Abstract

Solar water splitting using Si photoelectrodes in photoelectrochemical (PEC) cells offers a promising approach to convert sunlight into sustainable hydrogen energy, which has recently received intense research. This review summarizes the recent advances in the development of efficient and stable Si photoelectrodes for solar water splitting. The definition and representation of efficiency and stability for Si photoelectrodes are firstly introduced. We then present several basic strategies for designing highly efficient and stable Si photoelectrodes, including surface textures, protective layer, catalyst loading and the integration of the system. Finally, we highlight the progress that has been made in Si photocathodes and Si photoanodes, respectively, with emphasis on how to integrate Si with protective layer and catalyst.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photoelectrochemical hydrogen production efficiency of MoS2-Si heterojunction

Abeer Alarawi, Vinoth Ramalingam, Hui-Chun Fu, Purushothaman Varadhan, Rusen Yang, and Jr-Hau He
Opt. Express 27(8) A352-A363 (2019)

Gallium Phosphide photoanode coated with TiO2 and CoOx for stable photoelectrochemical water oxidation

M. Alqahtani, S. Ben-Jabar, M. Ebaid, S. Sathasivam, P. Jurczak, X. Xia, A. Alromaeh, C. Blackman, Y. Qin, B. Zhang, B. S. Ooi, H. Liu, I. P. Parkin, and J. Wu
Opt. Express 27(8) A364-A371 (2019)

Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting

Mostafa Afifi Hassan, Muhammad Ali Johar, Aadil Waseem, Indrajit V. Bagal, Jun-Seok Ha, and Sang-Wan Ryu
Opt. Express 27(4) A184-A196 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
    [Crossref] [PubMed]
  2. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
    [Crossref] [PubMed]
  3. S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
    [Crossref]
  4. A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
    [Crossref] [PubMed]
  5. S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
    [Crossref]
  6. M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci. 9(7), 2354–2371 (2016).
    [Crossref]
  7. K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
    [Crossref]
  8. J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
    [Crossref]
  9. J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
    [Crossref] [PubMed]
  10. J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
    [Crossref]
  11. R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
    [Crossref]
  12. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
    [Crossref]
  13. T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
    [Crossref]
  14. D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
    [Crossref] [PubMed]
  15. F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
    [Crossref]
  16. N. Guijarro, M. S. Prévot, and K. Sivula, “Surface modification of semiconductor photoelectrodes,” Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015).
    [Crossref] [PubMed]
  17. A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
    [Crossref]
  18. T. Wang and J. Gong, “Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting,” Angew. Chem. Int. Ed. Engl. 54(37), 10718–10732 (2015).
    [Crossref] [PubMed]
  19. J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, “Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting,” Energy Environ. Sci. 4(5), 1690–1694 (2011).
    [Crossref]
  20. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
    [Crossref] [PubMed]
  21. M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
    [Crossref] [PubMed]
  22. K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
    [Crossref] [PubMed]
  23. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
    [Crossref]
  24. H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
    [Crossref] [PubMed]
  25. R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
    [Crossref]
  26. G. Hodes, “Photoelectrochemical Cell Measurements: Getting the Basics Right,” J. Phys. Chem. Lett. 3(9), 1208–1213 (2012).
    [Crossref] [PubMed]
  27. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
    [Crossref] [PubMed]
  28. H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
    [Crossref] [PubMed]
  29. H. Gerischer, “On the stability of semiconductor electrodes against photodecomposition,” J. Electroanal. Chem. Interfacial Electrochem. 82(1-2), 133–143 (1977).
    [Crossref]
  30. S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
    [Crossref]
  31. B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
    [Crossref] [PubMed]
  32. S. Chen and L.-W. Wang, “Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution,” Chem. Mater. 24(18), 3659–3666 (2012).
    [Crossref]
  33. D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
    [Crossref]
  34. B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
    [Crossref]
  35. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  36. D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
    [Crossref]
  37. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [Crossref] [PubMed]
  38. I. Oh, J. Kye, and S. Hwang, “Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode,” Nano Lett. 12(1), 298–302 (2012).
    [Crossref] [PubMed]
  39. P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
    [Crossref] [PubMed]
  40. J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
    [Crossref]
  41. R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
    [Crossref]
  42. C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
    [Crossref] [PubMed]
  43. Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
    [Crossref] [PubMed]
  44. Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
    [Crossref] [PubMed]
  45. X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
    [Crossref]
  46. R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
    [Crossref]
  47. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
    [Crossref]
  48. J. Zhu and Y. Cui, “Photovoltaics: More solar cells for less,” Nat. Mater. 9(3), 183–184 (2010).
    [Crossref] [PubMed]
  49. S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
    [Crossref] [PubMed]
  50. J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
    [Crossref]
  51. G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
    [Crossref] [PubMed]
  52. M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
    [Crossref]
  53. D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
    [Crossref] [PubMed]
  54. M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
    [Crossref]
  55. Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
    [Crossref]
  56. J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
    [Crossref]
  57. F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
    [Crossref]
  58. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
    [Crossref]
  59. J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
    [Crossref]
  60. Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
    [Crossref] [PubMed]
  61. G. A. Shreve and N. S. Lewis, “An Analytical Description of the Consequences of Abandoning the Principles of Detailed Balance and Microscopic Reversibility in Semiconductor Photoelectrochemistry,” J. Electrochem. Soc. 142(1), 112–119 (1995).
    [Crossref]
  62. S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
    [Crossref]
  63. M. S. Wrighton, “Thermodynamics and kinetics associated with semiconductor-based photoelectrochemical cells for the conversion of light to chemical energy,” in Pure Appl. Chem. (1985), p. 57.
  64. I. Roger, M. A. Shipman, and M. D. Symes, “Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting,” Nat. Rev. Chem. 1, 3 (2017).
  65. V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
    [Crossref] [PubMed]
  66. F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
    [Crossref]
  67. S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
    [Crossref] [PubMed]
  68. J. R. McKone, N. S. Lewis, and H. B. Gray, “Will Solar-Driven Water-Splitting Devices See the Light of Day?” Chem. Mater. 26(1), 407–414 (2014).
    [Crossref]
  69. M. Zeng and Y. Li, “Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 3(29), 14942–14962 (2015).
    [Crossref]
  70. Y. Hou, X. Zhuang, and X. Feng, “Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting,” Small Methods 1(6), 1700090 (2017).
    [Crossref]
  71. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
    [Crossref] [PubMed]
  72. T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
    [Crossref] [PubMed]
  73. J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11(11), 963–969 (2012).
    [Crossref] [PubMed]
  74. X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
    [Crossref]
  75. F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
    [Crossref]
  76. J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
    [Crossref]
  77. J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
    [Crossref] [PubMed]
  78. L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
    [Crossref]
  79. M. R. Shaner, J. R. McKone, H. B. Gray, and N. S. Lewis, “Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution,” Energy Environ. Sci. 8(10), 2977–2984 (2015).
    [Crossref]
  80. Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
    [Crossref]
  81. A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
    [Crossref] [PubMed]
  82. J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
    [Crossref]
  83. Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
    [Crossref] [PubMed]
  84. N. Koshida, M. Nagasu, T. Sakusabe, and Y. Kiuchi, “The Current‐Voltage Characteristics of a Photoelectrochemical Cell Using p‐Type Porous Si,” J. Electrochem. Soc. 132(2), 346–349 (1985).
    [Crossref]
  85. J. Y. Jung, J. Y. Yu, and J. H. Lee, “Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO x/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V,” ACS Appl. Mater. Interfaces 10(9), 7955–7962 (2018).
    [Crossref] [PubMed]
  86. Y. Nakato and H. Tsubomura, “Silicon photoelectrodes modified with ultrafine metal islands,” Electrochim. Acta 37(5), 897–907 (1992).
    [Crossref]
  87. D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
    [Crossref]
  88. C. Xiang, K. M. Papadantonakis, and N. S. Lewis, “Principles and implementations of electrolysis systems for water splitting,” Mater. Horiz. 3(3), 169–173 (2016).
    [Crossref]
  89. E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
    [Crossref]
  90. R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
    [Crossref] [PubMed]
  91. B. E. Conway and M. Salomon, “Electrochemical reaction orders: Applications to the hydrogen- and oxygen-evolution reactions,” Electrochim. Acta 9(12), 1599–1615 (1964).
    [Crossref]
  92. Z. Yin, R. Fan, G. Huang, and M. Shen, “11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact,” Chem. Commun. (Camb.) 54(5), 543–546 (2018).
    [Crossref] [PubMed]
  93. M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
    [Crossref] [PubMed]
  94. R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
    [Crossref]
  95. S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
    [Crossref] [PubMed]
  96. W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, “Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions,” ACS Energy Lett. 3(5), 1086–1092 (2018).
    [Crossref] [PubMed]
  97. R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
    [Crossref]
  98. C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
    [Crossref] [PubMed]
  99. Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
    [Crossref] [PubMed]
  100. B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
    [Crossref] [PubMed]
  101. L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
    [Crossref] [PubMed]
  102. M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
    [Crossref] [PubMed]
  103. R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
    [Crossref]
  104. G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
    [Crossref]
  105. R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
    [Crossref] [PubMed]
  106. E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
    [Crossref]
  107. C. U. Maier, M. Specht, and G. Bilger, “Hydrogen evolution on platinum-coated p-silicon photocathodes,” Int. J. Hydrogen Energy 21(10), 859–864 (1996).
    [Crossref]
  108. C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
    [Crossref] [PubMed]
  109. F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
    [Crossref] [PubMed]
  110. Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
    [Crossref] [PubMed]
  111. D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
    [Crossref]
  112. H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
    [Crossref]
  113. J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
    [Crossref]
  114. B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
    [Crossref] [PubMed]
  115. W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
    [Crossref]
  116. V. C. Wang, “Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems,” Phys. Chem. Chem. Phys. 18(32), 22364–22372 (2016).
    [Crossref] [PubMed]
  117. B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
    [Crossref] [PubMed]
  118. X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
    [Crossref]
  119. S. Oh, H. Song, and J. Oh, “An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting,” Nano Lett. 17(9), 5416–5422 (2017).
    [Crossref] [PubMed]
  120. X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
    [Crossref]
  121. K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
    [Crossref] [PubMed]
  122. S. Yoon, J.-H. Lim, and B. Yoo, “Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation,” Electrochim. Acta 237, 37–43 (2017).
    [Crossref]
  123. L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
    [Crossref] [PubMed]
  124. X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
    [Crossref]
  125. I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
    [Crossref] [PubMed]
  126. J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
    [Crossref] [PubMed]
  127. L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
    [Crossref]
  128. T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
    [Crossref] [PubMed]
  129. J. C. Hill, A. T. Landers, and J. A. Switzer, “An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation,” Nat. Mater. 14(11), 1150–1155 (2015).
    [Crossref] [PubMed]
  130. G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
    [Crossref] [PubMed]
  131. S. Oh and J. Oh, “High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
    [Crossref]
  132. J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
    [Crossref] [PubMed]
  133. K. Jun, Y. S. Lee, T. Buonassisi, and J. M. Jacobson, “High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation,” Angew. Chem. Int. Ed. Engl. 51(2), 423–427 (2012).
    [Crossref] [PubMed]
  134. Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
    [Crossref]
  135. Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
    [Crossref]
  136. C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
    [Crossref]
  137. M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2,” Energy Environ. Sci. 8(1), 203–207 (2015).
    [Crossref]
  138. N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
    [Crossref]
  139. K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
    [Crossref]
  140. A. Q. Contractor and J. O. M. Bockris, “Investigation of a protective conducting silica film on n-silicon,” Electrochim. Acta 29(10), 1427–1434 (1984).
    [Crossref]
  141. B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
    [Crossref] [PubMed]
  142. J. M. Spurgeon, J. M. Velazquez, and M. T. McDowell, “Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte,” Phys. Chem. Chem. Phys. 16(8), 3623–3631 (2014).
    [Crossref] [PubMed]
  143. B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
    [Crossref] [PubMed]
  144. P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, “Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting,” Adv. Energy Mater. 7(22), 1701515 (2017).
    [Crossref]
  145. S. Fan, I. Shih, and Z. Mi, “A Monolithically Integrated InGaN Nanowire/Si Tandem Photoanode Approaching the Ideal Bandgap Configuration of 1.75/1.13 eV,” Adv. Energy Mater. 7(2), 1600952 (2017).
    [Crossref]

