Abstract

X-ray microscopy at photon energies above 15 keV is very attractive for the investigation of atomic and nanoscale properties of technologically relevant structural and bio materials. This method is limited by the quality of X-ray optics. Multilayer Laue lenses (MLLs) have the potential to make a major impact in this field because, as compared to other X-ray optics, they become more efficient and effective with increasing photon energy. In this work, MLLs were utilized with hard X-rays at photon energies up to 34.5 keV. The design, fabrication, and performance of these lenses are presented, and their application in several imaging configurations is described. In particular, two “full field” modes of imaging were explored, which provide various contrast modalities that are useful for materials characterisation. These include point projection imaging (or Gabor holography) for phase contrast imaging and direct imaging with both bright-field and dark-field illumination. With high-efficiency MLLs, such modes offer rapid data collection as compared with scanning methods as well as a large field of views.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses

Hanfei Yan, Volker Rose, Deming Shu, Enju Lima, Hyon Chol Kang, Ray Conley, Chian Liu, Nima Jahedi, Albert T. Macrander, G. Brian Stephenson, Martin Holt, Yong S. Chu, Ming Lu, and Jörg Maser
Opt. Express 19(16) 15069-15076 (2011)

Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses

Xiaojing Huang, Weihe Xu, Evgeny Nazaretski, Nathalie Bouet, Juan Zhou, Yong S. Chu, and Hanfei Yan
Opt. Express 25(8) 8698-8704 (2017)

