Abstract

An avalanche photodiode with a ratio of hole-to-electron ionization coefficients, k = 0, is known to produce negligible excess noise irrespective of the avalanche gain. The low noise amplification process can be utilized to detect very low light levels. In this work, we demonstrated InAs avalanche photodiodes with high external quantum efficiency of 60% (achieved without antireflection coating) at the peak wavelength of 3.48 µm. At 77 K, our InAs avalanche photodiodes show low dark current (limited by 300 K blackbody background radiation), high avalanche gain and negligible excess noise, as InAs exhibits k = 0. They were therefore able to detect very low levels of light, at 15-31 photons per 50 µs laser pulse at 1550 nm wavelength. These correspond to the lowest detected average power by InAs avalanche photodiodes, ranging from 19 to 40 fW. The measurement system’s noise floor was dominated by the pre-amplifier. Our results suggest that, with a lower system noise, InAs avalanche photodiodes have high potential for optical detection of single or few-photon signal levels at wavelengths of 1550 nm or longer.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes

Pin Jern Ker, John P. R. David, and Chee Hing Tan
Opt. Express 20(28) 29568-29576 (2012)

Proton radiation effect on InAs avalanche photodiodes

Xinxin Zhou, Benjamin White, Xiao Meng, Shiyong Zhang, Marina Gutierrez, Mark Robbins, Luis Gomez Rojas, Nick Nelms, Chee Hing Tan, and Jo Shien Ng
Opt. Express 25(3) 2818-2825 (2017)

Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode

Guang Wu, Yi Jian, E Wu, and Heping Zeng
Opt. Express 17(21) 18782-18787 (2009)

References

  • View by:
  • |
  • |
  • |

  1. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Dev. ED-13(1), 164–168 (1966).
    [Crossref]
  2. H. Kanbe, T. Kimura, Y. Mizushima, and K. Kajiyama, “silicon avalanche photodiodes with low multiplication noise and high-speed response,” IEEE Trans. Electron Dev. 23(12), 1337–1343 (1976).
    [Crossref]
  3. C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
    [Crossref]
  4. Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
    [Crossref]
  5. G. F. Williams, F. Capasso, and W. T. Tsang, “The graded bandgap multilayer avalanche photodiode: a new low-noise detector,” IEEE Electron Device Lett. 3(3), 71–73 (1982).
    [Crossref]
  6. M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
    [Crossref]
  7. F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio,” Appl. Phys. Lett. 40(1), 38–40 (1982).
    [Crossref]
  8. P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
    [Crossref]
  9. Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
    [Crossref]
  10. Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H.-D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 µm light detection,” Opt. Express 16(13), 9365–9371 (2008).
    [Crossref] [PubMed]
  11. L. L. G. Pinel, S. J. Dimler, X. Zhou, S. Abdullah, S. Zhang, C. H. Tan, and J. S. Ng, “Effects of carrier injection profile on low noise thin Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes,” Opt. Express 26(3), 3568–3576 (2018).
    [Crossref] [PubMed]
  12. S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
    [Crossref]
  13. Micro Photon Devices, “PDM series photon counting detector modules datasheet” (Micro Photon Devices). http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf . Accessed 25 April 2018.
  14. Micro Photon Devices, “SPC2 series photon counting camera datasheet” (Micro Photon Devices). http://www.micro-photon-devices.com/Docs/Datasheet/SPC2.pdf . Accessed 25 April 2018.
  15. M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
    [Crossref]
  16. Micro Photon Devices, “InGaAs Single-Photon Counter” (Micro Photon Devices, 2014). http://www.micro-photon-devices.com/Docs/Datasheet/InGaAs_Datasheet.pdf . Accessed 27 April 2018.
  17. L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
    [Crossref]
  18. B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
    [Crossref]
  19. S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
    [Crossref]
  20. D. S. Simon, G. Jaeger, and A. V. Sergienko, Quantum Metrology, Imaging, and Communication, (Springer International Publishing, 2017).
  21. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
    [Crossref] [PubMed]
  22. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
    [Crossref]
  23. I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE 5406, 133–144 (2004).
    [Crossref]
  24. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
    [Crossref]
  25. J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
    [Crossref]
  26. B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Dev. 37(9), 1976–1984 (1990).
    [Crossref]
  27. J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
    [Crossref]
  28. X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
    [Crossref] [PubMed]
  29. Minamata Convention, “Minamata Convention on Mercury Text and Annexes” (Minamata Convention, 2017). http://www.mercuryconvention.org/ . Accessed 27 April 2018.
  30. S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
    [Crossref]
  31. P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express 20(28), 29568–29576 (2012).
    [Crossref] [PubMed]
  32. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
    [Crossref]