2018 (17)

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
[Crossref]

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

J. Y. Jung, J. Y. Yu, and J. H. Lee, “Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO x/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V,” ACS Appl. Mater. Interfaces 10(9), 7955–7962 (2018).
[Crossref] [PubMed]

Z. Yin, R. Fan, G. Huang, and M. Shen, “11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact,” Chem. Commun. (Camb.) 54(5), 543–546 (2018).
[Crossref] [PubMed]

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, “Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions,” ACS Energy Lett. 3(5), 1086–1092 (2018).
[Crossref] [PubMed]

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
[Crossref]

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

2017 (23)

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
[Crossref]

P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, “Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting,” Adv. Energy Mater. 7(22), 1701515 (2017).
[Crossref]

S. Fan, I. Shih, and Z. Mi, “A Monolithically Integrated InGaN Nanowire/Si Tandem Photoanode Approaching the Ideal Bandgap Configuration of 1.75/1.13 eV,” Adv. Energy Mater. 7(2), 1600952 (2017).
[Crossref]

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
[Crossref]

S. Oh, H. Song, and J. Oh, “An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
[Crossref]

S. Yoon, J.-H. Lim, and B. Yoo, “Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation,” Electrochim. Acta 237, 37–43 (2017).
[Crossref]

I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
[Crossref] [PubMed]

L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
[Crossref]

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

I. Roger, M. A. Shipman, and M. D. Symes, “Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting,” Nat. Rev. Chem. 1, 3 (2017).

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Y. Hou, X. Zhuang, and X. Feng, “Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting,” Small Methods 1(6), 1700090 (2017).
[Crossref]

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

2016 (19)

M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci. 9(7), 2354–2371 (2016).
[Crossref]

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

C. Xiang, K. M. Papadantonakis, and N. S. Lewis, “Principles and implementations of electrolysis systems for water splitting,” Mater. Horiz. 3(3), 169–173 (2016).
[Crossref]

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

S. Oh and J. Oh, “High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

V. C. Wang, “Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems,” Phys. Chem. Chem. Phys. 18(32), 22364–22372 (2016).
[Crossref] [PubMed]

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

2015 (23)

M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2,” Energy Environ. Sci. 8(1), 203–207 (2015).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

J. C. Hill, A. T. Landers, and J. A. Switzer, “An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation,” Nat. Mater. 14(11), 1150–1155 (2015).
[Crossref] [PubMed]

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

M. R. Shaner, J. R. McKone, H. B. Gray, and N. S. Lewis, “Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution,” Energy Environ. Sci. 8(10), 2977–2984 (2015).
[Crossref]

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

M. Zeng and Y. Li, “Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 3(29), 14942–14962 (2015).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

N. Guijarro, M. S. Prévot, and K. Sivula, “Surface modification of semiconductor photoelectrodes,” Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015).
[Crossref] [PubMed]

A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
[Crossref]

T. Wang and J. Gong, “Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting,” Angew. Chem. Int. Ed. Engl. 54(37), 10718–10732 (2015).
[Crossref] [PubMed]

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

2014 (16)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
[Crossref] [PubMed]

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will Solar-Driven Water-Splitting Devices See the Light of Day?” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
[Crossref] [PubMed]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

J. M. Spurgeon, J. M. Velazquez, and M. T. McDowell, “Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte,” Phys. Chem. Chem. Phys. 16(8), 3623–3631 (2014).
[Crossref] [PubMed]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

2013 (5)

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
[Crossref]

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

2012 (12)

G. Hodes, “Photoelectrochemical Cell Measurements: Getting the Basics Right,” J. Phys. Chem. Lett. 3(9), 1208–1213 (2012).
[Crossref] [PubMed]

I. Oh, J. Kye, and S. Hwang, “Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode,” Nano Lett. 12(1), 298–302 (2012).
[Crossref] [PubMed]

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

S. Chen and L.-W. Wang, “Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution,” Chem. Mater. 24(18), 3659–3666 (2012).
[Crossref]

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11(11), 963–969 (2012).
[Crossref] [PubMed]

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

K. Jun, Y. S. Lee, T. Buonassisi, and J. M. Jacobson, “High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation,” Angew. Chem. Int. Ed. Engl. 51(2), 423–427 (2012).
[Crossref] [PubMed]

2011 (8)

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, “Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting,” Energy Environ. Sci. 4(5), 1690–1694 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

2010 (5)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

J. Zhu and Y. Cui, “Photovoltaics: More solar cells for less,” Nat. Mater. 9(3), 183–184 (2010).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2009 (1)

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

2007 (1)

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

2006 (1)

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

2005 (1)

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

2002 (1)

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

2001 (1)

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

2000 (1)

S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
[Crossref]

1996 (1)

C. U. Maier, M. Specht, and G. Bilger, “Hydrogen evolution on platinum-coated p-silicon photocathodes,” Int. J. Hydrogen Energy 21(10), 859–864 (1996).
[Crossref]

1995 (1)

G. A. Shreve and N. S. Lewis, “An Analytical Description of the Consequences of Abandoning the Principles of Detailed Balance and Microscopic Reversibility in Semiconductor Photoelectrochemistry,” J. Electrochem. Soc. 142(1), 112–119 (1995).
[Crossref]

1992 (1)

Y. Nakato and H. Tsubomura, “Silicon photoelectrodes modified with ultrafine metal islands,” Electrochim. Acta 37(5), 897–907 (1992).
[Crossref]

1985 (1)

N. Koshida, M. Nagasu, T. Sakusabe, and Y. Kiuchi, “The Current‐Voltage Characteristics of a Photoelectrochemical Cell Using p‐Type Porous Si,” J. Electrochem. Soc. 132(2), 346–349 (1985).
[Crossref]

1984 (1)

A. Q. Contractor and J. O. M. Bockris, “Investigation of a protective conducting silica film on n-silicon,” Electrochim. Acta 29(10), 1427–1434 (1984).
[Crossref]

1982 (1)

R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
[Crossref]

1977 (1)

H. Gerischer, “On the stability of semiconductor electrodes against photodecomposition,” J. Electroanal. Chem. Interfacial Electrochem. 82(1-2), 133–143 (1977).
[Crossref]

1972 (1)

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

1964 (1)

B. E. Conway and M. Salomon, “Electrochemical reaction orders: Applications to the hydrogen- and oxygen-evolution reactions,” Electrochim. Acta 9(12), 1599–1615 (1964).
[Crossref]

Abdi, F. F.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
[Crossref]

Adhyaksa, G. W. P.

I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
[Crossref] [PubMed]

Ager, J. W.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Ajayan, P. M.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Alarcon Llado, E.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

An, X.

T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
[Crossref]

Andoshe, D. M.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Andreu, T.

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

Anzenberg, E.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Ao, X.

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Arbiol, J.

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

Arca, E.

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

Ardo, S.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Arrigo, R.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Artero, V.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Aruda, K.

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

Atwater, H. A.

M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci. 9(7), 2354–2371 (2016).
[Crossref]

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Ayers, K.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Babenko, S. D.

S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
[Crossref]

Bae, D.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

Bailat, J.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Bak, T.

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Balakai, A. A.

S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
[Crossref]

Ballif, C.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Bang, J. H.

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

Barber, J.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Bard, A. J.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Basu, M.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Batabyal, S. K.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Batool, A.

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

Battaglia, C.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Beardslee, J. A.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Becker, J.-P.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Bederak, D.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Beeman, J.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Beeman, J. W.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Bell, A. T.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Benck, J. D.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

Berenschot, E.

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

Berger, A.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Bierman, M. J.

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

Bilger, G.

C. U. Maier, M. Specht, and G. Bilger, “Hydrogen evolution on platinum-coated p-silicon photocathodes,” Int. J. Hydrogen Energy 21(10), 859–864 (1996).
[Crossref]

Blankenship, R. E.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Bockris, J. O. M.

A. Q. Contractor and J. O. M. Bockris, “Investigation of a protective conducting silica film on n-silicon,” Electrochim. Acta 29(10), 1427–1434 (1984).
[Crossref]

Boddula, R.

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

Boettcher, S. W.

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Bonde, J.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Bookbinder, D. C.

R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
[Crossref]

Botton, G. A.

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Branz, H. M.

J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, “Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting,” Energy Environ. Sci. 4(5), 1690–1694 (2011).
[Crossref]

Bruce, J. A.

R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
[Crossref]

Brudvig, G. W.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Brunschwig, B. S.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

Buda, F.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Bullock, J.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Buonassisi, T.

K. Jun, Y. S. Lee, T. Buonassisi, and J. M. Jacobson, “High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation,” Angew. Chem. Int. Ed. Engl. 51(2), 423–427 (2012).
[Crossref] [PubMed]

Burrows, P. E.

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

Cabán-Acevedo, M.

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Cai, L.

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Cai, Q.

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
[Crossref]

Cao, F.

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

Cao, J.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Cardiel, A. C.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Carim, A. I.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

Cha, H. G.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Chai, Y.-M.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Chakthranont, P.

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, “Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting,” Adv. Energy Mater. 7(22), 1701515 (2017).
[Crossref]

Chang, H. C.

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Chang, K.-C.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Chen, C. J.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Chen, F.

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

Chen, H.

L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
[Crossref]

Chen, J. Q.

T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
[Crossref]

Chen, L.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Chen, M.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

Chen, R.

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Chen, S.

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
[Crossref]

S. Chen and L.-W. Wang, “Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution,” Chem. Mater. 24(18), 3659–3666 (2012).
[Crossref]

Chen, X.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Chen, Y. W.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Chen, Z.

J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11(11), 963–969 (2012).
[Crossref] [PubMed]

Cheng, S.

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

Chi, J.-Q.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Chiam, S. Y.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Chidsey, C. E.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Chinello, E.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Cho, I. S.

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Choi, K. S.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Choi, M. J.

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

Choi, S.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Chorkendorff, I.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Chu, D.

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

Chu, H.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Chu, S.

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Comstock, D. J.

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

Contractor, A. Q.

A. Q. Contractor and J. O. M. Bockris, “Investigation of a protective conducting silica film on n-silicon,” Electrochim. Acta 29(10), 1427–1434 (1984).
[Crossref]

Conway, B. E.

B. E. Conway and M. Salomon, “Electrochemical reaction orders: Applications to the hydrogen- and oxygen-evolution reactions,” Electrochim. Acta 9(12), 1599–1615 (1964).
[Crossref]

Cooper, J. K.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Craig, S.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Crumlin, E. J.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

Cuevas, A.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Cui, W.