Full-field X-ray microscopy with crossed partial multilayer Laue lenses

Sven Niese, Peter Krüger, Adam Kubec, Stefan Braun, Jens Patommel, Christian G. Schroer, Andreas Leson, and Ehrenfried Zschech
Opt. Express 22(17) 20008-20013 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to X-ray microbeam and nanobeam science,” Science 334, 1234–1239 (2011).
    [Crossref] [PubMed]
  2. J. C. Andrews and B. M. Weckhuysen, “Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work,” ChemPhysChem 14, 3655–3666 (2013).
    [Crossref] [PubMed]
  3. E. Maire and P. J. Withers, “Quantitative X-ray tomography,” Int. Mat. Rev. 59, 1–43 (2014).
    [Crossref]
  4. H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
    [Crossref] [PubMed]
  5. T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
    [Crossref]
  6. O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
    [Crossref] [PubMed]
  7. D. T. Attwood and A. Sakdinawat, X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 2016), 2nd ed.
    [Crossref]
  8. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  9. A. G. Michette, Optical Systems for Soft X rays (Plenum, 1986), p. 59.
  10. J. C. da Silva, A. Pacureanu, Y. Yang, S. Bohic, C. Morawe, R. Barrett, and P. Cloetens, “Efficient concentration of high-energy X-rays for diffraction-limited imaging resolution,” Optica 4, 492–495 (2017).
    [Crossref]
  11. Y. Suzuki, “Resolution Limit of Refractive Lens and Fresnel Lens in X-Ray Region,” Jpn. J. Appl. Phys. 43, 7311–7314 (2004).
    [Crossref]
  12. H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
    [Crossref] [PubMed]
  13. S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
    [Crossref]
  14. H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20, 89–97 (2013).
    [Crossref]
  15. H. Yan, X. Huang, N. Bouet, J. Zhou, E. Nazaretski, and Y. S. Chu, “Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges,” Opt. Express 25, 25234–25242 (2017).
    [Crossref] [PubMed]
  16. R. M. Bionta, K. M. Skulina, and J. Weinberg, “Hard X-ray sputtered-sliced phase zone plates,” Appl. Phys. Lett. 64, 945–947 (1994).
    [Crossref]
  17. T. Liese, V. Radisch, and H.-U. Krebs, “Fabrication of multilayer Laue lenses by combination of pulsed laser deposition and focused ion beam,” Rev. Sci. Instrum. 81, 073710 (2010).
    [Crossref]
  18. H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
    [Crossref]
  19. H. N. Chapman and A. V. Rode, “Geometric optics of arrays of reflective surfaces,” Appl. Opt. 33, 2419–2436 (1994).
    [Crossref] [PubMed]
  20. S. Bajt, H. N. Chapman, A. Aquila, and E. Gullikson, “High-efficiency X-ray gratings with asymmetric-cut multilayers,” J. Opt. Soc. Am. A 29, 216–230 (2012).
    [Crossref]
  21. A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
    [Crossref] [PubMed]
  22. R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
    [Crossref] [PubMed]
  23. M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
    [Crossref]
  24. X. Huang, R. Conley, N. Bouet, J. Zhou, A. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23, 12496–12507 (2015).
    [Crossref] [PubMed]
  25. A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University, 2001).
  26. M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002), 7th ed.
  27. M. Prasciolu and S. Bajt, “On the Properties of WC/SiC Multilayers,” Appl. Sci. 8, 571 (2018).
    [Crossref]
  28. S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
    [Crossref]
  29. A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. B 364, 60–64 (2015).
    [Crossref]
  30. K. Li, M. Wojcik, and C. Jacobsen, “Multislicing does it all— calculating the performance of nanofocusing X-ray optics,” Opt. Express 25, 1831–1846 (2017).
    [Crossref]
  31. W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2011), pp. 4.96 and 4.88, 92nd ed.
  32. C. T. Koch, “Towards full-resolution inline electron holography,” Micron 63, 69–75 (2014).
    [Crossref]
  33. A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968), 1st ed.
  34. S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “Two-dimensional X-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
    [Crossref] [PubMed]
  35. S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
    [Crossref] [PubMed]
  36. S. Vogt, H. N. Chapman, C. Jacobsen, and R. Medenwaldt, “Dark field X-ray microscopy: the effects of condenser/detector aperture,” Ultramicroscopy 87, 25–44 (2001).
    [Crossref] [PubMed]
  37. H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).
  38. J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, 2011), 2nd ed.
    [Crossref]
  39. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  40. H. N. Chapman, “Phase-retrieval X-ray microscopy by Wigner deconvolution,” Ultramicroscopy 66, 153–172 (1996).
    [Crossref]
  41. J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19, 21333–21344 (2011).
    [Crossref] [PubMed]
  42. A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
    [Crossref] [PubMed]
  43. M.-C. Zdora, “State of the art of X-ray speckle-based phase-contrast and dark-field imaging,” J. Imaging 4, 60 (2018).
    [Crossref]
  44. F. J. Koch, C. Detlefs, T. J. Schröter, D. Kunka, A. Last, and J. Mohr, “Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry,” Opt. Express 24, 9168–9177 (2010).
    [Crossref]
  45. H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
    [Crossref] [PubMed]
  46. X. Huang, W. Xu, E. Nazaretski, N. Bouet, J. Zhou, Y. S. Chu, and H. Yan, “Hard X-ray scanning imaging achieved with bonded multilayer Laue lenses,” Opt. Express 25, 8698–8704 (2017).
    [Crossref] [PubMed]
  47. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” J. Opt. Soc. Am. 384, 49–51 (1996).
  48. C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
    [Crossref]
  49. G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
    [Crossref] [PubMed]
  50. A. F. Pedersen, H. Simons, C. Detlefs, and H. F. Poulsen, “The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy,” J. Synchrotron Radiat. 25, 717–728 (2018).
    [Crossref] [PubMed]
  51. L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Comm. 199, 65–75 (2001).
    [Crossref]

2018 (4)

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

M. Prasciolu and S. Bajt, “On the Properties of WC/SiC Multilayers,” Appl. Sci. 8, 571 (2018).
[Crossref]

M.-C. Zdora, “State of the art of X-ray speckle-based phase-contrast and dark-field imaging,” J. Imaging 4, 60 (2018).
[Crossref]

A. F. Pedersen, H. Simons, C. Detlefs, and H. F. Poulsen, “The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy,” J. Synchrotron Radiat. 25, 717–728 (2018).
[Crossref] [PubMed]

2017 (5)

2016 (1)

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

2015 (5)

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. B 364, 60–64 (2015).
[Crossref]

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23, 12496–12507 (2015).
[Crossref] [PubMed]

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

2014 (4)

E. Maire and P. J. Withers, “Quantitative X-ray tomography,” Int. Mat. Rev. 59, 1–43 (2014).
[Crossref]

C. T. Koch, “Towards full-resolution inline electron holography,” Micron 63, 69–75 (2014).
[Crossref]

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

2013 (3)

T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
[Crossref]

