Abstract

We experimentally demonstrate the transmission of 100 Gbit/s and beyond vestigial sideband (VSB) n-level pulse amplitude modulation (PAM-n) signals, with a commercial 10 GHz-class directly modulated laser (DML) in the C-band, using optical filtering. To mitigate transmission impairments at the transmitter side, Nyquist pulse shaping and Kaiser Window filtering techniques are used to overcome the limited bandwidth of optoelectronic devices. At the receiver side, the joint nonlinear equalization based on cascaded multi-modulus algorithm (CMMA) and Volterra Filter (VF) is used to reduce the strong nonlinear impairments from chirp and chromatic dispersion (CD). 100 Gb/s PAM-4, 107.5 Gb/s PAM-4, and 101.25 Gb/s PAM-8 signals can be successfully transmitted over 45 km, 10 km and 10 km standard single-mode fiber (SSMF) under the bit-error-ratio (BER) of 3.8 × 10−3, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
100 Gb/s PAM4 transmission system for datacenter interconnects using a SiP ME-MZM based DAC-less transmitter and a VSB self-coherent receiver

Zhenping Xing, Alireza Samani, Meng Xiang, Eslam El-Fiky, Thang M. Hoang, David Patel, Rui Li, Meng Qiu, Md. Ghulam Saber, Mohamed Morsy-Osman, and David V. Plant
Opt. Express 26(18) 23969-23979 (2018)

2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs)

Fan Gao, Shiwei Zhou, Xiang Li, Songnian Fu, Lei Deng, Ming Tang, Deming Liu, and Qi Yang
Opt. Express 25(7) 7230-7237 (2017)

Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission

Kuo Zhang, Qunbi Zhuge, Haiyun Xin, Mohamed Morsy-Osman, Eslam El-Fiky, Lilin Yi, Weisheng Hu, and David V. Plant
Opt. Express 25(23) 28123-28135 (2017)

References

  • View by:
  • |
  • |
  • |

  1. IEEE 802.3bs-2017 [Online]. https://standards.ieee.org/standard/802_3bs-2017.html .
  2. K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
    [Crossref]
  3. F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
    [Crossref] [PubMed]
  4. H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
    [Crossref]
  5. W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser.” in optical Fiber Communication Conference (2018), paper Th4B. 8.
  6. F. F. Dai, “Electronic equalizations for optical fiber dispersion compensation,” Opt. Eng. 46(3), 035006 (2007).
    [Crossref]
  7. J. Shi, J. Zhang, Y. Zhou, Y. Wang, N. Chi, and J. Yu, “Transmission performance comparison for 100Gb/s PAM-4, CAP-16 and DFT-S OFDM with direct detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
    [Crossref]
  8. X. Zhou, J. Yu, and P. D. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in optical Fiber Communication Conference (2009), paper OWG3.
  9. F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental demonstration of four-channel WDM 560 Gbit/s 128QAM-DMT using IM/DD for 2-km optical interconnect,” J. Lightwave Technol. 35(4), 941–948 (2017).
    [Crossref]
  10. Y. Zhu, W. Peng, Y. Cui, C. Kan, F. Zhu, and Y. Bai, “Comparative digital mitigations of DAC clock tone leakage in a single-carrier 400G system,” in Optical Fiber Communication Conference (2015), paper Th2A.17.
    [Crossref]
  11. F. Li, D. Zou, L. Ding, Y. Sun, J. Li, Q. Sui, L. Li, X. Yi, and Z. Li, “100 Gbit/s PAM4 signal transmission and reception for 2-km interconnect with adaptive notch filter for narrowband interference,” Opt. Express 26(18), 24066–24074 (2018).
    [Crossref] [PubMed]
  12. S. Zhou, X. Li, L. Yi, Q. Yang, and S. Fu, “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett. 41(8), 1805–1808 (2016).
    [Crossref] [PubMed]
  13. J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.
  14. D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
    [Crossref]

2018 (1)

2017 (4)

2016 (1)

2010 (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

2007 (1)

F. F. Dai, “Electronic equalizations for optical fiber dispersion compensation,” Opt. Eng. 46(3), 035006 (2007).
[Crossref]

Cao, Z.

Chen, M.

Chen, Y. K.

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

Chi, N.

Dai, F. F.

F. F. Dai, “Electronic equalizations for optical fiber dispersion compensation,” Opt. Eng. 46(3), 035006 (2007).
[Crossref]

Deng, L.

Ding, L.

El-Fiky, E.

Fu, S.

Gao, F.

He, H.

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
[Crossref]

Hu, W.

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
[Crossref]

Kaneda, N.

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

Lee, J.

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

Li, F.

Li, J.

Li, L.

Li, X.

Li, Z.

Liu, D.

Mahgerefteh, D.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

Matsui, Y.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

McCallion, K.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

Morsy-Osman, M.

Plant, D.

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
[Crossref]

Plant, D. V.

Shi, J.

Sui, Q.

Sun, Y.

Tang, M.

Wang, Y.

Xin, H.

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
[Crossref]

Yang, Q.

Yi, L.

Yi, X.

Yu, J.

Zhang, J.

Zhang, K.

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
[Crossref]

Zheng, X.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

Zhou, S.