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

Cui, Y.

J. Zhu and Y. Cui, “Photovoltaics: More solar cells for less,” Nat. Mater. 9(3), 183–184 (2010).
[Crossref] [PubMed]

Dahl, S.

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Dai, H.

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

Dai, S.

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

Dam, B.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
[Crossref]

Daniel, A. S.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Davis, H. P.

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Delaunay, J.-J.

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

Delfino, A.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Demkov, A. A.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Deng, Y.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Despeisse, M.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Deutsch, T. G.

J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, “Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting,” Energy Environ. Sci. 4(5), 1690–1694 (2011).
[Crossref]

Di Palma, V.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Digdaya, I. A.

I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
[Crossref] [PubMed]

Ding, Q.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Dominé, D.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Dominey, R. N.

R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
[Crossref]

Dong, B.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Dong, C. L.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Dong, P.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Dong, W.

R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
[Crossref]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

Doshi, P.

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Dotan, H.

H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
[Crossref] [PubMed]

Dühnen, S.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Ebong, A.

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Edvinsson, T.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Ekerdt, J. G.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Elam, J.

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

English, C. R.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Enman, L. J.

M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
[Crossref] [PubMed]

Faes, A.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Fan, F.

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Fan, R.

Z. Yin, R. Fan, G. Huang, and M. Shen, “11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact,” Chem. Commun. (Camb.) 54(5), 543–546 (2018).
[Crossref] [PubMed]

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
[Crossref]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
[Crossref]

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

Fan, S.

S. Fan, I. Shih, and Z. Mi, “A Monolithically Integrated InGaN Nanowire/Si Tandem Photoanode Approaching the Ideal Bandgap Configuration of 1.75/1.13 eV,” Adv. Energy Mater. 7(2), 1600952 (2017).
[Crossref]

Fang, D.

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

Fang, L.

R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
[Crossref]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

Fang, Y.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Favaro, M.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Feng, J.

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

Feng, X.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

Y. Hou, X. Zhuang, and X. Feng, “Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting,” Small Methods 1(6), 1700090 (2017).
[Crossref]

Fernandez Rivas, D.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Fiechter, S.

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

Fleming, G.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Fong, K. D.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

Francis, S. A.

A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
[Crossref]

Frei, H.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Friedrich, D.

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

Frydendal, R.

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

Fujii, K.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Fujishima, A.

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Ganesh, V. A.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Gao, L.

L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
[Crossref]

Gao, W.-K.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Garcia, R. A.

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Gardeniers, H.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, “Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions,” ACS Energy Lett. 3(5), 1086–1092 (2018).
[Crossref] [PubMed]

Garnett, E. C.

I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
[Crossref] [PubMed]

Ge, Y.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Geerlings, H.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Gerischer, H.

H. Gerischer, “On the stability of semiconductor electrodes against photodecomposition,” J. Electroanal. Chem. Interfacial Electrochem. 82(1-2), 133–143 (1977).
[Crossref]

Ghamari, P.

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

Ghirardi, M.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Gimbert-Suriñach, C.

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

Gong, J.

T. Wang and J. Gong, “Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting,” Angew. Chem. Int. Ed. Engl. 54(37), 10718–10732 (2015).
[Crossref] [PubMed]

Gong, J. R.

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

Gong, M.

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

Gordon, A. M.

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

Grätzel, M.

H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
[Crossref] [PubMed]

Gray, H. B.

M. R. Shaner, J. R. McKone, H. B. Gray, and N. S. Lewis, “Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution,” Energy Environ. Sci. 8(10), 2977–2984 (2015).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will Solar-Driven Water-Splitting Devices See the Light of Day?” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
[Crossref]

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

Greenblatt, J. B.

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Grimm, R. L.

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

Gu, Z.

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Guijarro, N.

N. Guijarro, M. S. Prévot, and K. Sivula, “Surface modification of semiconductor photoelectrodes,” Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015).
[Crossref] [PubMed]

Gul, S.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Gunji, M.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Gunner, M. R.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Guo, B.

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

Guo, H.

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

Gurnon, N. J.

M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
[Crossref] [PubMed]

Hahn, C.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Hamann, T.

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Hamers, R. J.

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Han, H.

T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
[Crossref]

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

Han, H. S.

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Han, J.

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Han, T.

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

Hansen, O.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Hashemi, S. M. H.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Haussener, S.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Hävecker, M.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Hayase, S.

L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
[Crossref]

He, D.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

He, J.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

He, J. H.

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

He, P.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

He, S.

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Heil, S. B. S.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Hellstern, T. R.

P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, “Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting,” Adv. Energy Mater. 7(22), 1701515 (2017).
[Crossref]

Hernández-Alonso, M. D.

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

Hernández-Pagán, E. A.

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

Hess, L. H.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Hettick, M.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Hill, J. C.

J. C. Hill, A. T. Landers, and J. A. Switzer, “An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation,” Nat. Mater. 14(11), 1150–1155 (2015).
[Crossref] [PubMed]

Hinnemann, B.

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Hisatomi, T.

H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
[Crossref] [PubMed]

Hodes, G.

G. Hodes, “Photoelectrochemical Cell Measurements: Getting the Basics Right,” J. Phys. Chem. Lett. 3(9), 1208–1213 (2012).
[Crossref] [PubMed]

Hoex, B.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Honda, K.

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Hong, W.

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
[Crossref]

Horch, S.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Hou, Y.

Y. Hou, X. Zhuang, and X. Feng, “Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting,” Small Methods 1(6), 1700090 (2017).
[Crossref]

Houle, F.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Houle, F. A.

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

Hu, S.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2,” Energy Environ. Sci. 8(1), 203–207 (2015).
[Crossref]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Hu, S. F.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Huang, G.

Z. Yin, R. Fan, G. Huang, and M. Shen, “11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact,” Chem. Commun. (Camb.) 54(5), 543–546 (2018).
[Crossref] [PubMed]

R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
[Crossref]

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

Huang, H.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Huang, J.

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

Huang, M. Y.

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Huskens, J.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, “Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions,” ACS Energy Lett. 3(5), 1086–1092 (2018).
[Crossref] [PubMed]

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

Hwang, S.

I. Oh, J. Kye, and S. Hwang, “Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode,” Nano Lett. 12(1), 298–302 (2012).
[Crossref] [PubMed]

Hwang, Y. J.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Jacobson, J. M.

K. Jun, Y. S. Lee, T. Buonassisi, and J. M. Jacobson, “High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation,” Angew. Chem. Int. Ed. Engl. 51(2), 423–427 (2012).
[Crossref] [PubMed]

Jagadish, C.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

James, B. D.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Jan, S. U.

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

Jang, H. W.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Jaramillo, T. F.

P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, “Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting,” Adv. Energy Mater. 7(22), 1701515 (2017).
[Crossref]

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11(11), 963–969 (2012).
[Crossref] [PubMed]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

Javey, A.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Jee, S.-W.

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

Jeon, J.-M.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Jeong, H. E.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Ji, L.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Jian, C.

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
[Crossref]

Jie, J.

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Jin, S.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Jing, Y.

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Jones, T. E.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Jørgensen, K. P.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Jun, K.

K. Jun, Y. S. Lee, T. Buonassisi, and J. M. Jacobson, “High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation,” Angew. Chem. Int. Ed. Engl. 51(2), 423–427 (2012).
[Crossref] [PubMed]

Jung, J. Y.

J. Y. Jung, J. Y. Yu, and J. H. Lee, “Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO x/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V,” ACS Appl. Mater. Interfaces 10(9), 7955–7962 (2018).
[Crossref] [PubMed]

Jung, J.-Y.

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

Junge, W.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Kale, V. S.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Kang, D.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Kang, Z.

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

Kargar, A.

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Karuturi, S. K.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Kast, M. G.

M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
[Crossref] [PubMed]

Kelzenberg, M. D.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Kenney, M. J.

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

Kessels, W. M. M.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Kibsgaard, J.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11(11), 963–969 (2012).
[Crossref] [PubMed]

Kim, D. H.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Kim, J. K.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Kim, M.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Kim, T.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Kim, T. W.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Kim, Y.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Kisielowski, C.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Kiuchi, Y.

N. Koshida, M. Nagasu, T. Sakusabe, and Y. Kiuchi, “The Current‐Voltage Characteristics of a Photoelectrochemical Cell Using p‐Type Porous Si,” J. Electrochem. Soc. 132(2), 346–349 (1985).
[Crossref]

Klaus, S.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Knez, M.

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Knop-Gericke, A.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Kong, X.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

Konrad, K.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Koshida, N.

N. Koshida, M. Nagasu, T. Sakusabe, and Y. Kiuchi, “The Current‐Voltage Characteristics of a Photoelectrochemical Cell Using p‐Type Porous Si,” J. Electrochem. Soc. 132(2), 346–349 (1985).
[Crossref]

Kramer, D. M.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Kubota, S. R.

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

Kudo, A.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

Kunturu, P. P.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Kuznetsov, A.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

Kye, J.

I. Oh, J. Kye, and S. Hwang, “Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode,” Nano Lett. 12(1), 298–302 (2012).
[Crossref] [PubMed]

Lambelet, D.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Landers, A. T.

J. C. Hill, A. T. Landers, and J. A. Switzer, “An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation,” Nat. Mater. 14(11), 1150–1155 (2015).
[Crossref] [PubMed]

Langereis, E.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Lanza, M.

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

Laskowski, F. A. L.

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

Laursen, A. B.

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Lavrushko, A. G.

S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
[Crossref]

Lee, J. C.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Lee, J. H.

J. Y. Jung, J. Y. Yu, and J. H. Lee, “Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO x/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V,” ACS Appl. Mater. Interfaces 10(9), 7955–7962 (2018).
[Crossref] [PubMed]

Lee, J.-H.

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

Lee, L. J.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Lee, M. G.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Lee, S. C.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

Lee, S. H.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Lee, S. Y.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Lee, Y. S.

K. Jun, Y. S. Lee, T. Buonassisi, and J. M. Jacobson, “High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation,” Angew. Chem. Int. Ed. Engl. 51(2), 423–427 (2012).
[Crossref] [PubMed]

Lei, L.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Levine, A.

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

Lewis, N. S.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci. 9(7), 2354–2371 (2016).
[Crossref]

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

C. Xiang, K. M. Papadantonakis, and N. S. Lewis, “Principles and implementations of electrolysis systems for water splitting,” Mater. Horiz. 3(3), 169–173 (2016).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2,” Energy Environ. Sci. 8(1), 203–207 (2015).
[Crossref]

A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
[Crossref]

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

M. R. Shaner, J. R. McKone, H. B. Gray, and N. S. Lewis, “Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution,” Energy Environ. Sci. 8(10), 2977–2984 (2015).
[Crossref]

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will Solar-Driven Water-Splitting Devices See the Light of Day?” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
[Crossref]

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

G. A. Shreve and N. S. Lewis, “An Analytical Description of the Consequences of Abandoning the Principles of Detailed Balance and Microscopic Reversibility in Semiconductor Photoelectrochemistry,” J. Electrochem. Soc. 142(1), 112–119 (1995).
[Crossref]

R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
[Crossref]

Li, B.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

Li, C.

T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
[Crossref]

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Li, H.

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Li, J.

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
[Crossref]

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Li, L.

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Li, P.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Li, Q.

L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
[Crossref]

Li, T.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

Li, W.

