Abstract

Laser devices for silicon photonics are expected to be implemented in an integrated environment to complement CMOS devices. For this reason, quantum dot (QD) lasers with excellent thermal properties have been considered as strong candidates for Si photonics light sources. The direct growth of QD lasers on Si (001) on-axis substrates has been garnering attention owing to the possibility of monolithic integration on a CMOS-compatible wafer. In this paper, we report on the high-temperature (over 100°C) continuous-wave operation of an InAs/GaAs QD laser directly grown on on-axis Si (001) substrates through the use of only molecular beam epitaxy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001)

Jinkwan Kwoen, Bongyong Jang, Joohang Lee, Takeo Kageyama, Katsuyuki Watanabe, and Yasuhiko Arakawa
Opt. Express 26(9) 11568-11576 (2018)

Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates

Siming Chen, Mengya Liao, Mingchu Tang, Jiang Wu, Mickael Martin, Thierry Baron, Alwyn Seeds, and Huiyun Liu
Opt. Express 25(5) 4632-4639 (2017)

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu
Opt. Express 20(20) 22181-22187 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  2. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
    [Crossref]
  3. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
    [Crossref]
  4. I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
    [Crossref]
  5. N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).
  6. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
    [Crossref]
  7. Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
    [Crossref]
  8. O. B. Shchekin and D. G. Deppe, “Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photonics Technol. Lett. 14(9), 1231–1233 (2002).
    [Crossref]
  9. T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in (IEEE, 2011), pp. 1–1.
  10. S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
    [Crossref]
  11. J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68(22), 3123–3125 (1996).
    [Crossref]
  12. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3(5), B1 (2015).
    [Crossref]
  13. A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
    [Crossref] [PubMed]
  14. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref] [PubMed]
  15. A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
    [Crossref] [PubMed]
  16. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  17. Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
    [Crossref] [PubMed]
  18. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
    [Crossref] [PubMed]
  19. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
    [Crossref]
  20. S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
    [Crossref] [PubMed]
  21. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
    [Crossref]
  22. D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
    [Crossref]
  23. Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6(8), 776 (2018).
    [Crossref]
  24. J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
    [Crossref] [PubMed]
  25. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
    [Crossref]
  26. K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
    [Crossref]
  27. D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
    [Crossref]
  28. W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
    [Crossref]
  29. A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
    [Crossref] [PubMed]
  30. H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
    [Crossref]

2018 (6)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
[Crossref] [PubMed]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6(8), 776 (2018).
[Crossref]

2017 (5)

2016 (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

2015 (1)

2014 (1)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

2013 (1)

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

2012 (1)

2011 (1)

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

2008 (1)

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

2005 (2)

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

2004 (1)

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

2002 (1)

O. B. Shchekin and D. G. Deppe, “Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photonics Technol. Lett. 14(9), 1231–1233 (2002).
[Crossref]

1999 (1)

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
[Crossref]

1996 (2)

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68(22), 3123–3125 (1996).
[Crossref]

1994 (1)

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

1989 (1)

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

1986 (1)

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Adams, A. R.

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Al Qubaisi, K.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Alferov, Z. I.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Alloatti, L.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Andreev, A. D.

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Arakawa, Y.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
[Crossref] [PubMed]

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Asada, M.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

Atabaki, A. H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Badcock, T. J.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Baiocco, C. V.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Baron, T.

Beyer, A.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Bhattacharya, P.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Bimberg, D.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Bowers, J. E.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6(8), 776 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3(5), B1 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Cabrol, O.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68(22), 3123–3125 (1996).
[Crossref]

Callahan, P. G.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Chen, S.

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Childs, D. T.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Cingolani, R.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

De Giorgi, M.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

De Vittorio, M.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Deppe, D. G.

O. B. Shchekin and D. G. Deppe, “Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photonics Technol. Lett. 14(9), 1231–1233 (2002).
[Crossref]

Egorov, A. Y.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Fathpour, S.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Feng, K.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Fortunato, L.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Gérard, J. M.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68(22), 3123–3125 (1996).
[Crossref]

Gevorgyan, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Gösele, U.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Gossard, A. C.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6(8), 776 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3(5), B1 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Groom, K. M.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Grundmann, M.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Hatori, N.

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Herrick, R.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Heydenreich, J.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Hogg, R.

