C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
P. A. Hooper, “Melt pool temperature and cooling rates in laser powder bed fusion,” Addit. Manuf. 22, 548–559 (2018).
[Crossref]
A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref]
[PubMed]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]
S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref]
[PubMed]
A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]
W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]
N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]
G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]
S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]
J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]
J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]
D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref]
[PubMed]
C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]
P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]
P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]
Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]
W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]
C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]
P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]
N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]
J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]
J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]
S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]
P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref]
[PubMed]
S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]
A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]
A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]
S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]
J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]
J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
P. A. Hooper, “Melt pool temperature and cooling rates in laser powder bed fusion,” Addit. Manuf. 22, 548–559 (2018).
[Crossref]
W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]
S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]
S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]
S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]
W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]
W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]
J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]
J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]
D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref]
[PubMed]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]
J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]
J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]
C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]
N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]
I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]
P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]
S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]
C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]
W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]
G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]
N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]
D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]
I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]
W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]
C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]
P. A. Hooper, “Melt pool temperature and cooling rates in laser powder bed fusion,” Addit. Manuf. 22, 548–559 (2018).
[Crossref]
D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref]
[PubMed]
P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]
D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]
T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]
V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]
J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]
G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]
J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]
J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]
W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]
D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]
Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]
A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]
C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]
H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]
S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]
A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]
P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]
A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]
S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]
W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]
T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]
C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref]
[PubMed]
C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]
I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]
M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]
C. Leyens and E. Beyer, 8 - Innovations in laser cladding and direct laser metal deposition, in: J. Lawrence, D.G.B.T.-L.S.E. Waugh (Eds.), Woodhead Publ. Ser. Electron. Opt. Mater., Woodhead Publishing, 2015: pp. 181–192.
Y. Ralchenko and A. E. Kramida, J. Reader, N. Team, NIST Atomic Spectra Database (version 5.4), (2018). http://physics.nist.gov/asd .