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Li, X.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

Li, Y.

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

M. Zeng and Y. Li, “Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 3(29), 14942–14962 (2015).
[Crossref]

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

Li, Z.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Liang, D.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liang, J.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Liang, Y.

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

Liao, Z.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

Lichterman, M.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Lichterman, M. F.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

Lim, J.-H.

S. Yoon, J.-H. Lim, and B. Yoo, “Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation,” Electrochim. Acta 237, 37–43 (2017).
[Crossref]

Lin, Y.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Liu, B.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Liu, C.-G.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Liu, H.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Liu, K.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Liu, M.

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Liu, P.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

Liu, R.

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

Liu, R. S.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Liu, S.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

Liu, W.

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
[Crossref]

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Liu, Y.-R.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Llobet, A.

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

Lohse, D.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Loo, J.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Low, J.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Lu, S.-S.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Lu, T. H.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Lu, Y. R.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Lum, Y.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Luo, J.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

Ma, D.

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Ma, J.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Ma, M.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Ma, T.

L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
[Crossref]

Maier, C. U.

C. U. Maier, M. Specht, and G. Bilger, “Hydrogen evolution on platinum-coated p-silicon photocathodes,” Int. J. Hydrogen Energy 21(10), 859–864 (1996).
[Crossref]

Maiolo, J. R.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Malacrida, P.

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

Malizia, M.

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

Mallouk, T. E.

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

Mao, J.

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Mao, S. S.

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

Markovic, N. M.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Mathews, N.

H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
[Crossref] [PubMed]

May, M. M.

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
[Crossref]

McDaniel, M. D.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

McDowell, M. T.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

J. M. Spurgeon, J. M. Velazquez, and M. T. McDowell, “Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte,” Phys. Chem. Chem. Phys. 16(8), 3623–3631 (2014).
[Crossref] [PubMed]

McEnaney, J. M.

P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, “Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting,” Adv. Energy Mater. 7(22), 1701515 (2017).
[Crossref]

McFarland, E. W.

M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci. 9(7), 2354–2371 (2016).
[Crossref]

McIntyre, P. C.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

McKone, J. R.

M. R. Shaner, J. R. McKone, H. B. Gray, and N. S. Lewis, “Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution,” Energy Environ. Sci. 8(10), 2977–2984 (2015).
[Crossref]

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will Solar-Driven Water-Splitting Devices See the Light of Day?” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
[Crossref]

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mei, B.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

Meier, D. L.

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Melis, A.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Meng, F.

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Mi, Q.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mi, Z.

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
[Crossref]

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

S. Fan, I. Shih, and Z. Mi, “A Monolithically Integrated InGaN Nanowire/Si Tandem Photoanode Approaching the Ideal Bandgap Configuration of 1.75/1.13 eV,” Adv. Energy Mater. 7(2), 1600952 (2017).
[Crossref]

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Miller, E. L.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Min, J.

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

Miseki, Y.

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

Modestino, M. A.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Mokkapati, S.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Montoya, J. H.

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

Moon, C. W.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Moore, G. F.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Moore, T. A.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Morante, J. R.

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

Morrow, W. R.

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

Moser, C.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Moser, C. C.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Moses, P. G.

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Moskvin, Y. L.

S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
[Crossref]

Muller, J.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Müller, F.

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Murch, G. E.

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

Nadarajah, A.

M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
[Crossref] [PubMed]

Nagasu, M.

N. Koshida, M. Nagasu, T. Sakusabe, and Y. Kiuchi, “The Current‐Voltage Characteristics of a Photoelectrochemical Cell Using p‐Type Porous Si,” J. Electrochem. Soc. 132(2), 346–349 (1985).
[Crossref]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Nakato, Y.

Y. Nakato and H. Tsubomura, “Silicon photoelectrodes modified with ultrafine metal islands,” Electrochim. Acta 37(5), 897–907 (1992).
[Crossref]

Nam, K. T.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Narangari, P. R.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Nellist, M. R.

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

Nguyen, M.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Nichols-Nielander, A. C.

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

Nielander, A. C.

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
[Crossref]

Nielsen, J. H.

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Nocera, D. G.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Noh, S. Y.

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Nørskov, J. K.

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

Nowotny, J.

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Nozik, A. J.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Oener, S. Z.

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

Oh, I.

I. Oh, J. Kye, and S. Hwang, “Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode,” Nano Lett. 12(1), 298–302 (2012).
[Crossref] [PubMed]

Oh, J.

S. Oh, H. Song, and J. Oh, “An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

S. Oh and J. Oh, “High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, “Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting,” Energy Environ. Sci. 4(5), 1690–1694 (2011).
[Crossref]

Oh, S.

S. Oh, H. Song, and J. Oh, “An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

S. Oh and J. Oh, “High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

Ólafsson, S.

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

Omelchenko, S. T.

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

Orchard, K. L.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Ort, D. R.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Pang, X.

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Pant, N.

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

Papadantonakis, K. M.

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

C. Xiang, K. M. Papadantonakis, and N. S. Lewis, “Principles and implementations of electrolysis systems for water splitting,” Mater. Horiz. 3(3), 169–173 (2016).
[Crossref]

A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
[Crossref]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

Park, H. K.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Park, J.

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Park, J. H.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Park, K.-T.

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

Park, M.-J.

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

Park, N.

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Park, Y.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Parson, W. W.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Paulikas, A. P.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Pedersen, T.

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Pei, L.

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Pei, Y.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Penelas-Pérez, G.

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

Peng, J.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Permyakova, A. A.

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

Pfeifer, V.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Piccinin, S.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Popczun, E. J.

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

Posadas, A. B.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Pramana, S. S.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Prange, J. D.

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

Prévot, M. S.

N. Guijarro, M. S. Prévot, and K. Sivula, “Surface modification of semiconductor photoelectrodes,” Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015).
[Crossref] [PubMed]

Prince, R. C.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Psaltis, D.

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Putnam, M. C.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Qin, W.

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Qiu, J.

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

Ramakrishna, S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

Read, C. G.

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

Reinecke, B. N.

J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11(11), 963–969 (2012).
[Crossref] [PubMed]

Rekas, M.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Richter, M. H.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

Roger, I.

I. Roger, M. A. Shipman, and M. D. Symes, “Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting,” Nat. Rev. Chem. 1, 3 (2017).

Rohatgi, A.

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Ros, C.

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

Roske, C. W.

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

Rosser, T. E.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Rothschild, A.

H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
[Crossref] [PubMed]

Saadi, F. H.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

Sadtler, B. F.

J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
[Crossref]

Sakusabe, T.

N. Koshida, M. Nagasu, T. Sakusabe, and Y. Kiuchi, “The Current‐Voltage Characteristics of a Photoelectrochemical Cell Using p‐Type Porous Si,” J. Electrochem. Soc. 132(2), 346–349 (1985).
[Crossref]

Salami, J.

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Salomon, M.

B. E. Conway and M. Salomon, “Electrochemical reaction orders: Applications to the hydrogen- and oxygen-evolution reactions,” Electrochim. Acta 9(12), 1599–1615 (1964).
[Crossref]

Samundsett, C.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Santori, E. A.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Sathre, R.

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

Savenije, T. J.

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
[Crossref]

Sayre, R. T.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Schaak, R. E.

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

Schlögl, R.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Schmidt, J. R.

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Schmidt, V.

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Schulze Greiving, V.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Schüttauf, J.-W.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

Schwartzberg, A.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Scown, C. D.

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

Seger, B.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Seitz, L. C.

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

Shamaev, S. N.

S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
[Crossref]

Shaner, M. R.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci. 9(7), 2354–2371 (2016).
[Crossref]

A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
[Crossref]

M. R. Shaner, J. R. McKone, H. B. Gray, and N. S. Lewis, “Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution,” Energy Environ. Sci. 8(10), 2977–2984 (2015).
[Crossref]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2,” Energy Environ. Sci. 8(1), 203–207 (2015).
[Crossref]

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Shang, X.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Sharp, I. D.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

Shayestehaminzadeh, S.

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

Shearer, M. J.

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

Sheehan, S. W.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Shen, J.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Shen, M.

Z. Yin, R. Fan, G. Huang, and M. Shen, “11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact,” Chem. Commun. (Camb.) 54(5), 543–546 (2018).
[Crossref] [PubMed]

R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
[Crossref]

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
[Crossref]

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

Shen, S.

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Shi, G.

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
[Crossref]

Shi, J.

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

Shi, Z.

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Shifa, T. A.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Shih, I.

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

S. Fan, I. Shih, and Z. Mi, “A Monolithically Integrated InGaN Nanowire/Si Tandem Photoanode Approaching the Ideal Bandgap Configuration of 1.75/1.13 eV,” Adv. Energy Mater. 7(2), 1600952 (2017).
[Crossref]

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Shim, Y.-S.

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Shipman, M. A.

I. Roger, M. A. Shipman, and M. D. Symes, “Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting,” Nat. Rev. Chem. 1, 3 (2017).

Shreve, G. A.

G. A. Shreve and N. S. Lewis, “An Analytical Description of the Consequences of Abandoning the Principles of Detailed Balance and Microscopic Reversibility in Semiconductor Photoelectrochemistry,” J. Electrochem. Soc. 142(1), 112–119 (1995).
[Crossref]

Sik Kim, D.

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Sinclair, R.

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

Sivula, K.

N. Guijarro, M. S. Prévot, and K. Sivula, “Surface modification of semiconductor photoelectrodes,” Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015).
[Crossref] [PubMed]

Smets, A. H. M.

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Smith, W. A.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
[Crossref] [PubMed]

Smotkin, E. S.

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

Song, H.

S. Oh, H. Song, and J. Oh, “An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

Song, J.-W.

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

Song, X.

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

Sorrell, C. C.

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

Specht, M.

C. U. Maier, M. Specht, and G. Bilger, “Hydrogen evolution on platinum-coated p-silicon photocathodes,” Int. J. Hydrogen Energy 21(10), 859–864 (1996).
[Crossref]

Spurgeon, J.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Spurgeon, J. M.

J. M. Spurgeon, J. M. Velazquez, and M. T. McDowell, “Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte,” Phys. Chem. Chem. Phys. 16(8), 3623–3631 (2014).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Stamenkovic, V.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Stephens, I. E.

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

Stevens, J. C.

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

Stone, M. L.

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Strandwitz, N. C.

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

Strmcnik, D.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Su, X.

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

Subbaraman, R.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Sun, K.

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2,” Energy Environ. Sci. 8(1), 203–207 (2015).
[Crossref]

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Sun, L.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

Sun, Z.

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Switzer, J. A.

J. C. Hill, A. T. Landers, and J. A. Switzer, “An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation,” Nat. Mater. 14(11), 1150–1155 (2015).
[Crossref] [PubMed]

Symes, M. D.

I. Roger, M. A. Shipman, and M. D. Symes, “Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting,” Nat. Rev. Chem. 1, 3 (2017).

Tan, H.

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Tan, H. H.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Tang, C.

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

Tang, M. H.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

Tas, N. R.

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

Teeter, G.

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

Thomas, J. G.

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

Thorsteinsson, E. B.

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

Tian, L.

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

Tian, W.

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

Tiede, D. M.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

Tiggelaar, R. M.

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, “Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions,” ACS Energy Lett. 3(5), 1086–1092 (2018).
[Crossref] [PubMed]

Toma, F. M.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Tong, X.

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Tran, P. D.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Tripkovic, D.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Trzesniewski, B. J.

