Abstract

The feasibility of in situ quantitative multielemental analysis and production failures detection by laser induced breakdown spectroscopy (LIBS) has been demonstrated during direct energy deposition process in additive manufacturing. Compact LIBS probe was developed and equipped with the laser cladding head installed at industrial robot for real-time chemical quantitative analysis of key components (Ni, W) during the synthesis of high wear resistant coatings of nickel alloy reinforced with tungsten carbide particles. Owing to non-uniform distribution of tungsten carbide grains in the upper surface layer the only acceptable choice for LIBS sampling was made to the melt pool at growing clad. Laser ablation at powder particles above melt pool was insignificant for LIBS plasma properties due to low intensity and low probability of plasma breakdown at powder particles. No impact of LIBS sampling on cladding process and clad properties was observed according to optical and scanning electron microscopies. The feasibility of in situ LIBS quantitative elemental analysis of key components (tungsten and nickel) has been demonstrated during the cladding process. LIBS analysis results were in good agreement with offline measurements by electron energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. Finally, LIBS technique was demonstrated to be a good tool for real-time detection of cladding process failures (poor laser beam quality, undesirable variation of components concentrations).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced breakdown spectroscopy for three-dimensional elemental mapping of composite materials synthesized by additive technologies

V. N. Lednev, P. A. Sdvizhenskii, M. Ya. Grishin, V. V. Cheverikin, A. Ya. Stavertiy, R. S. Tretyakov, M. V. Taksanc, and S. M. Pershin
Appl. Opt. 56(35) 9698-9705 (2017)

In situ chemical analysis of geology samples by a rapid simultaneous ultraviolet/visible/near-infrared (UVN) + longwave-infrared laser induced breakdown spectroscopy detection system at standoff distance

Clayton S. C. Yang, Feng Jin, Sudhir Trivedi, Ei Brown, Uwe Hömmerich, Laszlo Nemes, and Alan C. Samuels
Opt. Express 27(14) 19596-19614 (2019)

Quantitative elemental analysis of high silica bauxite using calibration-free laser-induced breakdown spectroscopy

Muhammad Fahad, Sajjad Ali, Khizar Hussain Shah, Asim Shahzad, and Muhammad Abrar
Appl. Opt. 58(27) 7588-7596 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
    [Crossref]
  2. A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
    [Crossref]
  3. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
    [Crossref]
  4. A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
    [Crossref]
  5. C. Leyens and E. Beyer, 8 - Innovations in laser cladding and direct laser metal deposition, in: J. Lawrence, D.G.B.T.-L.S.E. Waugh (Eds.), Woodhead Publ. Ser. Electron. Opt. Mater., Woodhead Publishing, 2015: pp. 181–192.
  6. M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
    [Crossref] [PubMed]
  7. Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
    [Crossref] [PubMed]
  8. G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
    [Crossref]
  9. S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
    [Crossref]
  10. N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
    [Crossref]
  11. M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
    [Crossref]
  12. I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
    [Crossref]
  13. P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
    [Crossref]
  14. M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
    [Crossref]
  15. C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
    [Crossref]
  16. C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
    [Crossref] [PubMed]
  17. W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
    [Crossref]
  18. C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
    [Crossref]
  19. J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
    [Crossref]
  20. J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
    [Crossref]
  21. Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
    [Crossref]
  22. A. Ancona, V. Spagnolo, P. M. Lugarà, and M. Ferrara, “Optical sensor for real-time monitoring of CO2 laser welding process,” Appl. Opt. 40(33), 6019–6025 (2001).
    [Crossref] [PubMed]
  23. P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
    [Crossref]
  24. D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
    [Crossref]
  25. S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
    [Crossref]
  26. W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
    [Crossref]
  27. J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
    [Crossref]
  28. V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
    [Crossref]
  29. Y. Ralchenko and A. E. Kramida, J. Reader, N. Team, NIST Atomic Spectra Database (version 5.4), (2018). http://physics.nist.gov/asd .
  30. C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
  31. A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
    [Crossref]
  32. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
    [Crossref]
  33. D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  34. P. A. Hooper, “Melt pool temperature and cooling rates in laser powder bed fusion,” Addit. Manuf. 22, 548–559 (2018).
    [Crossref]
  35. H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
    [Crossref]

