Abstract

A fiber-optic, extrinsic Fabry–Perot interferometric (EFPI), dual-cavity sensor made of sapphire was fabricated and interrogated by a dual-segment, low-coherence Fizeau interferometer to achieve simultaneous pressure and temperature measurements. The fiber-optic EFPI, dual-cavity sensor had an initial basal cavity length of 680 µm and an vacuum cavity length of 80 µm and was experimentally tested based on temperature and pressure measurements. It was demonstrated that simultaneous pressure and temperature measurement could be achieved in the respective pressure and temperature ranges of 0.1–3 MPa and 20–350 °C.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing

Cheng Pang, Hyungdae Bae, Ashwani Gupta, Kenneth Bryden, and Miao Yu
Opt. Express 21(19) 21829-21839 (2013)

Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications

Wangwang Li, Ting Liang, Pinggang Jia, Cheng Lei, Yingping Hong, Yongwei Li, Zong Yao, Wenyi Liu, and Jijun Xiong
Appl. Opt. 58(7) 1662-1666 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455 (2008).
    [Crossref]
  2. S. Watson, M. J. Gander, W. N. Macpherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590 (2006).
    [Crossref]
  3. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref]
  4. F. G. Tseng and C. J. Lin, “Polymer MEMS-based Fabry-Perot shear stress sensor,” IEEE Sens. J. 3(6), 812–817 (2003).
    [Crossref]
  5. H. H. Xie, X. F. Jiang, H. P. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Appl. Mech. Mater. 201-202, 226–229 (2012).
    [Crossref]
  6. J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 37(4), 302–306 (1990).
    [Crossref]
  7. K. Bhattacharya, S. Chatterjee, S. Chakravorti, and K. Bhattacharya, “Time–Frequency analysis of multiple fringe and nonsinusoidal signals obtained from a fiber-optic vibration sensor using an extrinsic Fabry–Pérot interferometer,” J. Lightwave Technol. 24(5), 2122–2131 (2006).
    [Crossref]
  8. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Fabry-Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft,” Appl. Opt. 31(4), 431 (1992).
    [Crossref]
  9. C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
    [Crossref]
  10. Y. Li, W. Zhang, and L. Fang, “A miniature Fabry-Perot pressure sensor for intracranial pressure measurement,” IEEE International Conference on Nano/micro Engineered & Molecular Systems (2015), pp. 444–447.
  11. J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
    [Crossref]
  12. Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Simultaneous measurement of transverse load and temperature using hybrid structured fiber-optic Fabry-Perot interferometer,” Sci. Rep. 7(1), 10736 (2017).
    [Crossref]
  13. S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241 (2014).
    [Crossref]
  14. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267 (2014).
    [Crossref]
  15. S. Pevec and D. Donlagic, “Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index,” Opt. Lett. 39(21), 6221 (2014).
    [Crossref]
  16. R. D. Pechstedt, “Fibre optical sensor for simultaneous measurement of pressure, temperature and refractive index,” Proc. SPIE, 23rd International Conference on Opticla Fibre Sensors (2014), pp. 9157.
  17. S. Pevec and D. Donlagic, “Miniature all-fiber Fabry–Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt. 51(19), 4536 (2012).
    [Crossref]
  18. C. Pang, H. Bae, A. Gupta, K. Bryden, and M. Yu, “MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing,” Opt. Express 21(19), 21829 (2013).
    [Crossref]
  19. J. Yin, T. Liu, J. Jiang, K. Liu, and S. Zou, “Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
    [Crossref]
  20. H. Bae, D. Yun, H. Liu, D. A. Olson, and M. Yu, “Hybrid miniature Fabry–Perot sensor with dual optical cavities for simultaneous pressure and temperature measurements,” J. Lightwave Technol. 32(8), 1585–1593 (2014).
    [Crossref]
  21. L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
    [Crossref]
  22. J. Yi, E. Lally, A. Wang, and Y. Xu, “Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing,” IEEE Photonics Technol. Lett. 23(1), 9–11 (2010).
    [Crossref]
  23. R. D. Pechstedt, “Fibre optic pressure and temperature sensor for applications in harsh environments,” European Workshop on Optical Fibre Sensors 2013.
  24. Y. Q. Yao, W. L. Liang, X. Gui, and D. Fan, “Sapphire Fabry-Perot high-temperature sensor study,” 25th International Conference on Optical Fiber Sensors (2017), pp. 1–4.
  25. Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
    [Crossref]
  26. Q. Vo, F. Fang, X. Zhang, and H. Gao, “Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms,” Appl. Opt. 56(29), 8174–8185 (2017).
    [Crossref]
  27. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619 (2010).
    [Crossref]
  28. X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
    [Crossref]
  29. J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
    [Crossref]
  30. S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
    [Crossref]
  31. R. Dändliker, E. Zimmermann, and G. Frosio, “Electronically scanned white-light interferometry: A novel noise-resistant signal processing,” Opt. Lett. 17(9), 679–681 (1992).
    [Crossref]
  32. C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18(1), 78–80 (1993).
    [Crossref]
  33. Z. Yu, Z. Tian, and A. Wang, “Simple interrogator for optical fiber-based white light Fabry–Perot interferometers,” Opt. Lett. 42(4), 727–730 (2017).
    [Crossref]
  34. Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
    [Crossref]
  35. Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
    [Crossref]