I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
[Crossref] [PubMed]

Tsai, M. L.

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Tsubomura, H.

Y. Nakato and H. Tsubomura, “Silicon photoelectrodes modified with ultrafine metal islands,” Electrochim. Acta 37(5), 897–907 (1992).
[Crossref]

Turner-Evans, D.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

Turner-Evans, D. B.

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Uchimura, M.

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Um, H.-D.

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

van de Krol, R.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
[Crossref]

van de Sanden, M. C. M.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Vanka, S.

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

Vargas-Barbosa, N. M.

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

Veerbeek, J.

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

Velasco Vélez, J. J.

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Velazquez, J. M.

J. M. Spurgeon, J. M. Velazquez, and M. T. McDowell, “Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte,” Phys. Chem. Chem. Phys. 16(8), 3623–3631 (2014).
[Crossref] [PubMed]

Vesborg, P. C.

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

Vesborg, P. C. K.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

Veziroglu, T. N.

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

Vijselaar, W.

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, “Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions,” ACS Energy Lett. 3(5), 1086–1092 (2018).
[Crossref] [PubMed]

Vojvodic, A.

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

Walczak, K.

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Walczak, K. A.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Walter, M. G.

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wan, Y.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Wang, C.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Wang, D.

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

Wang, D. H.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Wang, F.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Wang, H.

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Wang, H. P.

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

Wang, J.

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Wang, L. W.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Wang, L.-W.

S. Chen and L.-W. Wang, “Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution,” Chem. Mater. 24(18), 3659–3666 (2012).
[Crossref]

Wang, M.

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

Wang, N.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Wang, Q.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Wang, S.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Wang, T.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

T. Wang and J. Gong, “Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting,” Angew. Chem. Int. Ed. Engl. 54(37), 10718–10732 (2015).
[Crossref] [PubMed]

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

Wang, V. C.

V. C. Wang, “Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems,” Phys. Chem. Chem. Phys. 18(32), 22364–22372 (2016).
[Crossref] [PubMed]

Wang, W.

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

Wang, X.

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

Wang, Y.

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
[Crossref]

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

Wang, Z.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Warren, E. L.

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

Wei, C.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

Wen, Y.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Werlang, C. A.

J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
[Crossref]

Westerik, P.

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

Wong, L. H.

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

Woods-Robinson, R.

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

Wrighton, M. S.

R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
[Crossref]

Wu, C. H.

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Wu, J. Z.

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

Wu, X.

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

Xiang, C.

C. Xiang, K. M. Papadantonakis, and N. S. Lewis, “Principles and implementations of electrolysis systems for water splitting,” Mater. Horiz. 3(3), 169–173 (2016).
[Crossref]

Xiao, J.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Xiao, Y.

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

Xie, G.

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

Xie, J.

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

Xin, Y.

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

Xu, G.

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Xu, Z.

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Yalamanchili, S.

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

Yan, D.

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

Yan, K.-L.

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

Yan, S.

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Yan, Y.

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Yang, B.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Yang, F.

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

Yang, J.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Yang, K. C.

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

Yang, P.

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
[Crossref]

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

Yano, J.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

Yao, T.

T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
[Crossref]

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

Ye, M.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Yin, Z.

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

Z. Yin, R. Fan, G. Huang, and M. Shen, “11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact,” Chem. Commun. (Camb.) 54(5), 543–546 (2018).
[Crossref] [PubMed]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

Yoo, B.

S. Yoon, J.-H. Lim, and B. Yoo, “Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation,” Electrochim. Acta 237, 37–43 (2017).
[Crossref]

Yoon, S.

S. Yoon, J.-H. Lim, and B. Yoo, “Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation,” Electrochim. Acta 237, 37–43 (2017).
[Crossref]

Yu, E. T.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Yu, J.

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

Yu, J. Y.

J. Y. Jung, J. Y. Yu, and J. H. Lee, “Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO x/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V,” ACS Appl. Mater. Interfaces 10(9), 7955–7962 (2018).
[Crossref] [PubMed]

Yu, P. K. L.

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Yu, X.

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
[Crossref]

Yuan, G.

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

Yuan, H.-C.

J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, “Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting,” Energy Environ. Sci. 4(5), 1690–1694 (2011).
[Crossref]

Zeman, M.

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Zeng, M.

M. Zeng and Y. Li, “Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 3(29), 14942–14962 (2015).
[Crossref]

Zhai, J.

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Zhan, X.

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Zhang, B.

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

Zhang, F.

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Zhang, H.

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Zhang, J.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

Zhang, L.

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

Zhang, M.

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
[Crossref]

Zhang, P.

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

Zhang, X.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Zhao, J.

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Zhao, Y.

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

Zheng, F.

R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
[Crossref]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

Zheng, X.

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Zhou, B.

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

Zhou, K.

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

Zhou, S.

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

Zhou, X.

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

Zhu, C.

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

Zhu, H.

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

Zhu, J.

J. Zhu and Y. Cui, “Photovoltaics: More solar cells for less,” Nat. Mater. 9(3), 183–184 (2010).
[Crossref] [PubMed]

Zhu, Q.

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

Zhuang, X.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

Y. Hou, X. Zhuang, and X. Feng, “Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting,” Small Methods 1(6), 1700090 (2017).
[Crossref]

Zou, S.

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

Zou, Z.

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Zschech, E.

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (7)

C. J. Chen, K. C. Yang, M. Basu, T. H. Lu, Y. R. Lu, C. L. Dong, S. F. Hu, and R. S. Liu, “Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution,” ACS Appl. Mater. Interfaces 8(8), 5400–5407 (2016).
[Crossref] [PubMed]

J. Y. Jung, J. Y. Yu, and J. H. Lee, “Dynamic Photoelectrochemical Device Using an Electrolyte-Permeable NiO x/SiO2/Si Photocathode with an Open-Circuit Potential of 0.75 V,” ACS Appl. Mater. Interfaces 10(9), 7955–7962 (2018).
[Crossref] [PubMed]

M. G. Kast, L. J. Enman, N. J. Gurnon, A. Nadarajah, and S. W. Boettcher, “Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes,” ACS Appl. Mater. Interfaces 6(24), 22830–22837 (2014).
[Crossref] [PubMed]

C. Ros, T. Andreu, M. D. Hernández-Alonso, G. Penelas-Pérez, J. Arbiol, and J. R. Morante, “Charge Transfer Characterization of ALD-Grown TiO2 Protective Layers in Silicon Photocathodes,” ACS Appl. Mater. Interfaces 9(21), 17932–17941 (2017).
[Crossref] [PubMed]

R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, “Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS2 Films for Solar Hydrogen Production,” ACS Appl. Mater. Interfaces 9(7), 6123–6129 (2017).
[Crossref] [PubMed]

F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, and Y. Li, “Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP2 Cocatalyst Films,” ACS Appl. Mater. Interfaces 8(45), 31025–31031 (2016).
[Crossref] [PubMed]

Y. Yang, M. Wang, P. Zhang, W. Wang, H. Han, and L. Sun, “Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays,” ACS Appl. Mater. Interfaces 8(44), 30143–30151 (2016).
[Crossref] [PubMed]

ACS Catal. (2)

J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, “Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution,” ACS Catal. 3(2), 166–169 (2013).
[Crossref]

Q. Cai, W. Hong, C. Jian, J. Li, and W. Liu, “Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction,” ACS Catal. 7(5), 3277–3283 (2017).
[Crossref]

ACS Energy Lett. (3)

L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, and X. Zheng, “One-Step Hydrothermal Deposition of Ni:FeOOH onto Photoanodes for Enhanced Water Oxidation,” ACS Energy Lett. 1(3), 624–632 (2016).
[Crossref]

Y. Wan, S. K. Karuturi, C. Samundsett, J. Bullock, M. Hettick, D. Yan, J. Peng, P. R. Narangari, S. Mokkapati, H. H. Tan, C. Jagadish, A. Javey, and A. Cuevas, “Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction,” ACS Energy Lett. 3(1), 125–131 (2018).
[Crossref]

W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, “Efficient and stable silicon microwire photocathodes with a nickel silicide interlayer for operation in strongly alkaline solutions,” ACS Energy Lett. 3(5), 1086–1092 (2018).
[Crossref] [PubMed]

Adv. Energy Mater. (6)

J. D. Benck, S. C. Lee, K. D. Fong, J. Kibsgaard, R. Sinclair, and T. F. Jaramillo, “Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials,” Adv. Energy Mater. 4(18), 1400739 (2014).
[Crossref]

P. Chakthranont, T. R. Hellstern, J. M. McEnaney, and T. F. Jaramillo, “Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting,” Adv. Energy Mater. 7(22), 1701515 (2017).
[Crossref]

S. Fan, I. Shih, and Z. Mi, “A Monolithically Integrated InGaN Nanowire/Si Tandem Photoanode Approaching the Ideal Bandgap Configuration of 1.75/1.13 eV,” Adv. Energy Mater. 7(2), 1600952 (2017).
[Crossref]

X. Yu, P. Yang, S. Chen, M. Zhang, and G. Shi, “NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting,” Adv. Energy Mater. 7(6), 1601805 (2017).
[Crossref]

K. Zhang, M. Ma, P. Li, D. H. Wang, and J. H. Park, “Water splitting progress in tandem devices: Moving photolysis beyond electrolysis,” Adv. Energy Mater. 6(15), 1600602 (2016).
[Crossref]

T. Yao, X. An, H. Han, J. Q. Chen, and C. Li, “Photoelectrocatalytic Materials for Solar Water Splitting,” Adv. Energy Mater. 8(21), 1800210 (2018).
[Crossref]

Adv. Funct. Mater. (1)

F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang, X. Zhan, L. Sun, and J. He, “Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis,” Adv. Funct. Mater. 27(7), 1605802 (2017).
[Crossref]

Adv. Mater. (1)

Q. Ding, J. Zhai, M. Cabán-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. Jin, “Designing efficient solar-driven hydrogen evolution photocathodes using semitransparent MoQxCly (Q = S, Se) catalysts on Si micropyramids,” Adv. Mater. 27(41), 6511–6518 (2015).
[Crossref] [PubMed]

Adv. Mater. Interfaces (1)

F. Zhang, Y. Pei, Y. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. Ye, and J. Shen, “Controlled Synthesis of Eutectic NiSe/Ni3Se2 Self-Supported on Ni Foam: An Excellent Bifunctional Electrocatalyst for Overall Water Splitting,” Adv. Mater. Interfaces 5(8), 1701507 (2018).
[Crossref]

Angew. Chem. Int. Ed. Engl. (4)

G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie, and D. Wang, “Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion,” Angew. Chem. Int. Ed. Engl. 50(10), 2334–2338 (2011).
[Crossref] [PubMed]

T. Wang and J. Gong, “Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting,” Angew. Chem. Int. Ed. Engl. 54(37), 10718–10732 (2015).
[Crossref] [PubMed]

B. Seger, A. B. Laursen, P. C. Vesborg, T. Pedersen, O. Hansen, S. Dahl, and I. Chorkendorff, “Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode,” Angew. Chem. Int. Ed. Engl. 51(36), 9128–9131 (2012).
[Crossref] [PubMed]

K. Jun, Y. S. Lee, T. Buonassisi, and J. M. Jacobson, “High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation,” Angew. Chem. Int. Ed. Engl. 51(2), 423–427 (2012).
[Crossref] [PubMed]

