Abstract

A resonance/non-resonance, doublet-based, self-absorption-free, laser-induced breakdown spectroscopy (SAF-LIBS) technique is proposed for greatly expanding the measurement range of quantitative elemental analysis by using a quasi-optically thin line. The quasi-optically thin spectral line is obtained by matching the measured doublet atomic lines’ intensity ratios with the theoretical one, and the applicable measurement range is expanded by utilizing the resonance and non-resonance lines. The specific calibration process consists of two parts: the nonlinear LIBS calibration and the linear SAF-LIBS calibration. For quantitative measurements, the approximate content of the unknown sample is determined first by using the LIBS calibration curve, and then the SAF-LIBS spectra and the resonance or non-resonance calibration curve that corresponds to the predetermined content are used for further implementing the quantitative analysis. Univariate quantitative analysis results of Cu show that this resonance/non-resonance doublet-based SAF-LIBS technique not only captures the quasi-optically thin spectral line in a wide range of elemental content, but also possesses high correlation coefficients of calibration curves, small relative errors of measurement and low limits of detection. The applicability and limitations of this technique are also discussed, and the evolution as well as the related major determinants of self-absorption are analyzed by taking advantage of the spatial-temporal evolution images of plasma emissivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Rapid selection of analytical lines for SAF-LIBS based on the doublet intensity ratios at the initial and final stages of plasma

J. J. Hou, L. Zhang, Y. Zhao, W. G. Ma, L. Dong, W. B. Yin, L. T. Xiao, and S. T. Jia
Opt. Express 27(22) 32184-32192 (2019)

Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements

Jiajia Hou, Lei Zhang, Wangbao Yin, Shunchun Yao, Yang Zhao, Weiguang Ma, Lei Dong, Liantuan Xiao, and Suotang Jia
Opt. Express 25(19) 23024-23034 (2017)

Quantitative elemental analysis of steel using calibration-free laser-induced breakdown spectroscopy

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri
Appl. Opt. 51(20) 4612-4621 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
    [Crossref]
  2. K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 7863–7871 (2012).
  3. Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
    [Crossref]
  4. Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
    [Crossref]
  5. Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
    [Crossref]
  6. M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
    [Crossref]
  7. S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
    [Crossref]
  8. R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
    [Crossref]
  9. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
    [Crossref]
  10. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
    [Crossref]
  11. H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
    [Crossref]
  12. F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
    [Crossref]
  13. A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
    [Crossref]
  14. I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
    [Crossref]
  15. L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
    [Crossref] [PubMed]
  16. J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
    [Crossref] [PubMed]
  17. Y. Tang, J. Li, Z. Hao, S. Tang, Z. Zhu, L. Guo, X. Li, X. Zeng, J. Duan, and Y. Lu, “Multielemental self-absorption reduction in laser-induced breakdown spectroscopy by using microwave-assisted excitation,” Opt. Express 26(9), 12121–12130 (2018).
    [Crossref] [PubMed]
  18. J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
    [Crossref]
  19. J. Hou, L. Zhang, W. Yin, S. Yao, Y. Zhao, W. Ma, L. Dong, L. Xiao, and S. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
    [Crossref] [PubMed]
  20. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
    [Crossref] [PubMed]
  21. Q. L. Ma, V. Motto-Ros, X. S. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103(20), 204101 (2013).
    [Crossref]
  22. X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
    [Crossref]
  23. V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

2018 (1)

2017 (2)

J. Hou, L. Zhang, W. Yin, S. Yao, Y. Zhao, W. Ma, L. Dong, L. Xiao, and S. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
[Crossref] [PubMed]

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

2015 (1)

2014 (1)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

2013 (3)

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Q. L. Ma, V. Motto-Ros, X. S. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103(20), 204101 (2013).
[Crossref]

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

2012 (3)

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 7863–7871 (2012).

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

2011 (1)

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

2010 (2)

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

2009 (1)

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

2008 (1)

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

2006 (1)

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

2005 (1)

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

2004 (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref] [PubMed]

2003 (1)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

2002 (2)

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

2001 (1)

I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
[Crossref]

Alti, K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

Amamou, H.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Aryal, K.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 7863–7871 (2012).

Bai, X. S.

Q. L. Ma, V. Motto-Ros, X. S. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103(20), 204101 (2013).
[Crossref]

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Bois, A.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Borges, F. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Bredice, F.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Bulajic, D.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Caridi, F.

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Chen, K.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Collins, R. W.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 7863–7871 (2012).

Corsi, M.

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Cristoforetti, G.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Di Rocco, H. O.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Ding, H. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Dong, L.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

J. Hou, L. Zhang, W. Yin, S. Yao, Y. Zhao, W. Ma, L. Dong, L. Xiao, and S. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
[Crossref] [PubMed]

Dong, M. R.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Duan, J.