2019 (2)

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

2017 (3)

2015 (2)

C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
[Crossref]

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

2014 (6)

2013 (1)

2012 (2)

H. H. Xie, X. F. Jiang, H. P. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Appl. Mech. Mater. 201-202, 226–229 (2012).
[Crossref]

S. Pevec and D. Donlagic, “Miniature all-fiber Fabry–Perot sensor for simultaneous measurement of pressure and temperature,” Appl. Opt. 51(19), 4536 (2012).
[Crossref]

2011 (1)

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

2010 (2)

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619 (2010).
[Crossref]

J. Yi, E. Lally, A. Wang, and Y. Xu, “Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing,” IEEE Photonics Technol. Lett. 23(1), 9–11 (2010).
[Crossref]

2008 (2)

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455 (2008).
[Crossref]

2006 (2)

2005 (1)

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

2003 (1)

F. G. Tseng and C. J. Lin, “Polymer MEMS-based Fabry-Perot shear stress sensor,” IEEE Sens. J. 3(6), 812–817 (2003).
[Crossref]

1996 (1)

J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
[Crossref]

1993 (1)

1992 (2)

1991 (1)

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
[Crossref]

1990 (1)

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 37(4), 302–306 (1990).
[Crossref]

Alcoz, J. J.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 37(4), 302–306 (1990).
[Crossref]

Bae, H.

Barton, J. S.

Belleville, C.

Bhattacharya, K.

Braune, T.

Bryden, K.

Chakravorti, S.

Chatterjee, S.

Chen, H.

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Chen, Q.

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Chen, S.

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
[Crossref]

Choi, E. S.

Choi, H. Y.

Claus, R. O.

Cui, Y.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Dändliker, R.

Dong, B.

Donlagic, D.

Duplain, G.

Fan, D.

Y. Q. Yao, W. L. Liang, X. Gui, and D. Fan, “Sapphire Fabry-Perot high-temperature sensor study,” 25th International Conference on Optical Fiber Sensors (2017), pp. 1–4.

Fang, F.

Fang, L.

Y. Li, W. Zhang, and L. Fang, “A miniature Fabry-Perot pressure sensor for intracranial pressure measurement,” IEEE International Conference on Nano/micro Engineered & Molecular Systems (2015), pp. 444–447.

Frosio, G.

Gander, M. J.

Gao, H.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Q. Vo, F. Fang, X. Zhang, and H. Gao, “Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms,” Appl. Opt. 56(29), 8174–8185 (2017).
[Crossref]

Gong, J.

Grattan, K. T. V.