Appl. Catal. B (1)

R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, “Efficient n+p-Si photocathodes for solar H2 production catalyzed by Co-W-S and stabilized by Ti buffer layer,” Appl. Catal. B 237, 158–165 (2018).
[Crossref]

Appl. Phys. Lett. (7)

G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, “Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability,” Appl. Phys. Lett. 112(1), 013902 (2018).
[Crossref]

R. Fan, C. Tang, Y. Xin, X. Su, X. Wang, and M. Shen, “Surface passivation and protection of Pt loaded multicrystalline pn+ silicon photocathodes by atmospheric plasma oxidation for improved solar water splitting,” Appl. Phys. Lett. 109(23), 233901 (2016).
[Crossref]

J. Zhou, S. Dai, W. Dong, X. Su, L. Fang, F. Zheng, X. Wang, and M. Shen, “Efficient and stable MoS2 catalyst integrated on Si photocathodes by photoreduction and post-annealing for water splitting,” Appl. Phys. Lett. 108(21), 213905 (2016).
[Crossref]

X. Ao, X. Tong, D. Sik Kim, L. Zhang, M. Knez, F. Müller, S. He, and V. Schmidt, “Black silicon with controllable macropore array for enhanced photoelectrochemical performance,” Appl. Phys. Lett. 101(11), 111901 (2012).
[Crossref]

R. Fan, J. Min, Y. Li, X. Su, S. Zou, X. Wang, and M. Shen, “n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production,” Appl. Phys. Lett. 106(21), 213901 (2015).
[Crossref]

R. Fan, W. Dong, L. Fang, F. Zheng, X. Su, S. Zou, J. Huang, X. Wang, and M. Shen, “Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer,” Appl. Phys. Lett. 106(1), 013902 (2015).
[Crossref]

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,” Appl. Phys. Lett. 89(4), 042112 (2006).
[Crossref]

Catal. Today (1)

M. F. Lichterman, K. Sun, S. Hu, X. Zhou, M. T. McDowell, M. R. Shaner, M. H. Richter, E. J. Crumlin, A. I. Carim, F. H. Saadi, B. S. Brunschwig, and N. S. Lewis, “Protection of inorganic semiconductors for sustained, efficient photoelectrochemical water oxidation,” Catal. Today 262, 11–23 (2016).
[Crossref]

Chem. Commun. (Camb.) (1)

Z. Yin, R. Fan, G. Huang, and M. Shen, “11.5% efficiency of TiO2 protected and Pt catalyzed n+np+-Si photocathodes for photoelectrochemical water splitting: manipulating the Pt distribution and Pt/Si contact,” Chem. Commun. (Camb.) 54(5), 543–546 (2018).
[Crossref] [PubMed]

Chem. Mater. (2)

J. R. McKone, N. S. Lewis, and H. B. Gray, “Will Solar-Driven Water-Splitting Devices See the Light of Day?” Chem. Mater. 26(1), 407–414 (2014).
[Crossref]

S. Chen and L.-W. Wang, “Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution,” Chem. Mater. 24(18), 3659–3666 (2012).
[Crossref]

Chem. Rev. (4)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, “Enabling silicon for solar-fuel production,” Chem. Rev. 114(17), 8662–8719 (2014).
[Crossref] [PubMed]

D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, and K. S. Choi, “Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting,” Chem. Rev. 115(23), 12839–12887 (2015).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (1)

V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, R. Arrigo, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, “In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces,” Chem. Sci. (Camb.) 8(3), 2143–2149 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

D. Bae, B. Seger, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Strategies for stable water splitting via protected photoelectrodes,” Chem. Soc. Rev. 46(7), 1933–1954 (2017).
[Crossref] [PubMed]

A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chem. Soc. Rev. 38(1), 253–278 (2009).
[Crossref] [PubMed]

Chemistry (1)

P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, “Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation,” Chemistry 18(44), 13994–13999 (2012).
[Crossref] [PubMed]

ChemSusChem (1)

G. Xu, Z. Xu, Z. Shi, L. Pei, S. Yan, Z. Gu, and Z. Zou, “Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core-Shell Particles for Photoelectrochemical Water Oxidation,” ChemSusChem 10(14), 2897–2903 (2017).
[Crossref] [PubMed]

Electrochim. Acta (4)

A. Q. Contractor and J. O. M. Bockris, “Investigation of a protective conducting silica film on n-silicon,” Electrochim. Acta 29(10), 1427–1434 (1984).
[Crossref]

S. Yoon, J.-H. Lim, and B. Yoo, “Efficient Si/SiOx/ITO Heterojunction Photoanode with an Amorphous and Porous NiOOH Catalyst formed by NiCl2 activation for Water Oxidation,” Electrochim. Acta 237, 37–43 (2017).
[Crossref]

B. E. Conway and M. Salomon, “Electrochemical reaction orders: Applications to the hydrogen- and oxygen-evolution reactions,” Electrochim. Acta 9(12), 1599–1615 (1964).
[Crossref]

Y. Nakato and H. Tsubomura, “Silicon photoelectrodes modified with ultrafine metal islands,” Electrochim. Acta 37(5), 897–907 (1992).
[Crossref]

Energy Environ. Sci. (16)

E. A. Hernández-Pagán, N. M. Vargas-Barbosa, T. Wang, Y. Zhao, E. S. Smotkin, and T. E. Mallouk, “Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells,” Energy Environ. Sci. 5(6), 7582 (2012).
[Crossref]

M. R. Shaner, J. R. McKone, H. B. Gray, and N. S. Lewis, “Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution,” Energy Environ. Sci. 8(10), 2977–2984 (2015).
[Crossref]

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray, and N. S. Lewis, “Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes,” Energy Environ. Sci. 5(11), 9653–9661 (2012).
[Crossref]

X. Zhou, R. Liu, K. Sun, D. Friedrich, M. T. McDowell, F. Yang, S. T. Omelchenko, F. H. Saadi, A. C. Nielander, S. Yalamanchili, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide,” Energy Environ. Sci. 8(9), 2644–2649 (2015).
[Crossref]

X. Zhou, R. Liu, K. Sun, K. M. Papadantonakis, B. S. Brunschwig, and N. S. Lewis, “570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition,” Energy Environ. Sci. 9(3), 892–897 (2016).
[Crossref]

H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. Jin, “A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production,” Energy Environ. Sci. 9(10), 3113–3119 (2016).
[Crossref]

M. R. Shaner, S. Hu, K. Sun, and N. S. Lewis, “Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2,” Energy Environ. Sci. 8(1), 203–207 (2015).
[Crossref]

K. Sun, N. Park, Z. Sun, J. Zhou, J. Wang, X. Pang, S. Shen, S. Y. Noh, Y. Jing, S. Jin, P. K. L. Yu, and D. Wang, “Nickel oxide functionalized silicon for efficient photo-oxidation of water,” Energy Environ. Sci. 5(7), 7872 (2012).
[Crossref]

D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, and P. C. K. Vesborg, “Back-illuminated Si photocathode: a combined experimental and theoretical study for photocatalytic hydrogen evolution,” Energy Environ. Sci. 8(2), 650–660 (2015).
[Crossref]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779 (2011).
[Crossref]

J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, and H. B. Gray, “Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes,” Energy Environ. Sci. 4(9), 3573–3583 (2011).
[Crossref]

S. Ardo, D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik, “Pathways to electrochemical solar-hydrogen technologies,” Energy Environ. Sci. 11, 2768–2783 (2018).
[Crossref]

M. R. Shaner, H. A. Atwater, N. S. Lewis, and E. W. McFarland, “A comparative technoeconomic analysis of renewable hydrogen production using solar energy,” Energy Environ. Sci. 9(7), 2354–2371 (2016).
[Crossref]

R. Sathre, C. D. Scown, W. R. Morrow, J. C. Stevens, I. D. Sharp, J. W. Ager, K. Walczak, F. A. Houle, and J. B. Greenblatt, “Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting,” Energy Environ. Sci. 7(10), 3264–3278 (2014).
[Crossref]

A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis, and N. S. Lewis, “A taxonomy for solar fuels generators,” Energy Environ. Sci. 8(1), 16–25 (2015).
[Crossref]

J. Oh, T. G. Deutsch, H.-C. Yuan, and H. M. Branz, “Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting,” Energy Environ. Sci. 4(5), 1690–1694 (2011).
[Crossref]

Int. J. Hydrogen Energy (4)

T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy materials-related aspects,” Int. J. Hydrogen Energy 27(10), 991–1022 (2002).
[Crossref]

J. Nowotny, T. Bak, D. Chu, S. Fiechter, G. E. Murch, and T. N. Veziroglu, “Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems,” Int. J. Hydrogen Energy 39(9), 4151–4157 (2014).
[Crossref]

X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M. Chai, and C.-G. Liu, “Novel CoxSy/WS2 nanosheets supported on carbon cloth as efficient electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy 42(7), 4165–4173 (2017).
[Crossref]

C. U. Maier, M. Specht, and G. Bilger, “Hydrogen evolution on platinum-coated p-silicon photocathodes,” Int. J. Hydrogen Energy 21(10), 859–864 (1996).
[Crossref]

J. Am. Chem. Soc. (8)

Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, “Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.,” J. Am. Chem. Soc. 136(24), 8504–8507 (2014).
[Crossref] [PubMed]

T. Yao, R. Chen, J. Li, J. Han, W. Qin, H. Wang, J. Shi, F. Fan, and C. Li, “Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation,” J. Am. Chem. Soc. 138(41), 13664–13672 (2016).
[Crossref] [PubMed]

B. Seger, T. Pedersen, A. B. Laursen, P. C. Vesborg, O. Hansen, and I. Chorkendorff, “Using TiO2 as a conductive protective layer for photocathodic H2 evolution,” J. Am. Chem. Soc. 135(3), 1057–1064 (2013).
[Crossref] [PubMed]

J. Yang, K. Walczak, E. Anzenberg, F. M. Toma, G. Yuan, J. Beeman, A. Schwartzberg, Y. Lin, M. Hettick, A. Javey, J. W. Ager, J. Yano, H. Frei, and I. D. Sharp, “Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces,” J. Am. Chem. Soc. 136(17), 6191–6194 (2014).
[Crossref] [PubMed]

L. Chen, J. Yang, S. Klaus, L. J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J. K. Cooper, F. M. Toma, L. W. Wang, I. D. Sharp, A. T. Bell, and J. W. Ager, “p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation,” J. Am. Chem. Soc. 137(30), 9595–9603 (2015).
[Crossref] [PubMed]

B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, “Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution,” J. Am. Chem. Soc. 127(15), 5308–5309 (2005).
[Crossref] [PubMed]

R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, “Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes,” J. Am. Chem. Soc. 104(2), 467–482 (1982).
[Crossref]

S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, “Photoelectrochemical hydrogen evolution using Si microwire arrays,” J. Am. Chem. Soc. 133(5), 1216–1219 (2011).
[Crossref] [PubMed]

J. Electroanal. Chem. Interfacial Electrochem. (1)

H. Gerischer, “On the stability of semiconductor electrodes against photodecomposition,” J. Electroanal. Chem. Interfacial Electrochem. 82(1-2), 133–143 (1977).
[Crossref]

J. Electrochem. Soc. (3)

J.-W. Schüttauf, M. A. Modestino, E. Chinello, D. Lambelet, A. Delfino, D. Dominé, A. Faes, M. Despeisse, J. Bailat, D. Psaltis, C. Moser, and C. Ballif, “Solar-to-hydrogen production at 14.2% efficiency with silicon photovoltaics and earth-abundant electrocatalysts,” J. Electrochem. Soc. 163(10), F1177–F1181 (2016).
[Crossref]