2018 (3)

L. L. G. Pinel, S. J. Dimler, X. Zhou, S. Abdullah, S. Zhang, C. H. Tan, and J. S. Ng, “Effects of carrier injection profile on low noise thin Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes,” Opt. Express 26(3), 3568–3576 (2018).
[Crossref] [PubMed]

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

2017 (1)

2016 (1)

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

2015 (3)

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
[Crossref] [PubMed]

2014 (1)

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

2013 (1)

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

2012 (2)

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express 20(28), 29568–29576 (2012).
[Crossref] [PubMed]

2011 (1)

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[Crossref]

2009 (1)

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

2008 (1)

2007 (1)

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

2006 (1)

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

2004 (1)

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE 5406, 133–144 (2004).
[Crossref]

2002 (1)

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

2000 (2)

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

1999 (1)

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

1990 (1)

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Dev. 37(9), 1976–1984 (1990).
[Crossref]

1982 (2)

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio,” Appl. Phys. Lett. 40(1), 38–40 (1982).
[Crossref]

G. F. Williams, F. Capasso, and W. T. Tsang, “The graded bandgap multilayer avalanche photodiode: a new low-noise detector,” IEEE Electron Device Lett. 3(3), 71–73 (1982).
[Crossref]

1976 (1)

H. Kanbe, T. Kimura, Y. Mizushima, and K. Kajiyama, “silicon avalanche photodiodes with low multiplication noise and high-speed response,” IEEE Trans. Electron Dev. 23(12), 1337–1343 (1976).
[Crossref]

1966 (1)

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Dev. ED-13(1), 164–168 (1966).
[Crossref]

Abdullah, S.

Abshire, J. B.

Baker, I. M.

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE 5406, 133–144 (2004).
[Crossref]

Bank, S.

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

Bank, S. R.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

Beck, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Beck, J. D.

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
[Crossref] [PubMed]

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Beling, A.

Bhargava, S.

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

Bitter, M.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Blank, H.-R.

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

Bonnouvrier, G.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Bosson, S.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Bowers, J.

Buttafava, M.

Button, C. C.

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

Campbell, J.

Campbell, J. C.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

Capasso, F.

G. F. Williams, F. Capasso, and W. T. Tsang, “The graded bandgap multilayer avalanche photodiode: a new low-noise detector,” IEEE Electron Device Lett. 3(3), 71–73 (1982).
[Crossref]

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio,” Appl. Phys. Lett. 40(1), 38–40 (1982).
[Crossref]

Chen, Y.

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

Chin, M. A.

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

Clark, J. C.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Clawson, A. R.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Comandar, L. C.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Copley, J. W.

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE 5406, 133–144 (2004).
[Crossref]

Croce, G.

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

David, J. P. R.

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express 20(28), 29568–29576 (2012).
[Crossref] [PubMed]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[Crossref]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Dimler, S. J.

Duncan, S. S.

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE 5406, 133–144 (2004).
[Crossref]

Dynes, J. F.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Eliceiri, K.

Foubert, K.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Frick, S.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Fröhlich, B.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Fuchs, C.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Gattari, P.

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

Gatti, S.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Gisin, N.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Gleckler, A. D.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Goh, Y. L.

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

Hall, E.

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

Hayat, M. M.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Dev. 37(9), 1976–1984 (1990).
[Crossref]

Herbert, D. C.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Holmes, A. L.