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
[Crossref]

Gui, X.

Y. Q. Yao, W. L. Liang, X. Gui, and D. Fan, “Sapphire Fabry-Perot high-temperature sensor study,” 25th International Conference on Optical Fiber Sensors (2017), pp. 1–4.

Gunther, M. F.

Guo, Z.

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Gupta, A.

Han, M.

Hu, J.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Hu, Y.

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

Hu, Z.

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

Huang, Y. Q.

H. H. Xie, X. F. Jiang, H. P. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Appl. Mech. Mater. 201-202, 226–229 (2012).
[Crossref]

Jia, J.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Jiang, J.

J. Yin, T. Liu, J. Jiang, K. Liu, and S. Zou, “Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Jiang, X. F.

H. H. Xie, X. F. Jiang, H. P. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Appl. Mech. Mater. 201-202, 226–229 (2012).
[Crossref]

Jiang, Y.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

Jones, J. D. C.

Ke, C.

C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
[Crossref]

Kim, K. S.

J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
[Crossref]

Kim, S. K.

J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
[Crossref]

Klotzbuecher, T.

Lally, E.

J. Yi, E. Lally, A. Wang, and Y. Xu, “Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing,” IEEE Photonics Technol. Lett. 23(1), 9–11 (2010).
[Crossref]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619 (2010).
[Crossref]

Lee, B. H.

Lee, C. E.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 37(4), 302–306 (1990).
[Crossref]

Lee, T. G.

J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
[Crossref]

Lee, W. J.

J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
[Crossref]

Li, Y.

Y. Li, W. Zhang, and L. Fang, “A miniature Fabry-Perot pressure sensor for intracranial pressure measurement,” IEEE International Conference on Nano/micro Engineered & Molecular Systems (2015), pp. 444–447.

Li, Z.

Liang, W. L.

Y. Q. Yao, W. L. Liang, X. Gui, and D. Fan, “Sapphire Fabry-Perot high-temperature sensor study,” 25th International Conference on Optical Fiber Sensors (2017), pp. 1–4.

Liao, C.

Lin, C. J.

F. G. Tseng and C. J. Lin, “Polymer MEMS-based Fabry-Perot shear stress sensor,” IEEE Sens. J. 3(6), 812–817 (2003).
[Crossref]

Liu, H.

Liu, K.

J. Yin, T. Liu, J. Jiang, K. Liu, and S. Zou, “Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Liu, S.

Liu, T.

J. Yin, T. Liu, J. Jiang, K. Liu, and S. Zou, “Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Liu, Z.

Lv, W.

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Ma, Z.

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Macpherson, W. N.

Martin, S.

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
[Crossref]

Meggitt, B. T.

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
[Crossref]

Murphy, K. A.

Olson, D. A.

Ott, J.

Paek, U. C.

Palmer, A. W.

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
[Crossref]

Pang, C.

Park, K. S.

Park, S. J.

Pechstedt, R. D.

R. D. Pechstedt, “Fibre optical sensor for simultaneous measurement of pressure, temperature and refractive index,” Proc. SPIE, 23rd International Conference on Opticla Fibre Sensors (2014), pp. 9157.

R. D. Pechstedt, “Fibre optic pressure and temperature sensor for applications in harsh environments,” European Workshop on Optical Fibre Sensors 2013.

Peng, W.

C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
[Crossref]

Pevec, S.

Qin, B.

Schmitz, F.

Tang, J.

Taylor, H. F.

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 37(4), 302–306 (1990).
[Crossref]

Tian, Z.

Tseng, F. G.

F. G. Tseng and C. J. Lin, “Polymer MEMS-based Fabry-Perot shear stress sensor,” IEEE Sens. J. 3(6), 812–817 (2003).
[Crossref]

Vengsarkar, A. M.

Vo, Q.

Wang, A.