J. C. Andrews and B. M. Weckhuysen, “Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work,” ChemPhysChem 14, 3655–3666 (2013).
[Crossref] [PubMed]

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20, 89–97 (2013).
[Crossref]

2012 (2)

S. Bajt, H. N. Chapman, A. Aquila, and E. Gullikson, “High-efficiency X-ray gratings with asymmetric-cut multilayers,” J. Opt. Soc. Am. A 29, 216–230 (2012).
[Crossref]

S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “Two-dimensional X-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

T. Liese, V. Radisch, and H.-U. Krebs, “Fabrication of multilayer Laue lenses by combination of pulsed laser deposition and focused ion beam,” Rev. Sci. Instrum. 81, 073710 (2010).
[Crossref]

F. J. Koch, C. Detlefs, T. J. Schröter, D. Kunka, A. Last, and J. Mohr, “Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry,” Opt. Express 24, 9168–9177 (2010).
[Crossref]

2008 (1)

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

2007 (2)

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

2006 (1)

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

2005 (1)

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

2004 (1)

Y. Suzuki, “Resolution Limit of Refractive Lens and Fresnel Lens in X-Ray Region,” Jpn. J. Appl. Phys. 43, 7311–7314 (2004).
[Crossref]

2001 (2)

S. Vogt, H. N. Chapman, C. Jacobsen, and R. Medenwaldt, “Dark field X-ray microscopy: the effects of condenser/detector aperture,” Ultramicroscopy 87, 25–44 (2001).
[Crossref] [PubMed]

L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Comm. 199, 65–75 (2001).
[Crossref]

1996 (2)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” J. Opt. Soc. Am. 384, 49–51 (1996).

H. N. Chapman, “Phase-retrieval X-ray microscopy by Wigner deconvolution,” Ultramicroscopy 66, 153–172 (1996).
[Crossref]

1994 (2)

H. N. Chapman and A. V. Rode, “Geometric optics of arrays of reflective surfaces,” Appl. Opt. 33, 2419–2436 (1994).
[Crossref] [PubMed]

R. M. Bionta, K. M. Skulina, and J. Weinberg, “Hard X-ray sputtered-sliced phase zone plates,” Appl. Phys. Lett. 64, 945–947 (1994).
[Crossref]

Ahl, S. R.

H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).

Allen, L. J.

L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Comm. 199, 65–75 (2001).
[Crossref]

Als-Nielsen, J.

J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, 2011), 2nd ed.
[Crossref]

Andrejczuk, A.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. B 364, 60–64 (2015).
[Crossref]

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Andrews, J. C.

J. C. Andrews and B. M. Weckhuysen, “Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work,” ChemPhysChem 14, 3655–3666 (2013).
[Crossref] [PubMed]

Aplin, S.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Aquila, A.

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

S. Bajt, H. N. Chapman, A. Aquila, and E. Gullikson, “High-efficiency X-ray gratings with asymmetric-cut multilayers,” J. Opt. Soc. Am. A 29, 216–230 (2012).
[Crossref]

Attwood, D. T.

D. T. Attwood and A. Sakdinawat, X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 2016), 2nd ed.
[Crossref]

Authier, A.

A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University, 2001).

Bajt, S.

M. Prasciolu and S. Bajt, “On the Properties of WC/SiC Multilayers,” Appl. Sci. 8, 571 (2018).
[Crossref]

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. B 364, 60–64 (2015).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

S. Bajt, H. N. Chapman, A. Aquila, and E. Gullikson, “High-efficiency X-ray gratings with asymmetric-cut multilayers,” J. Opt. Soc. Am. A 29, 216–230 (2012).
[Crossref]

Barrett, R.

Barthelmess, M.

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Barty, A.

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Bean, R. J.

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Bérujon, S.

S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “Two-dimensional X-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
[Crossref] [PubMed]

Betz, O.

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

Bionta, R. M.

R. M. Bionta, K. M. Skulina, and J. Weinberg, “Hard X-ray sputtered-sliced phase zone plates,” Appl. Phys. Lett. 64, 945–947 (1994).
[Crossref]

Bohic, S.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002), 7th ed.

Bouet, N.

Boye, P.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Braun, S.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

Budai, J. D.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to X-ray microbeam and nanobeam science,” Science 334, 1234–1239 (2011).
[Crossref] [PubMed]

Bunk, O.