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

Hopkinson, M.

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

Horwath, J.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Houlmann, R.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Hummel, S.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Hutchinson, A. L.

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio,” Appl. Phys. Lett. 40(1), 38–40 (1982).
[Crossref]

Jones, S. K.

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

Kajiyama, K.

H. Kanbe, T. Kimura, Y. Mizushima, and K. Kajiyama, “silicon avalanche photodiodes with low multiplication noise and high-speed response,” IEEE Trans. Electron Dev. 23(12), 1337–1343 (1976).
[Crossref]

Kanbe, H.

H. Kanbe, T. Kimura, Y. Mizushima, and K. Kajiyama, “silicon avalanche photodiodes with low multiplication noise and high-speed response,” IEEE Trans. Electron Dev. 23(12), 1337–1343 (1976).
[Crossref]

Kang, Y.

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H.-D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 µm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[Crossref] [PubMed]

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Ker, P. J.

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express 20(28), 29568–29576 (2012).
[Crossref] [PubMed]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[Crossref]

Kerlain, A.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Kimura, T.

H. Kanbe, T. Kimura, Y. Mizushima, and K. Kajiyama, “silicon avalanche photodiodes with low multiplication noise and high-speed response,” IEEE Trans. Electron Dev. 23(12), 1337–1343 (1976).
[Crossref]

Kinch, M.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Korzh, B.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Kroemer, H.

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

Krysa, A. B.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[Crossref]

Kuo, Y. H.

Leong, W. Y.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Li, M. J.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Lim, C. C. W.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Litski, S.

Liu, H.-D.

Lo, Y. H.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Lucamarini, M.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Ma, F.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Maddox, S.

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

Maddox, S. J.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

Mages, P.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

March, S. D.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

Marshall, A. R. J.

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[Crossref]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

Martin, R. J.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Massey, D. J.

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

McIntosh, D. C.

McIntyre, R. J.

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Dev. ED-13(1), 164–168 (1966).
[Crossref]

Mitra, P.

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
[Crossref] [PubMed]

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Mizushima, Y.

H. Kanbe, T. Kimura, Y. Mizushima, and K. Kajiyama, “silicon avalanche photodiodes with low multiplication noise and high-speed response,” IEEE Trans. Electron Dev. 23(12), 1337–1343 (1976).
[Crossref]

Moll, F.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Mollard, L.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Morse, M.

Narayanamurti, V.

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

Nauerth, S.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Newey, J.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Ng, J. S.

L. L. G. Pinel, S. J. Dimler, X. Zhou, S. Abdullah, S. Zhang, C. H. Tan, and J. S. Ng, “Effects of carrier injection profile on low noise thin Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes,” Opt. Express 26(3), 3568–3576 (2018).
[Crossref] [PubMed]

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

Nolan, D.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Pacaud, O.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Pan, Z.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Paniccia, M. J.

Pauchard, A.

Y. Kang, M. Zadka, S. Litski, G. Sarid, M. Morse, M. J. Paniccia, Y. H. Kuo, J. Bowers, A. Beling, H.-D. Liu, D. C. McIntosh, J. Campbell, and A. Pauchard, “Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 µm light detection,” Opt. Express 16(13), 9365–9371 (2008).
[Crossref] [PubMed]

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Penty, R. V.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Pinches, S. M.

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

Pinel, L. L. G.

Plimmer, S. A.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Rau, M.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Rees, G. J.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Reiff, K.

Ren, M.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

Robbins, D. J.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Robinson, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Rockwell, A.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

Rothman, J.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Dev. 37(9), 1976–1984 (1990).
[Crossref]

Salveti, F.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Sanguinetti, B.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Sanzaro, M.

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

Sarid, G.

Scritchfield, R.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Sharpe, A. W.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Shields, A. J.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Steer, M. J.

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

Strittmatter, R.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Sullivan, W. W.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Sun, X.

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
[Crossref] [PubMed]

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

Tan, C. H.