Dvir, E.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

El Sherbini, A. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

El Sherbini, Th. M.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Farid, N.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Ferhat, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Gaft, M.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Giuffrida, L.

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Gornushkin, I. B.

I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
[Crossref]

Guo, L.

Guo, L. B.

Gupta, G. P.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

Hai, R.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Hao, Z.

Hao, Z. Q.

Hegazy, H.

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Hou, J.

Hou, J. J.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Hou, Z. Y.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Jalocha, A.

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Jia, S.

Jia, S. T.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Kartha, V. B.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

Khatri, H.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 7863–7871 (2012).

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref] [PubMed]

Legnaioli, S.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Li, C. M.

Li, J.

Li, J. M.

Li, J. Y.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Li, L. Z.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Li, X.

Li, X. W.

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Li, X. Y.

Li, Z.

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Liu, J. H.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Lu, J. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Lu, Y.

Lu, Y. F.

Lui, S. L.

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Luo, G. N.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Ma, Q. L.

Q. L. Ma, V. Motto-Ros, X. S. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103(20), 204101 (2013).
[Crossref]

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Ma, W.

Ma, W. G.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Marsillac, S.

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 7863–7871 (2012).

Matheron, P.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Modiano, H.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Motto-Ros, V.

Q. L. Ma, V. Motto-Ros, X. S. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103(20), 204101 (2013).
[Crossref]

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Nguyen, L.

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Ni, W. D.

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Omenetto, N.

I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
[Crossref]

Palleschi, V.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Pan, S. H.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Pardini, L.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Perrier, M.

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Redon, R.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Ripert, M.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Rossetto, B.

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

Sabourdy, D.

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref] [PubMed]

Salvetti, A.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Santhosh, C.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

Schone, U.

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Smith, B. W.

I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
[Crossref]

Sobral, H.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Stevenson, C. L.

I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
[Crossref]

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref] [PubMed]

Sun, L.

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Suri, B. M.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

Tang, S.

Tang, Y.

Tognoni, E.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

Torrisi, L.

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Unnikrishnan, V. K.

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

Vadas, E. B.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref] [PubMed]

Villagran-Muniz, M.

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

Wang, Z.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

West, L.

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

Winefordner, J. D.

I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
[Crossref]

Wu, J.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Xiao, L.

Xiao, L. T.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Yang, G. Y.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Yang, X. Y.

Yao, S.

Yao, S. C.

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Yin, W.

Yin, W. B.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Yu, H.

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Yu, J.

Q. L. Ma, V. Motto-Ros, X. S. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103(20), 204101 (2013).
[Crossref]

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

Yuan, T. B.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Zeng, X.

Zeng, X. Y.

Zhang, L.

J. Hou, L. Zhang, W. Yin, S. Yao, Y. Zhao, W. Ma, L. Dong, L. Xiao, and S. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
[Crossref] [PubMed]

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Zhao, D. Y.

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

Zhao, N.

Zhao, Y.

J. Hou, L. Zhang, W. Yin, S. Yao, Y. Zhao, W. Ma, L. Dong, L. Xiao, and S. Jia, “Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements,” Opt. Express 25(19), 23024–23034 (2017).
[Crossref] [PubMed]

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Zhou, W. D.

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Zhu, Z.

Appl. Phys. Lett. (1)

Q. L. Ma, V. Motto-Ros, X. S. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103(20), 204101 (2013).
[Crossref]

Appl. Surf. Sci. (1)

S. C. Yao, J. D. Lu, K. Chen, S. H. Pan, J. Y. Li, and M. R. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257(7), 3103–3110 (2011).
[Crossref]

Front. Phys. (2)

Z. Wang, T. B. Yuan, Z. Y. Hou, W. D. Zhou, J. D. Lu, H. B. Ding, and X. Y. Zeng, “Laser-induced breakdown spectroscopy in China,” Front. Phys. 9(4), 419–438 (2014).
[Crossref]

Z. Wang, T. B. Yuan, S. L. Lui, Z. Y. Hou, X. W. Li, Z. Li, and W. D. Ni, “Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling,” Front. Phys. 7(6), 708–713 (2012).
[Crossref]

Int. J. Photoenergy (1)

K. Aryal, H. Khatri, R. W. Collins, and S. Marsillac, “In situ and ex situ studies of molybdenum thin films deposited by RF and DC magnetron sputtering as a back contact for CIGS solar cells,” Int. J. Photoenergy 2012(1), 7863–7871 (2012).