Burghammer, M.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Burkhardt, A.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Bytchkov, A.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

Camel, D.

T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
[Crossref]

Cerbino, R.

S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “Two-dimensional X-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
[Crossref] [PubMed]

Chapman, H. N.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

S. Bajt, H. N. Chapman, A. Aquila, and E. Gullikson, “High-efficiency X-ray gratings with asymmetric-cut multilayers,” J. Opt. Soc. Am. A 29, 216–230 (2012).
[Crossref]

S. Vogt, H. N. Chapman, C. Jacobsen, and R. Medenwaldt, “Dark field X-ray microscopy: the effects of condenser/detector aperture,” Ultramicroscopy 87, 25–44 (2001).
[Crossref] [PubMed]

H. N. Chapman, “Phase-retrieval X-ray microscopy by Wigner deconvolution,” Ultramicroscopy 66, 153–172 (1996).
[Crossref]

H. N. Chapman and A. V. Rode, “Geometric optics of arrays of reflective surfaces,” Appl. Opt. 33, 2419–2436 (1994).
[Crossref] [PubMed]

Chen, J. P.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Chu, Y. S.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

X. Huang, W. Xu, E. Nazaretski, N. Bouet, J. Zhou, Y. S. Chu, and H. Yan, “Hard X-ray scanning imaging achieved with bonded multilayer Laue lenses,” Opt. Express 25, 8698–8704 (2017).
[Crossref] [PubMed]

H. Yan, X. Huang, N. Bouet, J. Zhou, E. Nazaretski, and Y. S. Chu, “Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges,” Opt. Express 25, 25234–25242 (2017).
[Crossref] [PubMed]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23, 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20, 89–97 (2013).
[Crossref]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

Cloetens, P.

J. C. da Silva, A. Pacureanu, Y. Yang, S. Bohic, C. Morawe, R. Barrett, and P. Cloetens, “Efficient concentration of high-energy X-rays for diffraction-limited imaging resolution,” Optica 4, 492–495 (2017).
[Crossref]

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

Conley, R.

Cook, P. K.

H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).

da Silva, J. C.

David, C.

Detlefs, C.

A. F. Pedersen, H. Simons, C. Detlefs, and H. F. Poulsen, “The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy,” J. Synchrotron Radiat. 25, 717–728 (2018).
[Crossref] [PubMed]

H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

F. J. Koch, C. Detlefs, T. J. Schröter, D. Kunka, A. Last, and J. Mohr, “Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry,” Opt. Express 24, 9168–9177 (2010).
[Crossref]

Diaz, A.

Domaracký, M.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Du, Y.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Dubois, S.

T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
[Crossref]

Feldkamp, J.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Fleckenstein, H.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Gleyzolle, H.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Graafsma, H.

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Guizar-Sicairos, M.

Gullikson, E.

Hamm, C. E.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Harder, R.

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2011), pp. 4.96 and 4.88, 92nd ed.

Hecker, M.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

Heethoff, M.

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

Helfen, L.

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

Holt, M.

Huang, X.

Ice, G. E.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to X-ray microbeam and nanobeam science,” Science 334, 1234–1239 (2011).
[Crossref] [PubMed]

Jacobsen, C.

K. Li, M. Wojcik, and C. Jacobsen, “Multislicing does it all— calculating the performance of nanofocusing X-ray optics,” Opt. Express 25, 1831–1846 (2017).
[Crossref]

S. Vogt, H. N. Chapman, C. Jacobsen, and R. Medenwaldt, “Dark field X-ray microscopy: the effects of condenser/detector aperture,” Ultramicroscopy 87, 25–44 (2001).
[Crossref] [PubMed]

Jahedi, N.

Jakobsen, A. C.

H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).

Kalbfleisch, S.

Kang, H. C.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

Kewish, C. M.

King, A.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Koch, C. T.

C. T. Koch, “Towards full-resolution inline electron holography,” Micron 63, 69–75 (2014).
[Crossref]

Koch, F. J.

Kohn, V.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” J. Opt. Soc. Am. 384, 49–51 (1996).

Krebs, H.-U.