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

Hogg, R. A.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Hopkinson, M.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Huang, X.

Inoue, D.

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Jang, B.

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

Jung, D.

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6(8), 776 (2018).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Kageyama, T.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe, and Y. Arakawa, “All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001),” Opt. Express 26(9), 11568–11576 (2018).
[Crossref] [PubMed]

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Kennedy, M. J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Khilo, A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Kirstaedter, N.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Kop’ev, P. S.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Kovsh, A. R.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Kozhukhov, A. V.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Krestnikov, I. L.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Kruger, S. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Kunert, B.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Kwoen, J.

Lau, K. M.

Ledentsov, N. N.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Lee, A.

Lee, J.

Lee, M. L.

Lester, L. F.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
[Crossref]

Li, H.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
[Crossref]

Li, Q.

Li, W.

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liao, M.

Liu, A. W. K.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Liu, A. Y.

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
[Crossref]

Liu, H.

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

Liu, H. Y.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Luna, E.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

MacFarlane, I.

Maeda, Y.

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Malloy, K. J.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
[Crossref]

Marko, I. P.

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Martin, M.

Martiradonna, L.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Massé, N. F.

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Maximov, M. V.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Meng, H.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Mi, Z.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Mikhrin, S. S.

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

Miyake, Y.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

Miyamoto, Y.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

Moazeni, S.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Mowbray, D. J.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Mukherjee, K.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Németh, I.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Nishi, K.

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Norman, J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photon. Res. 3(5), B1 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Norman, J. C.

Notaros, J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Ohlmann, J.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Passaseo, A.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Pavanello, F.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Peters, J.

Popovic, M. A.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Rainò, G.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Ram, R. J.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Richter, U.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Robbins, D. J.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Ross, I.

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Ruvimov, S. S.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Salhi, A.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Schmidt, O. G.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

Seeds, A.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sellers, I. R.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Sermage, B.

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68(22), 3123–3125 (1996).
[Crossref]

Shang, C.

Shchekin, O. B.

O. B. Shchekin and D. G. Deppe, “Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photonics Technol. Lett. 14(9), 1231–1233 (2002).
[Crossref]

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Skolnick, M. S.

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Srinivasan, S.

Stintz, A.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
[Crossref]

Stojanovic, V. M.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Stolz, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Suematsu, Y.

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

Sugawara, M.

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Sun, C.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Sweeney, S. J.

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Takemasa, K.

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Tang, M.

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

A. Lee, Q. Jiang, M. Tang, A. Seeds, and H. Liu, “Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities,” Opt. Express 20(20), 22181–22187 (2012).
[Crossref] [PubMed]

Tasco, V.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Todaro, M. T.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Trampert, A.

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

Ustinov, V. M.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Volz, K.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Wade, M. T.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Wan, Y.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Y. Wan, D. Inoue, D. Jung, J. C. Norman, C. Shang, A. C. Gossard, and J. E. Bowers, “Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability,” Photon. Res. 6(8), 776 (2018).
[Crossref]

Y. Wan, D. Jung, J. Norman, C. Shang, I. MacFarlane, Q. Li, M. J. Kennedy, A. C. Gossard, K. M. Lau, and J. E. Bowers, “O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si,” Opt. Express 25(22), 26853–26860 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Wang, I.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Watanabe, K.

Werner, P.

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

Witte, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Wu, J.

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

S. Chen, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, “Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates,” Opt. Express 25(5), 4632–4639 (2017).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Yamaguchi, M.

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Yamamoto, T.

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Zhang, B.

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Zhang, Z.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Zhukov, A. E.

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

ACS Photonics (1)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency,” ACS Photonics 5(3), 1094–1100 (2018).
[Crossref]

Appl. Phys. Lett. (8)

D. Jung, R. Herrick, J. Norman, K. Turnlund, C. Jan, K. Feng, A. C. Gossard, and J. E. Bowers, “Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si,” Appl. Phys. Lett. 112(15), 153507 (2018).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Z. I. Alferov, “Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers,” Appl. Phys. Lett. 69(9), 1226–1228 (1996).
[Crossref]

I. P. Marko, N. F. Massé, S. J. Sweeney, A. D. Andreev, A. R. Adams, N. Hatori, and M. Sugawara, “Carrier transport and recombination in p-doped and intrinsic 1.3μm InAs/GaAs quantum-dot lasers,” Appl. Phys. Lett. 87(21), 211114 (2005).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