G. A. Shreve and N. S. Lewis, “An Analytical Description of the Consequences of Abandoning the Principles of Detailed Balance and Microscopic Reversibility in Semiconductor Photoelectrochemistry,” J. Electrochem. Soc. 142(1), 112–119 (1995).
[Crossref]

N. Koshida, M. Nagasu, T. Sakusabe, and Y. Kiuchi, “The Current‐Voltage Characteristics of a Photoelectrochemical Cell Using p‐Type Porous Si,” J. Electrochem. Soc. 132(2), 346–349 (1985).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (9)

R. Fan, W. Dong, L. Fang, F. Zheng, and M. Shen, “More than 10% efficiency and one-week stability of Si photocathodes for water splitting by manipulating the loading of the Pt catalyst and TiO2 protective layer,” J. Mater. Chem. A Mater. Energy Sustain. 5(35), 18744–18751 (2017).
[Crossref]

D. M. Andoshe, S. Choi, Y.-S. Shim, S. H. Lee, Y. Kim, C. W. Moon, D. H. Kim, S. Y. Lee, T. Kim, H. K. Park, M. G. Lee, J.-M. Jeon, K. T. Nam, M. Kim, J. K. Kim, J. Oh, and H. W. Jang, “A wafer-scale antireflective protection layer of solution-processed TiO2 nanorods for high performance silicon-based water splitting photocathodes,” J. Mater. Chem. A Mater. Energy Sustain. 4(24), 9477–9485 (2016).
[Crossref]

Y. Shi, T. Han, C. Gimbert-Suriñach, X. Song, M. Lanza, and A. Llobet, “Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells,” J. Mater. Chem. A Mater. Energy Sustain. 5(5), 1996–2003 (2017).
[Crossref]

J. Liang, H. Tan, M. Liu, B. Liu, N. Wang, Q. Zhang, Y. Zhao, A. H. M. Smets, M. Zeman, and X. Zhang, “A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 4(43), 16841–16848 (2016).
[Crossref]

M. Zeng and Y. Li, “Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 3(29), 14942–14962 (2015).
[Crossref]

M. J. Choi, J.-Y. Jung, M.-J. Park, J.-W. Song, J.-H. Lee, and J. H. Bang, “Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution,” J. Mater. Chem. A Mater. Energy Sustain. 2(9), 2928 (2014).
[Crossref]

Q. Zhang, T. Li, J. Luo, B. Liu, J. Liang, N. Wang, X. Kong, B. Li, C. Wei, Y. Zhao, and X. Zhang, “Ti/Co-S catalyst covered amorphous Si-based photocathodes with high photovoltage for the HER in non-acid environments,” J. Mater. Chem. A Mater. Energy Sustain. 6(3), 811–816 (2018).
[Crossref]

J.-Y. Jung, M. J. Choi, K. Zhou, X. Li, S.-W. Jee, H.-D. Um, M.-J. Park, K.-T. Park, J. H. Bang, and J.-H. Lee, “Photoelectrochemical water splitting employing a tapered silicon nanohole array,” J. Mater. Chem. A Mater. Energy Sustain. 2(3), 833–842 (2014).
[Crossref]

X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen, “Engineering heterogeneous semiconductors for solar water splitting,” J. Mater. Chem. A Mater. Energy Sustain. 3(6), 2485–2534 (2015).
[Crossref]

J. Phys. Chem. C (4)

S. Hu, N. S. Lewis, J. W. Ager, J. Yang, J. R. McKone, and N. C. Strandwitz, “Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators,” J. Phys. Chem. C 119(43), 24201–24228 (2015).
[Crossref]

B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P. C. K. Vesborg, B. Seger, and I. Chorkendorff, “Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes,” J. Phys. Chem. C 119(27), 15019–15027 (2015).
[Crossref]

S. Oh and J. Oh, “High Performance and Stability of Micropatterned Oxide-Passivated Photoanodes with Local Catalysts for Photoelectrochemical Water Splitting,” J. Phys. Chem. C 120(1), 133–141 (2016).
[Crossref]

N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-Nielander, J. Elam, and N. S. Lewis, “Photoelectrochemical Behavior of n-type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition,” J. Phys. Chem. C 117(10), 4931–4936 (2013).
[Crossref]

J. Phys. Chem. Lett. (7)

B. Mei, B. Seger, T. Pedersen, M. Malizia, O. Hansen, I. Chorkendorff, and P. C. Vesborg, “Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films,” J. Phys. Chem. Lett. 5(11), 1948–1952 (2014).
[Crossref] [PubMed]

B. Mei, A. A. Permyakova, R. Frydendal, D. Bae, T. Pedersen, P. Malacrida, O. Hansen, I. E. Stephens, P. C. Vesborg, B. Seger, and I. Chorkendorff, “Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes,” J. Phys. Chem. Lett. 5(20), 3456–3461 (2014).
[Crossref] [PubMed]

K. Sun, M. T. McDowell, A. C. Nielander, S. Hu, M. R. Shaner, F. Yang, B. S. Brunschwig, and N. S. Lewis, “Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes,” J. Phys. Chem. Lett. 6(4), 592–598 (2015).
[Crossref] [PubMed]

C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, “Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g),” J. Phys. Chem. Lett. 6(9), 1679–1683 (2015).
[Crossref] [PubMed]

G. Hodes, “Photoelectrochemical Cell Measurements: Getting the Basics Right,” J. Phys. Chem. Lett. 3(9), 1208–1213 (2012).
[Crossref] [PubMed]

H. Dotan, N. Mathews, T. Hisatomi, M. Grätzel, and A. Rothschild, “On the Solar to Hydrogen Conversion Efficiency of Photoelectrodes for Water Splitting,” J. Phys. Chem. Lett. 5(19), 3330–3334 (2014).
[Crossref] [PubMed]

F. F. Abdi, T. J. Savenije, M. M. May, B. Dam, and R. van de Krol, “The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study,” J. Phys. Chem. Lett. 4(16), 2752–2757 (2013).
[Crossref]

Mater. Horiz. (1)

C. Xiang, K. M. Papadantonakis, and N. S. Lewis, “Principles and implementations of electrolysis systems for water splitting,” Mater. Horiz. 3(3), 169–173 (2016).
[Crossref]

Nano Futures (1)

S. Chu, W. Li, Y. Yan, T. Hamann, I. Shih, D. Wang, and Z. Mi, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Nano Lett. (6)

H. P. Wang, K. Sun, S. Y. Noh, A. Kargar, M. L. Tsai, M. Y. Huang, D. Wang, and J. H. He, “High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution,” Nano Lett. 15(5), 2817–2824 (2015).
[Crossref] [PubMed]

I. Oh, J. Kye, and S. Hwang, “Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode,” Nano Lett. 12(1), 298–302 (2012).
[Crossref] [PubMed]

Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, “Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties,” Nano Lett. 12(3), 1678–1682 (2012).
[Crossref] [PubMed]

S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, and Z. Mi, “High Efficiency Si Photocathode Protected by Multifunctional GaN Nanostructures,” Nano Lett. 18(10), 6530–6537 (2018).
[Crossref] [PubMed]

B. Guo, A. Batool, G. Xie, R. Boddula, L. Tian, S. U. Jan, and J. R. Gong, “Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer,” Nano Lett. 18(2), 1516–1521 (2018).
[Crossref] [PubMed]

S. Oh, H. Song, and J. Oh, “An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting,” Nano Lett. 17(9), 5416–5422 (2017).
[Crossref] [PubMed]

Nano Res. (1)

J. Feng, M. Gong, M. J. Kenney, J. Z. Wu, B. Zhang, Y. Li, and H. Dai, “Nickel-coated silicon photocathode for water splitting in alkaline electrolytes,” Nano Res. 8(5), 1577–1583 (2015).
[Crossref]

Nanotechnology (1)

Y. Wang, W. Tian, F. Cao, D. Fang, S. Chen, and L. Li, “Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts,” Nanotechnology 29(42), 425703 (2018).
[Crossref] [PubMed]

Nat. Commun. (3)

I. A. Digdaya, G. W. P. Adhyaksa, B. J. Trześniewski, E. C. Garnett, and W. A. Smith, “Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation,” Nat. Commun. 8, 15968 (2017).
[Crossref] [PubMed]

J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech, and X. Feng, “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics,” Nat. Commun. 8, 15437 (2017).
[Crossref] [PubMed]

B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, and Z. Mi, “Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting,” Nat. Commun. 9(1), 3856 (2018).
[Crossref] [PubMed]

Nat. Energy (1)

W. Vijselaar, P. Westerik, J. Veerbeek, R. M. Tiggelaar, E. Berenschot, N. R. Tas, H. Gardeniers, and J. Huskens, “Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes,” Nat. Energy 3(3), 185–192 (2018).
[Crossref]

Nat. Mater. (7)

J. Yang, J. K. Cooper, F. M. Toma, K. A. Walczak, M. Favaro, J. W. Beeman, L. H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, and I. D. Sharp, “A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes,” Nat. Mater. 16(3), 335–341 (2017).
[Crossref] [PubMed]

J. C. Hill, A. T. Landers, and J. A. Switzer, “An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation,” Nat. Mater. 14(11), 1150–1155 (2015).
[Crossref] [PubMed]

M. Cabán-Acevedo, M. L. Stone, J. R. Schmidt, J. G. Thomas, Q. Ding, H. C. Chang, M. L. Tsai, J. H. He, and S. Jin, “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide,” Nat. Mater. 14(12), 1245–1251 (2015).
[Crossref] [PubMed]

J. Zhu and Y. Cui, “Photovoltaics: More solar cells for less,” Nat. Mater. 9(3), 183–184 (2010).
[Crossref] [PubMed]

J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater. 11(11), 963–969 (2012).
[Crossref] [PubMed]

Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. Chidsey, and P. C. McIntyre, “Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation,” Nat. Mater. 10(7), 539–544 (2011).
[Crossref] [PubMed]

J. H. Montoya, L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov, “Materials for solar fuels and chemicals,” Nat. Mater. 16(1), 70–81 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Nat. Rev. Chem. (1)

I. Roger, M. A. Shipman, and M. D. Symes, “Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting,” Nat. Rev. Chem. 1, 3 (2017).