T. Liese, V. Radisch, and H.-U. Krebs, “Fabrication of multilayer Laue lenses by combination of pulsed laser deposition and focused ion beam,” Rev. Sci. Instrum. 81, 073710 (2010).
[Crossref]

Krüger, P.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

Krzywinski, J.

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. B 364, 60–64 (2015).
[Crossref]

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Kubec, A.

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

Küchler, M.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Kuhn, M.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Kunka, D.

Kurapova, O.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Lafford, T. A.

T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
[Crossref]

Last, A.

Lauer, K.

Lee, W. K.

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

Lengeler, B.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” J. Opt. Soc. Am. 384, 49–51 (1996).

Leontowich, A. F. G.

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

Leson, A.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

Li, K.

Liese, T.

T. Liese, V. Radisch, and H.-U. Krebs, “Fabrication of multilayer Laue lenses by combination of pulsed laser deposition and focused ion beam,” Rev. Sci. Instrum. 81, 073710 (2010).
[Crossref]

Lima, E.

Liu, C.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

Lu, M.

Ludwig, W.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Macrander, A.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23, 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

Macrander, A. T.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

Maire, E.

E. Maire and P. J. Withers, “Quantitative X-ray tomography,” Int. Mat. Rev. 59, 1–43 (2014).
[Crossref]

Mantion, A.

Mariani, V.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Maser, J.

X. Huang, R. Conley, N. Bouet, J. Zhou, A. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23, 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

McMorrow, D.

J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, 2011), 2nd ed.
[Crossref]

Medenwaldt, R.

S. Vogt, H. N. Chapman, C. Jacobsen, and R. Medenwaldt, “Dark field X-ray microscopy: the effects of condenser/detector aperture,” Ultramicroscopy 87, 25–44 (2001).
[Crossref] [PubMed]

Meents, A.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Menzel, A.

Messerschmidt, M.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Michette, A. G.

A. G. Michette, Optical Systems for Soft X rays (Plenum, 1986), p. 59.

Mohr, J.

Morawe, C.

Morgan, A. J.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Murray, K. T.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Nazaretski, E.

Niese, S.

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

Oberthuer, D.

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Oxley, M. P.

L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Comm. 199, 65–75 (2001).
[Crossref]

Pacureanu, A.

Pande, K.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Pang, J. W. L.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to X-ray microbeam and nanobeam science,” Science 334, 1234–1239 (2011).
[Crossref] [PubMed]

Pantleon, W.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Papoulis, A.

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968), 1st ed.

Patommel, J.

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Pedersen, A. F.

A. F. Pedersen, H. Simons, C. Detlefs, and H. F. Poulsen, “The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy,” J. Synchrotron Radiat. 25, 717–728 (2018).
[Crossref] [PubMed]

Pennicard, D.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Peverini, L.

S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “Two-dimensional X-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
[Crossref] [PubMed]

Plassat, N.

T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
[Crossref]

Poulsen, H. F.

A. F. Pedersen, H. Simons, C. Detlefs, and H. F. Poulsen, “The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy,” J. Synchrotron Radiat. 25, 717–728 (2018).
[Crossref] [PubMed]

H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Prasciolu, M.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

M. Prasciolu and S. Bajt, “On the Properties of WC/SiC Multilayers,” Appl. Sci. 8, 571 (2018).
[Crossref]

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

Qian, J.

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

Radisch, V.

T. Liese, V. Radisch, and H.-U. Krebs, “Fabrication of multilayer Laue lenses by combination of pulsed laser deposition and focused ion beam,” Rev. Sci. Instrum. 81, 073710 (2010).
[Crossref]

Riekel, C.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Robinson, I. K.

Rode, A. V.

Rose, V.

Rossat, M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

Sakdinawat, A.

D. T. Attwood and A. Sakdinawat, X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 2016), 2nd ed.
[Crossref]

Schmidt, S.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Schroer, C. G.

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Schröter, T. J.

Shen, Q.

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

Sheppard, C.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Shu, D.

Simons, H.

A. F. Pedersen, H. Simons, C. Detlefs, and H. F. Poulsen, “The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy,” J. Synchrotron Radiat. 25, 717–728 (2018).
[Crossref] [PubMed]

H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Skulina, K. M.

R. M. Bionta, K. M. Skulina, and J. Weinberg, “Hard X-ray sputtered-sliced phase zone plates,” Appl. Phys. Lett. 64, 945–947 (1994).
[Crossref]

Snigirev, A.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” J. Opt. Soc. Am. 384, 49–51 (1996).