S. Fathpour, Z. Mi, P. Bhattacharya, A. R. Kovsh, S. S. Mikhrin, I. L. Krestnikov, A. V. Kozhukhov, and N. N. Ledentsov, “The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(22), 5164–5166 (2004).
[Crossref]

J. M. Gérard, O. Cabrol, and B. Sermage, “InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si,” Appl. Phys. Lett. 68(22), 3123–3125 (1996).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Electron. Lett. (2)

N. Kirstaedter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Z. I. Alferov, U. Richter, P. Werner, U. Gösele, and J. Heydenreich, “Low threshold, large T0 injection laser emission from (InGa)As quantum dots,” Electron. Lett. 30(17), 1416–1417 (1994).

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35(14), 1163 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, “Threshold current density of GaInAsP/InP quantum-box lasers,” IEEE J. Quantum Electron. 25(9), 2001–2006 (1989).
[Crossref]

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. 22(9), 1915–1921 (1986).
[Crossref]

IEEE Photonics Technol. Lett. (2)

O. B. Shchekin and D. G. Deppe, “Low-threshold high-T0 1.3-μm InAs quantum-dot lasers due to p-type modulation doping of the active region,” IEEE Photonics Technol. Lett. 14(9), 1231–1233 (2002).
[Crossref]

H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D. J. Robbins, D. J. Mowbray, and M. S. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photonics Technol. Lett. 17(6), 1139–1141 (2005).
[Crossref]

J. Appl. Phys. (2)

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

W. Li, S. Chen, M. Tang, J. Wu, R. Hogg, A. Seeds, H. Liu, and I. Ross, “Effect of rapid thermal annealing on threading dislocation density in III-V epilayers monolithically grown on silicon,” J. Appl. Phys. 123(21), 215303 (2018).
[Crossref]

J. Cryst. Growth (2)

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Németh, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (001) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

K. Nishi, T. Kageyama, M. Yamaguchi, Y. Maeda, K. Takemasa, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission,” J. Cryst. Growth 378, 459–462 (2013).
[Crossref]

Nanotechnology (1)

A. Salhi, G. Rainò, L. Fortunato, V. Tasco, L. Martiradonna, M. T. Todaro, M. De Giorgi, R. Cingolani, A. Passaseo, E. Luna, A. Trampert, and M. De Vittorio, “Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers,” Nanotechnology 19(27), 275401 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Nature (1)

A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, and R. J. Ram, “Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip,” Nature 556(7701), 349–354 (2018).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Photon. Res. (2)

Other (1)

T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, and Y. Arakawa, “Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers,” in (IEEE, 2011), pp. 1–1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Detailed schematic diagram of the layers of the InAs/GaAs QD laser grown on the on-axis Si (001) substrate.
Fig. 2
Fig. 2 Schematic illustration of the InAs/GaAs QD laser device structure on on-axis Si (001) substrate.
Fig. 3
Fig. 3 Cross-sectional view of a scanning electron microscope image of an InAs/GaAs QD laser device fabricated on a Si substrate.
Fig. 4
Fig. 4 AFM image of InAs/GaAs QD on GaAs buffer layer on on-axis Si(001) substrate.
Fig. 5
Fig. 5 (a) Cross-sectional TEM image of buffer layer and dislocation filter layer. Purple areas indicate InGaAs/GaAs strained layer superlattice. (b) Plane-view transmission electron microscope image of a GaAs layer directly under the InAs QD layer.
Fig. 6
Fig. 6 (a) Temperature dependence of L-I characteristics under CW operation for an InAs/GaAs QD laser directly grown on a Si (001) on-axis substrate. (b) Temperature dependence of the threshold current density for an InAs/GaAs QD laser directly grown on a Si (001) on-axis substrate.
Fig. 7
Fig. 7 (a) Temperature dependence of the emission spectra for the InAs/GaAs QD laser directly grown on a Si (001) on-axis substrate. (b) Peak wavelength shifts due to the heat-sink temperature change.
Fig. 8
Fig. 8 (a) Amplified spontaneous emission (ASE) spectrum of InAs/GaAs QD laser on Si and (b) Gain characteristics of InAs/GaAs QD laser on Si by the Hakki-Paoli method.

Metrics