i N + j ) f r f j ] }
δ R [ ( N i N + j ) f r ] R [ ( N i N + j ) f r ]  =  δ A [ ( N i N + j ) f r ] A [ ( N i N + j ) f r ]  +  δ A [ ( N i N + 1 ) f r ] A [ ( N i N + 1 ) f r ] + δ ( p N i N + 1 / p N i N + 1 p N i N + j p N i N + j ) p N i N + 1 / p N i N + 1 p N i N + j p N i N + j
δ R [ ( N i N + 1 ) f r ] R [ ( N i N + 1 ) f r ]  =  δ A [ ( N i N + 1 ) f r ] A [ ( N i N + 1 ) f r ]  +  δ A ( f r ) A ( f r ) + l = 1 i 1 δ ( p N l N + 1 / p N l N + 1 p N l + 1 p N l + 1 ) p N l N + 1 / p N l N + 1 p N l + 1 p N l + 1

Metrics