2018 (5)

C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

P. A. Hooper, “Melt pool temperature and cooling rates in laser powder bed fusion,” Addit. Manuf. 22, 548–559 (2018).
[Crossref]

A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

2017 (5)

Q. Li, A. P. Alloncle, D. Grojo, and P. Delaporte, “Generating liquid nanojets from copper by dual laser irradiation for ultra-high resolution printing,” Opt. Express 25(20), 24164–24172 (2017).
[Crossref] [PubMed]

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]

2016 (7)

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

M. Zenou and Z. Kotler, “Printing of metallic 3D micro-objects by laser induced forward transfer,” Opt. Express 24(2), 1431–1446 (2016).
[Crossref] [PubMed]

A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]

2015 (2)

W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]

N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]

2014 (3)

G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]

S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

2013 (1)

I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]

2012 (1)

J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]

2011 (1)

J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]

2010 (1)

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

2008 (1)

C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).

2006 (1)

M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]

2004 (1)

M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]

2002 (1)

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]

2001 (1)

2000 (1)

P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]

1997 (1)

Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]

Aarts, R.

W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]

Aguilera, J. a.

C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).

Alloncle, A. P.

Ancona, A.

Aragón, C.

C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).

Bandyopadhyay, A.

A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]

Beese, A. M.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Bertrand, P.

M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]

M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]

P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]

Bian, L.

N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]

Borgonia, J.-P.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Carrus, R.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Chen, L.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Clare, A. T.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Cunningham, R. W.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

De, A.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

de Blasiis, D.

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]

De Carlo, F.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

De Giacomo, A.

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]

de Lange, D. F.

J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]

J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]

DebRoy, T.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Delaporte, P.

Dillon, R. P.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Dormidonov, A. E.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Doubenskaia, M.

I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]

M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]

M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]

Duchêne, L.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Elmer, J. W.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Elwany, A.

G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]

Everton, S. K.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Fedorov, A. N.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Ferrara, M.

Fezzaa, K.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Fife, J. L.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Gao, X.

D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]

Grevey, D.

P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]

Grishin, M. Ya.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Grojo, D.

Grolimund, D.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Habraken, A. M.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Harooni, M.

S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]

Heer, B.

A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]

Hermann, J.

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]

Hirsch, M.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Hofman, J. T.

J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]

J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]

Hofmann, D. C.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Hooper, P. A.

P. A. Hooper, “Melt pool temperature and cooling rates in laser powder bed fusion,” Addit. Manuf. 22, 548–559 (2018).
[Crossref]

Huis in ’t Veld, B.

W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]

Ilonen, J.

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Jardin, R. T.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Kalita, W.

Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]

Kälviäinen, H.

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

Katayama, S.

D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]

Kenel, C.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Kolodziejska, J.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Konuk, A. R.

W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]

Kotler, Z.

Kovacevic, R.

S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]

Kujanpää, V.

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

Kurzyna, J.

Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Leach, R. K.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Lecomte-Beckers, J.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Lednev, V. N.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Leinenbach, C.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Lensu, L.

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

Li, Q.

Liu, S.

S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]

Liu, W.

S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]

Liu, W.-W. W.

W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]

Liu, X.-Y. Y.

W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]

Liu, Z.-K.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Lugarà, P. M.

Ma, J.

S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]

Meijer, J.

J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]

J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]

Menzel, A.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Mertens, A.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Milewski, J. O.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Mukherjee, T.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Nassar, A. R.

C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Otis, R.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Pathiraj, B.

W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]

J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]

J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]

Paydas, H.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Pekkarinen, J.

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

Pershin, S. M.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Pinkerton, A. J.

A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Reutzel, E. W.

C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]

Roberts, S.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Rollett, A. D.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Safronova, E. S.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Salminen, A.

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

Savvin, A. D.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Schloth, P.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Sdvizhenskii, P. A.

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

Sforza, P.

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]

Shamsaei, N.

N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]

Smurov, I.

I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]

M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]

M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]

P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]

Spagnolo, V.

Stravroulakis, P.

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Stutzman, C. B.

C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]

Suh, J.-O.

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

Sun, T.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Szymanski, Z.

Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]

Tang, Z.-J. J.

W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]

Tapia, G.

G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]

Tchuindjang, J. T.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

Thompson, S. M.

N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]

Tran, H.-S.

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

van Dijk, J.

J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]

Van Petegem, S.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Van Swygenhoven, H.

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Wang, H.-J. J.

W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]

Wei, H. L.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Wen, H.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Wilson-Heid, A.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Ya, W.

W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]

Yadollahi, A.

N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]

You, D.

D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]

Zaitsev, A.

I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]

Zenou, M.

Zhang, H.-C. C.

W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]

Zhang, W.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Zhao, C.

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Zuback, J. S.

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Addit. Manuf. (3)

N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, “An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control,” Addit. Manuf. 8, 12–35 (2015).
[Crossref]

C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. 21, 333–339 (2018).
[Crossref]

P. A. Hooper, “Melt pool temperature and cooling rates in laser powder bed fusion,” Addit. Manuf. 22, 548–559 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

D. W. Hahn and N. Omenetto, “Laser-Induced Breakdown Spectroscopy (LIBS), PART I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

P. Bertrand, I. Smurov, and D. Grevey, “Application of near infrared pyrometry for continuous Nd: YAG laser welding of stainless steel,” Appl. Surf. Sci. 168(1-4), 182–185 (2000).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

D. You, X. Gao, and S. Katayama, “Data-driven based analyzing and modeling of MIMO laser welding process by integration of six advanced sensors,” Int. J. Adv. Manuf. Technol. 82(5-8), 1127–1139 (2016).
[Crossref]

J. Anal. At. Spectrom. (2)

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

V. N. Lednev, A. E. Dormidonov, P. A. Sdvizhenskii, M. Ya. Grishin, A. N. Fedorov, A. D. Savvin, E. S. Safronova, and S. M. Pershin, “Compact diode-pumped Nd:YAG laser for remote analysis of low-alloy steels by laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 33(2), 294–303 (2018).
[Crossref]

J. Laser Appl. (1)

J. Pekkarinen, A. Salminen, V. Kujanpää, J. Ilonen, L. Lensu, and H. Kälviäinen, “Powder cloud behavior in laser cladding using scanning optics,” J. Laser Appl. 28(3), 032007 (2016).
[Crossref]

J. Manuf. Sci. Eng. (1)

G. Tapia and A. Elwany, “A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing,” J. Manuf. Sci. Eng. 136(6), 060801 (2014).
[Crossref]

J. Mater. Process. Technol. (3)

J. T. Hofman, D. F. de Lange, B. Pathiraj, and J. Meijer, “FEM modeling and experimental verification for dilution control in laser cladding,” J. Mater. Process. Technol. 211(2), 187–196 (2011).
[Crossref]

J. T. Hofman, B. Pathiraj, J. van Dijk, D. F. de Lange, and J. Meijer, “A camera based feedback control strategy for the laser cladding process,” J. Mater. Process. Technol. 212(11), 2455–2462 (2012).
[Crossref]

W. Ya, A. R. Konuk, R. Aarts, B. Pathiraj, and B. Huis in ’t Veld, “Spectroscopic monitoring of metallic bonding in laser metal deposition,” J. Mater. Process. Technol. 220, 276–284 (2015).
[Crossref]

J. Mater. Res. (1)

D. C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R. P. Dillon, J.-O. Suh, Z.-K. Liu, and J.-P. Borgonia, “Compositionally graded metals: A new frontier of additive manufacturing,” J. Mater. Res. 29(17), 1899–1910 (2014).
[Crossref]

J. Phys. D Appl. Phys. (2)

Z. Szymanski, J. Kurzyna, and W. Kalita, “The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium,” J. Phys. D Appl. Phys. 30(22), 3153–3162 (1997).
[Crossref]

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]

JOM (1)

C. Kenel, P. Schloth, S. Van Petegem, J. L. Fife, D. Grolimund, A. Menzel, H. Van Swygenhoven, and C. Leinenbach, “In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating,” JOM 68(3), 978–984 (2016).
[Crossref]

Mater. Des. (2)