Z. Yu, Z. Tian, and A. Wang, “Simple interrogator for optical fiber-based white light Fabry–Perot interferometers,” Opt. Lett. 42(4), 727–730 (2017).
[Crossref]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619 (2010).
[Crossref]

J. Yi, E. Lally, A. Wang, and Y. Xu, “Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing,” IEEE Photonics Technol. Lett. 23(1), 9–11 (2010).
[Crossref]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

Wang, F.

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

Wang, G.

Wang, J.

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619 (2010).
[Crossref]

Wang, Q.

Wang, S.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Wang, W.

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Wang, Y.

Watson, S.

Wu, J.

Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Simultaneous measurement of transverse load and temperature using hybrid structured fiber-optic Fabry-Perot interferometer,” Sci. Rep. 7(1), 10736 (2017).
[Crossref]

Wu, Y.

Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Simultaneous measurement of transverse load and temperature using hybrid structured fiber-optic Fabry-Perot interferometer,” Sci. Rep. 7(1), 10736 (2017).
[Crossref]

Xie, H. H.

H. H. Xie, X. F. Jiang, H. P. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Appl. Mech. Mater. 201-202, 226–229 (2012).
[Crossref]

Xie, J.

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

Xu, Y.

J. Yi, E. Lally, A. Wang, and Y. Xu, “Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing,” IEEE Photonics Technol. Lett. 23(1), 9–11 (2010).
[Crossref]

Yan, H. P.

H. H. Xie, X. F. Jiang, H. P. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Appl. Mech. Mater. 201-202, 226–229 (2012).
[Crossref]

Yang, B.

C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
[Crossref]

Yang, J.

Yang, K.

Yao, P.

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

Yao, Y. Q.

Y. Q. Yao, W. L. Liang, X. Gui, and D. Fan, “Sapphire Fabry-Perot high-temperature sensor study,” 25th International Conference on Optical Fiber Sensors (2017), pp. 1–4.

Yi, J.

J. Yi, E. Lally, A. Wang, and Y. Xu, “Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing,” IEEE Photonics Technol. Lett. 23(1), 9–11 (2010).
[Crossref]

Yin, J.

J. Yin, T. Liu, J. Jiang, K. Liu, and S. Zou, “Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Yoo, J. W.

J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
[Crossref]

Yu, M.

Yu, Q.

C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
[Crossref]

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

Yu, Z.

Yuan, L.

Yuan, P.

Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Simultaneous measurement of transverse load and temperature using hybrid structured fiber-optic Fabry-Perot interferometer,” Sci. Rep. 7(1), 10736 (2017).
[Crossref]

Yun, D.

Zhang, L.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Zhang, W.

Y. Li, W. Zhang, and L. Fang, “A miniature Fabry-Perot pressure sensor for intracranial pressure measurement,” IEEE International Conference on Nano/micro Engineered & Molecular Systems (2015), pp. 444–447.

Zhang, X.

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Q. Vo, F. Fang, X. Zhang, and H. Gao, “Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms,” Appl. Opt. 56(29), 8174–8185 (2017).
[Crossref]

Zhang, Y.

Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Simultaneous measurement of transverse load and temperature using hybrid structured fiber-optic Fabry-Perot interferometer,” Sci. Rep. 7(1), 10736 (2017).
[Crossref]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267 (2014).
[Crossref]

Zhao, J.

Zhong, X.

Zhou, A.

Zhou, J.

Zhou, X.

C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
[Crossref]

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

Zhu, Y.

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

Zhu, Z.

Zimmermann, E.

Zou, S.