Zhou, Y.

Zhuge, Q.

K. Zhang, Q. Zhuge, H. Xin, M. Morsy-Osman, E. El-Fiky, L. Yi, W. Hu, and D. V. Plant, “Intensity directed equalizer for the mitigation of DML chirp induced distortion in dispersion-unmanaged C-band PAM transmission,” Opt. Express 25(23), 28123–28135 (2017).
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
[Crossref]

Zou, D.

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1126–1139 (2010).
[Crossref]

J. Lightwave Technol. (2)

Opt. Eng. (1)

F. F. Dai, “Electronic equalizations for optical fiber dispersion compensation,” Opt. Eng. 46(3), 035006 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (6)

J. Lee, N. Kaneda, and Y. K. Chen, “112-Gbit/s Intensity-Modulated Direct-Detect Vestigial-Sideband PAM4 Transmission over an 80-km SSMF Link,” in Proceedings of European Conference on Optical Communication, (2016), paper M.2.D.3.

Y. Zhu, W. Peng, Y. Cui, C. Kan, F. Zhu, and Y. Bai, “Comparative digital mitigations of DAC clock tone leakage in a single-carrier 400G system,” in Optical Fiber Communication Conference (2015), paper Th2A.17.
[Crossref]

H. Xin, K. Zhang, Q. Zhuge, L. Yi, H. He, W. Hu, and D. Plant, “Transmission of 100Gb/s PAM4 Signals Over 15km Dispersion-unmanaged SSMF Using a Directly Modulated Laser in C-band,” in Proceedings of European Conference on Optical Communication (IEEE, 2018).
[Crossref]

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser.” in optical Fiber Communication Conference (2018), paper Th4B. 8.

IEEE 802.3bs-2017 [Online]. https://standards.ieee.org/standard/802_3bs-2017.html .

X. Zhou, J. Yu, and P. D. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in optical Fiber Communication Conference (2009), paper OWG3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The offline DSP blocks. (a) and (b) are the frequency response of RRC filter and Kaiser Window filter, respectively. (c) PAM-4 symbols after quantization. Insets are the electrical eye diagrams of 50 Gbaud PAM-4: (i) with Kaiser Window filtering only, (ii) without Kaiser Window filtering only, (iii) with RRC filtering after Kaiser Window filtering, and (iv) without RRC filtering after Kaiser Window filtering.
Fig. 2
Fig. 2 The offline CMMA blind equalizer. (a) The schematic for the radii of PAM-8 signal. (b) The tap coefficients of CMMA. (c) The FIR of CMMA.
Fig. 3
Fig. 3 Experimental setup for PAM-n IM/DD transmission system. (a) The optical spectra without and with DAC clock leakage mitigation. (b) The measured P-I-V curve of the 10 GHz DML. (c) The extinction ratio versus bias current with 50-Gbaud PAM-4 signal without OTF.
Fig. 4
Fig. 4 Optimization of experimental parameters. (a) The BER versus roll-off factor at 4-dBm ROP. (b) The BER versus the number of equalizer taps with FFE/DFE only and CMMA only at 2-dBm ROP. (c) The BER versus the number of VF equalizer taps. Insets (i) ~(iv) show the symbols and eye diagrams after 19-tap FFE/DFE only and 19-tap CMMA only, respectively.
Fig. 5
Fig. 5 The BER for different fiber distances without OTF versus (a) different bit rates; (b) received optical power. Insets (i) and (ii) are recovered symbols and eye diagram, respectively.
Fig. 6
Fig. 6 (a) The optical spectra of 50 Gbaud PAM-4 with and without OTF; (b) the electrical spectra of received 50 Gbaud PAM-4 signal for different cases; (c) the BER versus ROP for 50 Gbaud PAM-4 with and without OTF after 45-km fiber; (d) the BER versus ROP for 40-, 45-, and 50-Gbaud with OTF after 80-km fiber, respectively. Insets (i) and (ii) are recovered eye diagram and histogram at 0 dBm ROP, respectively.
Fig. 7
Fig. 7 (a) The optical spectra of 33.75 Gbaud PAM-8 with and without OTF; (b) the BER versus bit rates for different fiber distances without OTF; (c) the BER versus ROP for 33.75 Gbaud PAM-8 with and without OTF after 10 km fiber; (d) the amplitude distribution histogram of recovered PAM-8 signal at 4 dBm ROP. Insets (i) and (ii) are recovered symbols and eye diagram at 4 dBm ROP after 10 km fiber with OTF, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

w[n]={ I 0 [ β 1 ( 2n N1 1 ) 2 ] I 0 [β] ,0nN1. 0, otherwise. ,
w(n+1)=w(n)+μεM(n) X * (n),
ε= A k | A k1 | A 2 | A 1 | y(n) | | | |,
M(n)=sign( A k-1 -...| A 2 -| A 1 -y(n) | |sign( A 1 | y(n) |))sign(y(n)).
y(n= k 1 =0 N 1 1 w k 1 (n)x(n k 1 ) + k 1 =0 N 2 1 k 2 = k 1 N 2 1 w k 1 k 2 (n)x(n k 1 )x(n k 2 ) .

Metrics