Snigireva, I.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” J. Opt. Soc. Am. 384, 49–51 (1996).

Stachnik, K.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Stephenson, G. B.

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

Stöhr, F.

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Suzuki, Y.

Y. Suzuki, “Resolution Limit of Refractive Lens and Fresnel Lens in X-Ray Region,” Jpn. J. Appl. Phys. 43, 7311–7314 (2004).
[Crossref]

van der Hart, A.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Vaughan, G. B. M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

Vila-Comamala, J.

Villanova, J.

T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
[Crossref]

Villanueva-Perez, P.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Vincze, L.

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Vogt, S.

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

S. Vogt, H. N. Chapman, C. Jacobsen, and R. Medenwaldt, “Dark field X-ray microscopy: the effects of condenser/detector aperture,” Ultramicroscopy 87, 25–44 (2001).
[Crossref] [PubMed]

Weckhuysen, B. M.

J. C. Andrews and B. M. Weckhuysen, “Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work,” ChemPhysChem 14, 3655–3666 (2013).
[Crossref] [PubMed]

Wegst, U.

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

Weide, D.

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

Weinberg, J.

R. M. Bionta, K. M. Skulina, and J. Weinberg, “Hard X-ray sputtered-sliced phase zone plates,” Appl. Phys. Lett. 64, 945–947 (1994).
[Crossref]

Wilson, T.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Withers, P. J.

E. Maire and P. J. Withers, “Quantitative X-ray tomography,” Int. Mat. Rev. 59, 1–43 (2014).
[Crossref]

Wojcik, M.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002), 7th ed.

Wright, J. P.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

Xu, W.

Yan, H.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

X. Huang, W. Xu, E. Nazaretski, N. Bouet, J. Zhou, Y. S. Chu, and H. Yan, “Hard X-ray scanning imaging achieved with bonded multilayer Laue lenses,” Opt. Express 25, 8698–8704 (2017).
[Crossref] [PubMed]

H. Yan, X. Huang, N. Bouet, J. Zhou, E. Nazaretski, and Y. S. Chu, “Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges,” Opt. Express 25, 25234–25242 (2017).
[Crossref] [PubMed]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23, 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20, 89–97 (2013).
[Crossref]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

Yang, Y.

Yefanov, O.

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Zdora, M.-C.

M.-C. Zdora, “State of the art of X-ray speckle-based phase-contrast and dark-field imaging,” J. Imaging 4, 60 (2018).
[Crossref]

Zhou, J.

Ziegler, E.

S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “Two-dimensional X-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
[Crossref] [PubMed]

Zschech, E.

AIP Conf. Proc. (1)

S. Bajt, M. Prasciolu, A. J. Morgan, H. N. Chapman, J. Krzywinski, and A. Andrejczuk, “One dimensional focusing with high numerical aperture multilayer Laue lens,” AIP Conf. Proc. 1696, 020049 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. M. Bionta, K. M. Skulina, and J. Weinberg, “Hard X-ray sputtered-sliced phase zone plates,” Appl. Phys. Lett. 64, 945–947 (1994).
[Crossref]

C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “Hard X-ray nanoprobe based on refractive X-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
[Crossref]

Appl. Sci. (1)

M. Prasciolu and S. Bajt, “On the Properties of WC/SiC Multilayers,” Appl. Sci. 8, 571 (2018).
[Crossref]

ChemPhysChem (1)

J. C. Andrews and B. M. Weckhuysen, “Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work,” ChemPhysChem 14, 3655–3666 (2013).
[Crossref] [PubMed]

Int. Mat. Rev. (1)

E. Maire and P. J. Withers, “Quantitative X-ray tomography,” Int. Mat. Rev. 59, 1–43 (2014).
[Crossref]

J. Appl. Cryst. (1)

H. F. Poulsen, A. C. Jakobsen, H. Simons, S. R. Ahl, P. K. Cook, and C. Detlefs, “X-ray diffraction microscopy based on refractive optics,” J. Appl. Cryst. 50, 1441–1456 (2017).