J. Yin, T. Liu, J. Jiang, K. Liu, and S. Zou, “Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Appl. Mech. Mater. (1)

H. H. Xie, X. F. Jiang, H. P. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Appl. Mech. Mater. 201-202, 226–229 (2012).
[Crossref]

Appl. Opt. (4)

Electron. Lett. (1)

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, and S. Martin, “Study of electronically-scanned optical-fibre white-light Fizeau interferometer,” Electron. Lett. 27(12), 1032–1034 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (5)

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

J. Yin, T. Liu, J. Jiang, K. Liu, and S. Zou, “Batch-producible fiber-optic Fabry–Pérot sensor for simultaneous pressure and temperature sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous measurements of temperature and pressure with a dual-cavity Fabry-Perot sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

J. Yi, E. Lally, A. Wang, and Y. Xu, “Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing,” IEEE Photonics Technol. Lett. 23(1), 9–11 (2010).
[Crossref]

Y. Zhu and A. Wang, “Miniature fiber-optic pressure sensor,” IEEE Photonics Technol. Lett. 17(2), 447–449 (2005).
[Crossref]

IEEE Sens. J. (2)

F. G. Tseng and C. J. Lin, “Polymer MEMS-based Fabry-Perot shear stress sensor,” IEEE Sens. J. 3(6), 812–817 (2003).
[Crossref]

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (1)

J. J. Alcoz, C. E. Lee, and H. F. Taylor, “Embedded fiber-optic Fabry-Perot ultrasound sensor,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 37(4), 302–306 (1990).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Fiber Technol. (1)

J. Xie, F. Wang, P. Yao, J. Wang, Z. Hu, and Y. Hu, “High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 22, 1–6 (2015).
[Crossref]

Opt. Laser Technol. (1)

C. Ke, X. Zhou, B. Yang, W. Peng, and Q. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Opt. Laser Technol. 73, 82–87 (2015).
[Crossref]

Opt. Lett. (8)

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267 (2014).
[Crossref]

S. Pevec and D. Donlagic, “Miniature fiber-optic sensor for simultaneous measurement of pressure and refractive index,” Opt. Lett. 39(21), 6221 (2014).
[Crossref]

Z. Yu, Z. Tian, and A. Wang, “Simple interrogator for optical fiber-based white light Fabry–Perot interferometers,” Opt. Lett. 42(4), 727–730 (2017).
[Crossref]

R. Dändliker, E. Zimmermann, and G. Frosio, “Electronically scanned white-light interferometry: A novel noise-resistant signal processing,” Opt. Lett. 17(9), 679–681 (1992).
[Crossref]

C. Belleville and G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18(1), 78–80 (1993).
[Crossref]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455 (2008).
[Crossref]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619 (2010).
[Crossref]

Proc. SPIE (1)

J. W. Yoo, K. S. Kim, T. G. Lee, W. J. Lee, and S. K. Kim, “Embedded intrinsic Fabry-Perot optical fiber sensors in the cement concrete structure for health monitoring system,” Proc. SPIE 2718, 218–231 (1996).
[Crossref]

Sci. Rep. (1)

Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Simultaneous measurement of transverse load and temperature using hybrid structured fiber-optic Fabry-Perot interferometer,” Sci. Rep. 7(1), 10736 (2017).
[Crossref]

Sensors (1)

Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, and Z. Ma, “Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method,” Sensors 19(7), 1628 (2019).
[Crossref]

Other (4)

R. D. Pechstedt, “Fibre optical sensor for simultaneous measurement of pressure, temperature and refractive index,” Proc. SPIE, 23rd International Conference on Opticla Fibre Sensors (2014), pp. 9157.

Y. Li, W. Zhang, and L. Fang, “A miniature Fabry-Perot pressure sensor for intracranial pressure measurement,” IEEE International Conference on Nano/micro Engineered & Molecular Systems (2015), pp. 444–447.

R. D. Pechstedt, “Fibre optic pressure and temperature sensor for applications in harsh environments,” European Workshop on Optical Fibre Sensors 2013.