L. L. G. Pinel, S. J. Dimler, X. Zhou, S. Abdullah, S. Zhang, C. H. Tan, and J. S. Ng, “Effects of carrier injection profile on low noise thin Al0.85Ga0.15As0.56Sb0.44 avalanche photodiodes,” Opt. Express 26(3), 3568–3576 (2018).
[Crossref] [PubMed]

P. J. Ker, J. P. R. David, and C. H. Tan, “Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes,” Opt. Express 20(28), 29568–29576 (2012).
[Crossref] [PubMed]

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[Crossref]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Teich, M. C.

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Dev. 37(9), 1976–1984 (1990).
[Crossref]

Thew, R.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Tosi, A.

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
[Crossref] [PubMed]

Tozer, R. C.

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

Tsang, W. T.

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio,” Appl. Phys. Lett. 40(1), 38–40 (1982).
[Crossref]

G. F. Williams, F. Capasso, and W. T. Tsang, “The graded bandgap multilayer avalanche photodiode: a new low-noise detector,” IEEE Electron Device Lett. 3(3), 71–73 (1982).
[Crossref]

Velten, A.

Villa, F.

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

Vojetta, G.

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Wan, C.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Wang, S.

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

Weinfurter, H.

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Williams, G. F.

G. F. Williams, F. Capasso, and W. T. Tsang, “The graded bandgap multilayer avalanche photodiode: a new low-noise detector,” IEEE Electron Device Lett. 3(3), 71–73 (1982).
[Crossref]

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio,” Appl. Phys. Lett. 40(1), 38–40 (1982).
[Crossref]

Woodson, M.

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

Woodson, M. E.

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

Yang, G.

Yu, P. K. L.

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

Yuan, P.

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

Yuan, Z. L.

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

Zadka, M.

Zappa, F.

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

Zbinden, H.

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

Zeman, J.

Zhang, S.

Zheng, X. G.

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

Zhou, X.

Appl. Phys. Lett. (4)

C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, “Avalanche noise measurement in thin Si p+-i-n+ diodes,” Appl. Phys. Lett. 76(26), 3926–3928 (2000).
[Crossref]

M. Ren, S. Maddox, Y. Chen, M. Woodson, J. C. Campbell, and S. Bank, “AlInAsSb/GaSb staircase avalanche photodiode,” Appl. Phys. Lett. 108(8), 081101 (2016).
[Crossref]

F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. F. Williams, “Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio,” Appl. Phys. Lett. 40(1), 38–40 (1982).
[Crossref]

S. Bhargava, H.-R. Blank, E. Hall, M. A. Chin, H. Kroemer, and V. Narayanamurti, “Staggered to straddling band lineups in InAs/Al(As, Sb),” Appl. Phys. Lett. 74(8), 1135–1137 (1999).
[Crossref]

IEEE Electron Device Lett. (1)

G. F. Williams, F. Capasso, and W. T. Tsang, “The graded bandgap multilayer avalanche photodiode: a new low-noise detector,” IEEE Electron Device Lett. 3(3), 71–73 (1982).
[Crossref]

IEEE J. Quantum Electron. (2)

P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011).
[Crossref]

Y. L. Goh, A. R. J. Marshall, D. J. Massey, J. S. Ng, C. H. Tan, M. Hopkinson, J. P. R. David, S. K. Jones, C. C. Button, and S. M. Pinches, “Excess avalanche noise in In0.52Al0.48As,” IEEE J. Quantum Electron. 43(6), 503–507 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. R. Bank, J. C. Campbell, S. J. Maddox, M. Ren, A. Rockwell, M. E. Woodson, and S. D. March, “Avalanche photodiode based on the AlInAsSb Materials System,” IEEE J. Sel. Top. Quantum Electron. 24(2), 3800407 (2018).
[Crossref]

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, “Single-photon avalanche diodes in a 0.16 μm BCD technology with sharp timing response and red-enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–9 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (3)

P. Yuan, S. Wang, X. Sun, X. G. Zheng, A. L. Holmes, and J. C. Campbell, “Avalanche photodiodes with an impact-ionization-engineered multiplication region,” IEEE Photonics Technol. Lett. 12(10), 1370–1372 (2000).
[Crossref]