H.-S. Tran, J. T. Tchuindjang, H. Paydas, A. Mertens, R. T. Jardin, L. Duchêne, R. Carrus, J. Lecomte-Beckers, and A. M. Habraken, “3D thermal finite element analysis of laser cladding processed Ti-6Al-4V part with microstructural correlations,” Mater. Des. 128, 130–142 (2017).
[Crossref]

S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. 95, 431–445 (2016).
[Crossref]

Mater. Sci. Eng. Rep. (1)

A. Bandyopadhyay and B. Heer, “Additive manufacturing of multi-material structures,” Mater. Sci. Eng. Rep. 129, 1–16 (2018).
[Crossref]

NDT Int. (1)

P. Sforza and D. de Blasiis, “On-line optical monitoring system for arc welding,” NDT Int. 35(1), 37–43 (2002).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (2)

A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016).
[Crossref]

S. Liu, W. Liu, M. Harooni, J. Ma, and R. Kovacevic, “Real-time monitoring of laser hot-wire cladding of Inconel 625,” Opt. Laser Technol. 62, 124–134 (2014).
[Crossref]

Procedia CIRP. (1)

W.-W. W. Liu, Z.-J. J. Tang, X.-Y. Y. Liu, H.-J. J. Wang, and H.-C. C. Zhang, “A Review on In-situ Monitoring and Adaptive Control Technology for Laser Cladding Remanufacturing,” Procedia CIRP. 61, 235–240 (2017).
[Crossref]

Prog. Mater. Sci. (1)

T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components - Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).
[Crossref]

Sci. Rep. (1)

C. Zhao, K. Fezzaa, R. W. Cunningham, H. Wen, F. De Carlo, L. Chen, A. D. Rollett, and T. Sun, “Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction,” Sci. Rep. 7(1), 3602 (2017).
[Crossref] [PubMed]

Spectrochim. Acta Part B (1)

C. Aragón and J. a. Aguilera, “Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).

Surf. Coat. Tech. (2)

M. Doubenskaia, P. Bertrand, and I. Smurov, “Pyrometry in laser surface treatment,” Surf. Coat. Tech. 201(5), 1955–1961 (2006).
[Crossref]

I. Smurov, M. Doubenskaia, and A. Zaitsev, “Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation,” Surf. Coat. Tech. 220, 112–121 (2013).
[Crossref]

Thin Solid Films (1)

M. Doubenskaia, P. Bertrand, and I. Smurov, “Optical monitoring of Nd:YAG laser cladding,” Thin Solid Films 453–454, 477–485 (2004).
[Crossref]

Other (2)

C. Leyens and E. Beyer, 8 - Innovations in laser cladding and direct laser metal deposition, in: J. Lawrence, D.G.B.T.-L.S.E. Waugh (Eds.), Woodhead Publ. Ser. Electron. Opt. Mater., Woodhead Publishing, 2015: pp. 181–192.

Y. Ralchenko and A. E. Kramida, J. Reader, N. Team, NIST Atomic Spectra Database (version 5.4), (2018). http://physics.nist.gov/asd .

Supplementary Material (1)