J. Imaging (1)

M.-C. Zdora, “State of the art of X-ray speckle-based phase-contrast and dark-field imaging,” J. Imaging 4, 60 (2018).
[Crossref]

J. Microsc. (1)

O. Betz, U. Wegst, D. Weide, M. Heethoff, L. Helfen, W. K. Lee, and P. Cloetens, “Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure,” J. Microsc. 227, 51–71 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” J. Opt. Soc. Am. 384, 49–51 (1996).

J. Opt. Soc. Am. A (1)

J. Phys. Conf. Ser. (1)

T. A. Lafford, J. Villanova, N. Plassat, S. Dubois, and D. Camel, “Synchrotron X-ray imaging applied to solar photovoltaic silicon,” J. Phys. Conf. Ser. 425, 192019 (2013).
[Crossref]

J. Synchrotron Radiat. (4)

H. Yan and Y. S. Chu, “Optimization of multilayer Laue lenses for a scanning X-ray microscope,” J. Synchrotron Radiat. 20, 89–97 (2013).
[Crossref]

A. Kubec, S. Braun, S. Niese, P. Krüger, J. Patommel, M. Hecker, A. Leson, and C. G. Schroer, “Ptychography with multilayer Laue lenses,” J. Synchrotron Radiat. 21, 1122–1127 (2014).
[Crossref] [PubMed]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18, 125–133 (2011).
[Crossref] [PubMed]

A. F. Pedersen, H. Simons, C. Detlefs, and H. F. Poulsen, “The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy,” J. Synchrotron Radiat. 25, 717–728 (2018).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

Y. Suzuki, “Resolution Limit of Refractive Lens and Fresnel Lens in X-Ray Region,” Jpn. J. Appl. Phys. 43, 7311–7314 (2004).
[Crossref]

Light: Sci. Appl. (1)

S. Bajt, M. Prasciolu, H. Fleckenstein, M. Domaracký, H. N. Chapman, A. J. Morgan, O. Yefanov, M. Messerschmidt, Y. Du, K. T. Murray, V. Mariani, M. Kuhn, S. Aplin, K. Pande, P. Villanueva-Perez, K. Stachnik, J. P. Chen, A. Andrejczuk, A. Meents, A. Burkhardt, D. Pennicard, X. Huang, H. Yan, E. Nazaretski, Y. S. Chu, and C. E. Hamm, “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light: Sci. Appl. 7, 17162 (2018).
[Crossref]

Micron (1)

C. T. Koch, “Towards full-resolution inline electron holography,” Micron 63, 69–75 (2014).
[Crossref]

Nat. Commun. (1)

H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen, “Dark-field X-ray microscopy for multiscale structural characterization,” Nat. Commun. 6, 6098 (2015).
[Crossref] [PubMed]

Nucl. Instr. Meth. Phys. Res. B (1)

A. Andrejczuk, J. Krzywinski, and S. Bajt, “Influence of imperfections in a wedged multilayer Laue lens for the focusing of X-rays investigated by beam propagation method,” Nucl. Instr. Meth. Phys. Res. B 364, 60–64 (2015).
[Crossref]

Opt. Comm. (1)

L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Comm. 199, 65–75 (2001).
[Crossref]

Opt. Express (8)

J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, “Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19, 21333–21344 (2011).
[Crossref] [PubMed]

F. J. Koch, C. Detlefs, T. J. Schröter, D. Kunka, A. Last, and J. Mohr, “Quantitative characterization of X-ray lenses from two fabrication techniques with grating interferometry,” Opt. Express 24, 9168–9177 (2010).
[Crossref]

H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, “Two dimensional hard X-ray nanofocusing with crossed multilayer Laue lenses,” Opt. Express 19, 15069–15076 (2011).
[Crossref] [PubMed]

X. Huang, W. Xu, E. Nazaretski, N. Bouet, J. Zhou, Y. S. Chu, and H. Yan, “Hard X-ray scanning imaging achieved with bonded multilayer Laue lenses,” Opt. Express 25, 8698–8704 (2017).
[Crossref] [PubMed]

K. Li, M. Wojcik, and C. Jacobsen, “Multislicing does it all— calculating the performance of nanofocusing X-ray optics,” Opt. Express 25, 1831–1846 (2017).
[Crossref]