Y. Kang, P. Mages, A. R. Clawson, P. K. L. Yu, M. Bitter, Z. Pan, A. Pauchard, S. Hummel, and Y. H. Lo, “Fused InGaAs-Si avalanche photodiodes with low-noise performances,” IEEE Photonics Technol. Lett. 14(11), 1593–1595 (2002).
[Crossref]

A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photonics Technol. Lett. 21(13), 866–868 (2009).
[Crossref]

IEEE Trans. Electron Dev. (3)

B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron Dev. 37(9), 1976–1984 (1990).
[Crossref]

R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron Dev. ED-13(1), 164–168 (1966).
[Crossref]

H. Kanbe, T. Kimura, Y. Mizushima, and K. Kajiyama, “silicon avalanche photodiodes with low multiplication noise and high-speed response,” IEEE Trans. Electron Dev. 23(12), 1337–1343 (1976).
[Crossref]

J. Appl. Phys. (1)

L. C. Comandar, B. Fröhlich, J. F. Dynes, A. W. Sharpe, M. Lucamarini, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm,” J. Appl. Phys. 117(8), 083109 (2015).
[Crossref]

J. Electron. Mater. (2)

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

J. Rothman, L. Mollard, S. Bosson, G. Vojetta, K. Foubert, S. Gatti, G. Bonnouvrier, F. Salveti, A. Kerlain, and O. Pacaud, “Short-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 41(10), 2928–2936 (2012).
[Crossref]

Nat. Photonics (2)

B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9(3), 163–168 (2015).
[Crossref]

S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, “Air-to-ground quantum communication,” Nat. Photonics 7(5), 382–386 (2013).
[Crossref]

Opt. Eng. (1)

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Opt. Express (5)

Proc. SPIE (1)

I. M. Baker, S. S. Duncan, and J. W. Copley, “A low-noise laser-gated imaging system for long-range target identification,” Proc. SPIE 5406, 133–144 (2004).
[Crossref]

Other (5)

Minamata Convention, “Minamata Convention on Mercury Text and Annexes” (Minamata Convention, 2017). http://www.mercuryconvention.org/ . Accessed 27 April 2018.

D. S. Simon, G. Jaeger, and A. V. Sergienko, Quantum Metrology, Imaging, and Communication, (Springer International Publishing, 2017).

Micro Photon Devices, “InGaAs Single-Photon Counter” (Micro Photon Devices, 2014). http://www.micro-photon-devices.com/Docs/Datasheet/InGaAs_Datasheet.pdf . Accessed 27 April 2018.

Micro Photon Devices, “PDM series photon counting detector modules datasheet” (Micro Photon Devices). http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf . Accessed 25 April 2018.

Micro Photon Devices, “SPC2 series photon counting camera datasheet” (Micro Photon Devices). http://www.micro-photon-devices.com/Docs/Datasheet/SPC2.pdf . Accessed 25 April 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-sectional schematic diagram of InAs APD. (b) Fabricated APDs with diameters of 240 µm.
Fig. 2
Fig. 2 Data of dark current versus voltage in (a) reverse and (b) forward bias at 300 and 77 K.
Fig. 3
Fig. 3 (a) Measured room temperature responsivity from our InAs APDs reverse-biased at −0.2 V. Data for a commercial reference InAs photodiode are also included. (b) 77 K avalanche gain measured on three APDs using a 1550 nm laser.
Fig. 4
Fig. 4 Measured power spectrum density of APD3 at 77 K, at (a) different reverse bias voltages and (b) different photon numbers. These measurements were taken with a span of 6 Hz.
Fig. 5
Fig. 5 Measured power spectrum density of APD2 and APD3 at 77 K. The peak magnitude corresponding to the number of absorbed photons is included at the top-right corner of each spectrum. These measurements were taken with a span of 0.76 Hz. The lines at 0.5 normalized magnitude were included to illustrate that signal to noise ratio is larger than 2.

Metrics