NameDescription
» Visualization 1       Laser ablation at powder particles

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Scheme of the coaxial laser cladding head equipped with the laser induced breakdown spectroscopy (LIBS) probe for in situ elemental analysis. Digital camera (left bottom) was synchronized to nanosecond laser pulse for LIBS plasma imaging.
Fig. 2
Fig. 2 Scanning electron microscopy image of individual clad cross-section (a) (nickel alloy reinforced with tungsten carbide grains), laser induced plasma image (b) and laser induced breakdown spectrum (c) for offline measurement at room temperature.
Fig. 3
Fig. 3 Reproducibility of laser induced breakdown spectroscopy (LIBS) measurements for coaxial and perpendicular sampling of an individual clad: sampling schemes (a); intensity of Ni I 361.93 nm line (b) and plasma temperature (c) during coaxial and perpendicular mapping of single clad at room temperature.
Fig. 4
Fig. 4 Laser induced breakdown plasma and melt pool emission spectra comparison in wide range (a) and 362-375 nm spectral window (b). According to laser plasma modeling by NIST ASD interface the strongest nickel atomic lines should be observed in spectral window 362-375 nm for plasma at 1800-2200 °C temperature.
Fig. 5
Fig. 5 Different areas sampling by LIBS probe during cladding process. LIBS probe was installed separately from cladding head and clad was synthesized through the LIBS sampling spot thus “through the melt pool LIBS measurements” were made in single experiment run: experiment scheme (a); LIBS signal for line Ni I 361.93 nm (integral with background correction) (b), laser plasma temperature (c) and clad surface temperature (d).
Fig. 6
Fig. 6 LIBS signals (integral of Ni I 361.93 nm line) reproducibility (defined as relative standard deviation, RSD) during online measurements with laser ablation in melt pool (a), just solidified hot clad (b) and offline measurements of solid clad cooled to room temperature (c).
Fig. 7
Fig. 7 LIBS measurements for clad synthesized with varying concentrations of matrix (NiFeBSi) and reinforced grains (WC): (a) – scanning electron microscopy image of top clad cross-section cut in the center along the cladding trajectory; (b) - programed flows of tungsten carbide (WC) and NiFeBSi powders; (c) - in situ LIBS sampling at clad melt pool; (d) - offline LIBS sampling of solid clad at room temperature; (e) – offline LIBS sampling after surface grinding.
Fig. 8
Fig. 8 Top-view optical microscopy photo for individual clad (a) and scanning electron microscopy image for lengthwise clad cross section (b) in case of melt spot LIBS sampling (left side) and without any ablation (right side).
Fig. 9
Fig. 9 Images of the LIBS plasma induced at melt pool surface and powder particles: (a) – scheme of LIBS laser beam, melt pool and laser plasma; (b) – laser plasma photo when laser ablation at powder particles (breakdown at particles) was taking the place (note, that laser plasma emission can be effectively reflected by particles); (c) – scheme of controlled powder flows of nickel alloy (NiFeBSi) and tungsten carbide (WC) particles; (d) – LIBS plasma emission signal (sum of pixels at area defined as ‘laser plasma’ in image (a)); (e) – laser plasma emission (breakdown at particles) in case of laser ablation at powders particles (sum of pixels at area defined as ‘laser beam’ in image (a)); (f) – plasma emission signal for particles which reflected the LIBS plasma emission (sum of pixel above ‘laser plasma’ area shown in image (a)). To visualize plasmas induced at particles, emission reflected by particles and melt emission the images (a) and (b) were scaled by intensity but for signals calculation original images were not scaled by intensity. Laser breakdown at powder particles was presented in the video Visualization 1.
Fig. 10
Fig. 10 Correlations of emission signals for the laser plasmas induced at melt pool surface and powder particles (a) and emission signals for laser plasma induced at melt surface and plasma light reflected by particle in flow (b). Data for greater flow of tungsten carbide particles (scheme in Fig. 9) are marked with cyan color while low concentration WC flow is shown with green color.
Fig. 11
Fig. 11 Cladding failure (defected safety glass in cladding head) detection by LIBS measurements: (a) and (b) – new and defected safety glass photographs as well as corresponding laser clads photographs; (c) – Fe I 489.63 nm line integrals; (d) –Ni I 508.10 nm line integrals corresponding to clads photograph; (e) – ratio of W I 505.34 nm to Ni I 508.10 nm lines integrals; (f) - LIBS plasma emission signal defined as sum of pixels in plume image area for photos acquired by CMOS camera.
Fig. 12
Fig. 12 The in situ LIBS quantitative elemental analysis (left part) and cladding failures detection (right part) during additive manufacturing process (a) – programmed flows of tungsten carbide (WC) and Ni-alloy (NiFeBSi) powders. (b) and (c) – LIBS analysis for nickel and tungsten during melt pool sampling (XRF analysis results are marked with the dotted rectangular). It should be noted that sampling spots for LIBS and XRF was rather different – 0.5 and 5 mm respectively. (d) – top-view photograph of clads synthesized without failures (orange and blue) and failure with tungsten carbide powder flow (violet).

Tables (2)

Tables Icon

Table 1 Elemental composition (wt. %) of the steel substrate and powders used for laser cladding.

Tables Icon

Table 2 Atomic and ionic lines constants from NIST database [29]: wavelength, transition probability, degeneracy of upper level, energy of upper level (Ek) and energy of lower level (Ei).

Metrics