J. Anal. At. Spectrom. (1)

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

J. Pharm. Biomed. Anal. (1)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 36(2), 277–284 (2004).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (2)

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and P. Matheron, “Correction of Self-Absorption Spectral Line and Ratios of Transition Probabilities for Homogenous and LTE Plasma,” J. Quant. Spectrosc. Radiat. Transf. 75(6), 747–763 (2002).
[Crossref]

H. Amamou, A. Bois, B. Ferhat, R. Redon, B. Rossetto, and M. Ripert, “Correction of the Self-Absorption for Reversed Spectral Lines: Application to Two Resonance Lines of Neutral Aluminum,” J. Quant. Spectrosc. Radiat. Transf. 77(4), 365–372 (2003).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

L. Torrisi, F. Caridi, and L. Giuffrida, “Comparison of Pd plasmas Produced at 532nm and 1064nm by a Nd:YAG laser ablation,” Nucl. Instrum. Methods Phys. Res. B 268(13), 2285–2291 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Pramana- J. Phys. (1)

V. K. Unnikrishnan, K. Alti, V. B. Kartha, C. Santhosh, G. P. Gupta, and B. M. Suri, “Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions,” Pramana- J. Phys. 74(6), 983–993 (2010).

Spectrochim. Acta B At. Spectrosc. (8)

X. S. Bai, Q. L. Ma, M. Perrier, V. Motto-Ros, D. Sabourdy, L. Nguyen, A. Jalocha, and J. Yu, “Experimental study of laser-induced plasma: influence of laser fluence and pulse duration,” Spectrochim. Acta B At. Spectrosc. 87(9), 27–35 (2013).
[Crossref]

R. Hai, N. Farid, D. Y. Zhao, L. Zhang, J. H. Liu, H. B. Ding, J. Wu, and G. N. Luo, “Laser-induced breakdown spectroscopic characterization of impurity deposition on the first wall of a magnetic confined fusion device: experimental advanced superconducting tokamak,” Spectrochim. Acta B At. Spectrosc. 87(87), 147–152 (2013).
[Crossref]

D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 57(2), 339–353 (2002).
[Crossref]

F. Bredice, F. O. Borges, H. Sobral, M. Villagran-Muniz, H. O. Di Rocco, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption of Manganese Emission Lines in Laser Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B At. Spectrosc. 61(12), 1294–1303 (2006).
[Crossref]

A. M. El Sherbini, Th. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

I. B. Gornushkin, C. L. Stevenson, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach,” Spectrochim. Acta B At. Spectrosc. 56(9), 1769–1785 (2001).
[Crossref]

Z. Wang, L. Z. Li, L. West, Z. Li, and W. D. Ni, “A spectrum standardization approach for laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 68(2), 58–64 (2012).
[Crossref]

M. Gaft, E. Dvir, H. Modiano, and U. Schone, “Laser induced breakdown spectroscopy machine for online ash analyses in coal,” Spectrochim. Acta B At. Spectrosc. 63(10), 1177–1182 (2008).
[Crossref]

Talanta (1)

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Typical average spectrum of the tablets, in which both the resonance doublet around 325 nm and the non-resonance doublet around 520 nm are presented.
Fig. 2
Fig. 2 Temporal evolution of intensity ratio of resonance doublet Cu I lines with content in the ranges of (a) 0.01-1% and (b) 3-60%.
Fig. 3
Fig. 3 Relationship between the optimal delay time of resonance Cu I doublet and the copper content.
Fig. 4
Fig. 4 Temporal evolution of intensity ratio of non-resonance Cu I doublet with content in the ranges of (a) 0.01-1% and (b) 3-60%.
Fig. 5
Fig. 5 Relationship between the optimal delay time of non-resonance Cu I doublet and the copper content.
Fig. 6
Fig. 6 Time-resolved emissivity images of the non-resonance Cu I 521.82 nm line for tablets with copper content of (a) 0.01%, (b) 0.05% and (c) 0.6%.
Fig. 7
Fig. 7 Temporal evolution of K of resonance Cu I 324.75 nm line with Cu contents of 0.01%, 0.05% and 0.6%.
Fig. 8
Fig. 8 Relationship between the RE of measurement by using the resonance Cu I 324.75 nm and non-resonance Cu I 521.82 nm lines and the Cu content.
Fig. 9
Fig. 9 Multi-segment calibration curve of Cu established by resonance/non-resonance doublet based SAF-LIBS over a wide content range of 0-50.7%.

Tables (2)

Tables Icon

Table 1 Spectroscopic parameters of the copper spectral lines.

Tables Icon

Table 2 The temporal parameters of SA coefficient of Cu I for tablets with various Cu contents.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 1 I 2 = ( λ n m , Z λ k i , Z ) ( A k i , Z A n m , Z ) ( g k , Z g n , Z ) e x p ( E k , Z E n , Z k B T ) ,
S A = I ( λ 0 ) I 0 ( λ 0 ) = ( 1 e τ ) τ ,
τ K / Δ λ 0 = 2 e 2 m c 2 Δ λ 0 n i f λ 0 2 l ,
K = 1 4 π 2 c A k i g k Z ( T ) e E i k T λ 0 4 × N l ,

Metrics