Y. Q. Yao, W. L. Liang, X. Gui, and D. Fan, “Sapphire Fabry-Perot high-temperature sensor study,” 25th International Conference on Optical Fiber Sensors (2017), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic of the fiber-optic, extrinsic Fabry–Perot interferometric (EFPI), dual-cavity sensor which was made of sapphire.
Fig. 2.
Fig. 2. Schematic of the dual-segment, low-coherence Fizeau interferometer interrogation system used for fiber-optic EFPI dual-cavity sensor.
Fig. 3.
Fig. 3. (a) Photograph of the fabricated fiber-optic, dual-cavity, EFPI sensor and (b) its reflection spectrum in a spectral range of 840-860 nm.
Fig. 4.
Fig. 4. Photograph of the fabricated dual-segment air-gap optical wedge.
Fig. 5.
Fig. 5. Experimental system of the dual-segment Fizeau interferometric interrogation system for fiber-optic, dual-cavity, FP sensors. The inner structure of the cassette is shown in the inset.
Fig. 6.
Fig. 6. Peak detections of the correlation interferometric signals. (a) Complete signal trace obtained by the linear CCD array, and (b) magnified views of the two correlation interferometric signals of the vacuum and basal cavities.
Fig. 7.
Fig. 7. Experimental setup used for the simultaneous measurements of pressure and temperature.
Fig. 8.
Fig. 8. Pressure measurement at the temperatures of 20 °C, 50 °C, 150 °C, 250 °C, and 350 °C.
Fig. 9.
Fig. 9. Temperature measurement based on the correlation signal of the basal cavity.
Fig. 10.
Fig. 10. Corrected pressure estimated based on the consideration of the temperature extracted from the basal cavity.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Δ L v = 3 R 4 ( 1 ν 2 ) Δ p 16 E d 3 ,
Δ L b = L b α T Δ T ,
L O P , v = n v L v ,
L O P , b = n b L b ,
Δ L O P , b = ( n b α T + β T ) L b Δ T ,
I FPr ( λ ) = R FP ( λ ) I 0 ( λ ) ,
R FP ( λ ) = K ( λ ) D ( λ ) ,
K ( λ ) = R 1 + R 2 + R 3 + R 1 R 2 R 3 + 2 R 1 R 2 ( 1 + R 3 ) cos ( 4 π λ n 1 l 1 ) + 2 R 2 R 3 ( 1 + R 1 ) cos ( 4 π λ n 2 l 2 ) + 2 R 1 R 3 cos [ 4 π λ ( n 1 l 1 + n 2 l 2 ) ] + 2 R 1 R 3 R 2 cos [ 4 π λ ( n 1 l 1 n 2 l 2 ) ] ,
D ( λ ) = 1 + R 1 R 2 + R 2 R 3 + R 1 R 3 + 2 R 1 R 2 ( 1 + R 3 ) cos ( 4 π λ n 1 l 1 ) + 2 R 2 R 3 ( 1 + R 1 ) cos ( 4 π λ n 2 l 2 ) + 2 R 1 R 3 cos [ 4 π λ ( n 1 l 1 + n 2 l 2 ) ] + 2 R 1 R 3 R 2 cos [ 4 π λ ( n 1 l 1 n 2 l 2 ) ] ,
R F P ( λ ) K ( λ ) = R 1 + 2 R 2 + R v ( λ ) + R b ( λ ) + R v b ( λ ) ,
R v ( λ ) = 2 R 2 cos ( 4 π λ L v ) ,
R b ( λ ) = 2 R 1 R 2 cos ( 4 π λ n b L b ) ,
R v b ( λ ) = 2 R 1 R 2 cos [ 4 π λ ( L v + n b L b ) ] .
d i = d 0 i + x i tan θ i .
I Wt ( x i ) = ( 1 R w ) 2 1 + R w 2 2 R w cos 4 π d i λ I FPr ( λ ) ,
I out ( x i ) = f ( x i ) λ min λ max R F P ( λ ) ( ( 1 R w ) 2 1 + R w 2 2 R w cos 4 π d i λ ) I 0 ( λ ) d λ
N ( P , T ) = N ( P 0 , T 0 ) + k P ( P P 0 ) + k T ( T T 0 ) ,
N b ( T ) = N b ( T 0 ) + k b T T ,
P = P 0 + N ( P , T ) N ( P 0 , T 0 ) k T ( T T 0 ) k P .

Metrics