Nature (1)

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238(5358), 37–38 (1972).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (3)

J. M. Spurgeon, J. M. Velazquez, and M. T. McDowell, “Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte,” Phys. Chem. Chem. Phys. 16(8), 3623–3631 (2014).
[Crossref] [PubMed]

V. C. Wang, “Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems,” Phys. Chem. Chem. Phys. 18(32), 22364–22372 (2016).
[Crossref] [PubMed]

N. Guijarro, M. S. Prévot, and K. Sivula, “Surface modification of semiconductor photoelectrodes,” Phys. Chem. Chem. Phys. 17(24), 15655–15674 (2015).
[Crossref] [PubMed]

Russ. Chem. Bull. (1)

S. D. Babenko, A. A. Balakai, A. G. Lavrushko, Y. L. Moskvin, and S. N. Shamaev, “Kinetic analysis of photoelectrochemical hydrogen evolution over p-type silicon in acidic aqueous solutions of electrolytes,” Russ. Chem. Bull. 49(10), 1707–1711 (2000).
[Crossref]

Science (6)

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, “Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts,” Science 317(5834), 100–102 (2007).
[Crossref] [PubMed]

S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, “Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes,” Science 327(5962), 185–187 (2010).
[Crossref] [PubMed]

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, and R. T. Sayre, “Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement,” Science 332(6031), 805–809 (2011).
[Crossref] [PubMed]

M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation,” Science 342(6160), 836–840 (2013).
[Crossref] [PubMed]

R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, “Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces,” Science 334(6060), 1256–1260 (2011).
[Crossref] [PubMed]

Small Methods (1)

Y. Hou, X. Zhuang, and X. Feng, “Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting,” Small Methods 1(6), 1700090 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

D. Bae, S. Shayestehaminzadeh, E. B. Thorsteinsson, T. Pedersen, O. Hansen, B. Seger, P. C. K. Vesborg, S. Ólafsson, and I. Chorkendorff, “Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media,” Sol. Energy Mater. Sol. Cells 144, 758–765 (2016).
[Crossref]

D. L. Meier, H. P. Davis, R. A. Garcia, J. Salami, A. Rohatgi, A. Ebong, and P. Doshi, “Aluminum alloy back p–n junction dendritic web silicon solar cell,” Sol. Energy Mater. Sol. Cells 65(1-4), 621–627 (2001).
[Crossref]

Solar RRL (1)

L. Gao, Q. Li, H. Chen, S. Hayase, and T. Ma, “In Situ Fabrication of Nanoepitaxial TiO2 Protection Layer on Si Substrate: Hole Chemical Conduction Instead of Tunneling Effect,” Solar RRL 1(8), 1700064 (2017).
[Crossref]

Sustain. Energy & Fuels (2)

C. Li, Y. Xiao, L. Zhang, Y. Li, J.-J. Delaunay, and H. Zhu, “Efficient photoelectrochemical water oxidation enabled by an amorphous metal oxide-catalyzed graphene/silicon heterojunction photoanode,” Sustain. Energy & Fuels 2(3), 663–672 (2018).
[Crossref]

F. A. L. Laskowski, J. Qiu, M. R. Nellist, S. Z. Oener, A. M. Gordon, and S. W. Boettcher, “Transient photocurrents on catalyst-modified n-Si photoelectrodes: insight from dual-working electrode photoelectrochemistry,” Sustain. Energy & Fuels 2(9), 1995–2005 (2018).
[Crossref]

Other (1)

M. S. Wrighton, “Thermodynamics and kinetics associated with semiconductor-based photoelectrochemical cells for the conversion of light to chemical energy,” in Pure Appl. Chem. (1985), p. 57.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Stability change of the photocathode (a) as its ϕre shifts down from above the conduction band minimum (CBM) to below ϕ(H+/H2) and of the photoanode (b) as its ϕox shifts up from below the valence band maximum (VBM) to above ϕ(O2/H2O). (c) Calculated ϕre (black bars) and ϕox (red bars) relative to the normal hydrogen electrode (NHE) and vacuum level for a series of semiconductors in solution at pH = 0, ambient temperature 298.15 K and pressure 1 bar. The water redox potentials ϕ(O2/H2O) and ϕ(H+/H2) (dashed lines) and the valence (green columns) and conduction (blue columns) band edge positions at pH = 0 are also plotted. Reprinted with permission from [32]. Copyright (2012) American Chemical Society.
Fig. 2
Fig. 2 Chart visualizing data on reported η of various Si photocathodes for HER. Device structures for the Si photocathodes with reported stability are noted. Their η with pure color are listed directly in the articles, while those with pure color and small checks are calculated from the J–V curves in the corresponding articles.
Fig. 3
Fig. 3 (a) SEM image of the Pt layer deposited on the planar n+p-Si electrode, inset: cross-section of the electrode architecture; (b) J-E data of Pt/n+p-Si obtained in ultra-pure aqueous 0.5 M H2SO4. The data were collected as a single sweep from positive to negative potentials at 20 mV/s. Reprinted with permission from [20]. Copyright (2011) American Chemical Society. (c) 72 hours durability tests of in situ annealed of Pt/100 nm TiO2/5 nm Ti/n+p-Si electrodes; (d) Cyclic voltammograms during the 72 h run. CVs were taken in 24 h intervals at 50 mV/s scan rate. The samples were irradiated with the red part of the AM1.5 spectra (λ>635 nm) in 1M HClO4 and held at a potential of 0.3 VRHE. Reprinted with permission from [114]. Copyright (2013) American Chemical Society.
Fig. 4
Fig. 4 SEM images of the surface of (a) normal-Si fabricated by normal etching process on a solar-cell production line and (b) pyramid-Si obtained by a following two-step MCCE. Inset: the corresponding enlarged images. (c) TEM image of the Al2O3-coated Si. The thickness of the Al2O3 layer was determined to be about 4.5 nm. (d) PEC J–V curves of normal and pyramid mc-Si n+-p photocathodes with Al2O3 protective layers. (e) J–t curve for the Al2O3-protected pyramid electrode at −0.8VRHE. Inset: PEC J–V curves before and after a 100 h long time test. (f) The PEC J–V measurements for the Pt-impregnated and Al2O3-protected normal- and pyramid- n+-p-Si photocathodes. All samples were irradiated with 100 mW/cm2 Xe lamp in a stirred solution containing 0.5 mol K2SO4 and H2SO4 (pH = 1) and scanned at 10 mV/s from left to right potentials. Reprinted from [41], with the permission of AIP Publishing.
Fig. 5
Fig. 5 (a) Schematic diagram of the TiO2/Pt/n+p-Si photocathode. (b) Top-down SEM image and (c) cross-sectional TEM micrograph of the TiO2 covered Pt/Si. (d) PEC J–V curves under chopped illumination of the Pt/n+p-Si (black) and TiO2/Pt/n+p-Si (red). (e) Potential vs. time data at a constant current density of −10 mA/cm2. The inset shows the detailed potential fluctuation during the first 5 h. (f) Consecutive J–V measurements of the TiO2/Pt/n+p-Si photocathode before (0 h) and after (168 h, one week) PEC testing. All the photoelectrodes were measured in 1 M HClO4 solution under simulated AM1.5G illumination. Reproduced from [94] with permission from The Royal Society of Chemistry.
Fig. 6
Fig. 6 (a) Schematic of n + -GaN nanowires/n+p-Si photocathode showing light absorption by the underlying Si wafer, electron transfer from Si wafer to GaN nanowires, and proton reduction on platinized GaN nanowires. (b) J–V curves of platinized n + -GaN nanowires/n + p-Si photocathode (red curve) and platinized n+-p-Si photocathode (black curve) under AM 1.5G one sun illumination and dark condition (blue curve). (c) PEC long term stability measurement for platinized n + -GaN nanowires/ n+-p-Si photocathode at 0 VRHE. All the measurements were done in 0.5 M H2SO4. Reprinted with permission from [95]. Copyright (2018) American Chemical Society.
Fig. 7
Fig. 7 (a), (b) Schematic illustration of the MoSx@GaN NWs/Si heterostructure. GaN nanowire core covered with a uniform shell of MoSx (light-green section) is vertically aligned on planar n+p junction Si (the left inset of (b) shows the unique electronic interaction of MoS2/GaN while the right part signifies the outstanding geometric matching between MoS2 and GaN). (c) J–V curves of MoSx and MoSx@GaN NWs/Si in 0.5 M H2SO4 under standard one-sun illumination. (d) Electrochemical impedance spectroscopy (EIS) analysis of MoSx/Si and MoSx@GaN NWs/Si. Inset graph is the magnification of EIS of MoSx@GaN NWs/Si. Reproduced with permission from [100]. Copyright 2017, Nature publishing group.
Fig. 8
Fig. 8 Chart visualizing data on reported η of various Si photoanodes for OER. Device structures for the Si photoanodes with reported stability are noted. The η of the Si photoanodes with pure color are listed directly in the articles, while those with pure color and small checks are calculated from the J–V curves in the corresponding articles.
Fig. 9
Fig. 9 (a) Schematic of a structure that consists of a p+n-Si microwire-array conformally coated with a protective TiO2 layer and subsequently coated with a NiCrOx OER catalyst. (b) SEM image of a fully processed microwire array. (c) J–t curve for the NiCrOx/TiO2/p+n-Si microwire array photoanode under 1 Sun simulated illumination in 1.0 M KOH (pH 14). (d) Cyclic voltammograms taken at 10 h intervals throughout the duration of the stability test. Reproduced with permission from [137]. Copyright (2015) The Royal Society of Chemistry.
Fig. 10
Fig. 10 (a) Schematic of Ni/Pt/Al2O3/SiOx/n-Si photoanode. (b) Representative J–V curves of the photoanode in contact with 1 M KOH under simulated solar illumination collected periodically during 200 h of operation. (c) J–t curve of the photoanode measured at a constant applied voltage of 1.7 VRHE in 1 M KOH solution under simulated solar illumination. The inset shows current fluctuations due to bubble formation during the measurement. Reproduced with permission [125]. Copyright 2017, Nature publishing group.
Fig. 11
Fig. 11 (a) Cross-sectional schematic and energy band alignment of the designed multicomponent NiFe-LDH/NiOx/Ni/SiOx/pn+-Si photoanode for water oxidation. (b) J−V behavior of NiFe-LDH/NiOx/Ni, NiOx/Ni and Ni coated SiOx/pn+-Si photoanodes, and NiFe-LDH/NiOx/Ni and NiOx/Ni coated non-photoactive p++-Si electrodes. Reprinted with permission from [117]. Copyright (2018) American Chemical Society.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

η STH ( % ) = [ H 2 ( mmol / s ) × G f , H 2 0   ( KJ / mol ) P in   ( mW / cm 2   ) × ( cm 2 ) ] × 100
η STH ( % ) = [ J ph   ( mA / cm 2 ) × 1.23  V × η F P i n   ( mW / cm 2   ) ] × 100  %
η F   ( % ) = 2 × produced H 2 ( mol / cm 2 ) × 96485   ( s A / mol ) photocurrent density  ( A / cm 2 ) × time  ( s ) × 100 %
E ( RHE ) = E ( Ag / AgCl ) + 0.059  V × pH
η = [ | J mp ( mA / cm 2 ) | × V mp ( V RHE ) P in   ( mW / cm 2   ) ] × 100  %
FF = J mp ( mA / cm 2 ) × { V mp E H + / H 2 0 ( V RHE ) } J 0 ( mA / cm 2 ) × { V op E H + / H 2 0 ( V RHE ) }  
η = [ | J 0   ( mA / cm 2 ) | × { V op E H + / H 2 0 ( V RHE ) } × FF P in   ( mW / cm 2   ) ] × 100  % 
η = [ | J 0   ( mA / cm 2 ) | × { E O 2 / H 2 O 0 V op ( V RHE ) } × FF P in   ( mW / cm 2   ) ] × 100  % 
H + + e H ads Volmer step in acid solution
H 2 O + e H ads + OH Volmer step in basic solution
H + + H ads + e H 2 Heyrovsky step
H ads + H ads H 2 Tafel step
H 2 O OH ads + H + + e
OH ads O ads + H + + e
O ads + H 2 O OOH ads + H + + e
OOH ads + H 2 O O 2 + H + + e
OH OH ads + e
OH ads + OH O ads + H 2 O + e
O ads + OH OOH ads + e
OOH ads + OH O 2 + H + + e

Metrics