S. Niese, P. Krüger, A. Kubec, S. Braun, J. Patommel, C. G. Schroer, A. Leson, and E. Zschech, “Full-field X-ray microscopy with crossed partial multilayer Laue lenses,” Opt. Express 22, 20008–20013 (2014).
[Crossref] [PubMed]

X. Huang, R. Conley, N. Bouet, J. Zhou, A. Macrander, J. Maser, H. Yan, E. Nazaretski, K. Lauer, R. Harder, I. K. Robinson, S. Kalbfleisch, and Y. S. Chu, “Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens,” Opt. Express 23, 12496–12507 (2015).
[Crossref] [PubMed]

H. Yan, X. Huang, N. Bouet, J. Zhou, E. Nazaretski, and Y. S. Chu, “Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges,” Opt. Express 25, 25234–25242 (2017).
[Crossref] [PubMed]

Opt. Mat. Express (1)

M. Prasciolu, A. F. G. Leontowich, J. Krzywinski, A. Andrejczuk, H. N. Chapman, and S. Bajt, “Fabrication of wedged multilayer Laue lenses,” Opt. Mat. Express 5, 228318 (2015).
[Crossref]

Optica (1)

Phys. Rev. B (1)

H. Yan, J. Maser, A. Macrander, Q. Shen, S. Vogt, G. B. Stephenson, and H. C. Kang, “Takagi-Taupin description of X-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).
[Crossref]

Phys. Rev. Lett. (2)

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref] [PubMed]

S. Bérujon, E. Ziegler, R. Cerbino, and L. Peverini, “Two-dimensional X-ray beam phase sensing,” Phys. Rev. Lett. 108, 158102 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

T. Liese, V. Radisch, and H.-U. Krebs, “Fabrication of multilayer Laue lenses by combination of pulsed laser deposition and focused ion beam,” Rev. Sci. Instrum. 81, 073710 (2010).
[Crossref]

R. Conley, C. Liu, J. Qian, C. M. Kewish, A. T. Macrander, H. Yan, H. C. Kang, J. Maser, and G. B. Stephenson, “Wedged multilayer Laue lens,” Rev. Sci. Instrum. 79, 053104 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

A. J. Morgan, M. Prasciolu, A. Andrejczuk, J. Krzywinski, A. Meents, D. Pennicard, H. Graafsma, A. Barty, R. J. Bean, M. Barthelmess, D. Oberthuer, O. Yefanov, A. Aquila, H. N. Chapman, and S. Bajt, “High numerical aperture multilayer Laue lenses,” Sci. Rep. 5, 9892 (2015).
[Crossref] [PubMed]

Science (1)

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to X-ray microbeam and nanobeam science,” Science 334, 1234–1239 (2011).
[Crossref] [PubMed]

Ultramicroscopy (2)

S. Vogt, H. N. Chapman, C. Jacobsen, and R. Medenwaldt, “Dark field X-ray microscopy: the effects of condenser/detector aperture,” Ultramicroscopy 87, 25–44 (2001).
[Crossref] [PubMed]

H. N. Chapman, “Phase-retrieval X-ray microscopy by Wigner deconvolution,” Ultramicroscopy 66, 153–172 (1996).
[Crossref]

Other (9)

J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics (Wiley, 2011), 2nd ed.
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

A. Papoulis, Systems and Transforms with Applications in Optics (McGraw-Hill, 1968), 1st ed.

W. M. Haynes, CRC Handbook of Chemistry and Physics (CRC, 2011), pp. 4.96 and 4.88, 92nd ed.

A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University, 2001).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 2002), 7th ed.

D. T. Attwood and A. Sakdinawat, X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University, 2016), 2nd ed.
[Crossref]

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

A. G. Michette, Optical Systems for Soft X rays (Plenum, 1986), p. 59.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of a wedged MLL. The blue and red lines depict rays that are reflected in the lens at a distance z (zf) from the entrance of the MLL. The upper incident blue ray is reflected by the nth layer, while the red ray is reflected two layers below it (n − 2), but the heights rn and rn−2 ensure the ray paths differ by a wavelength and add in phase at the focus. The layers are oriented azimuthally on a circle centered at the vertex V. (b) Schematic showing an incident collimated beam (darker blue) diffracted into two beams by the wedged MLL, when the lens is oriented in the Bragg-diffracting condition. The direct beam transmits through the MLL (light blue beam) without change of direction (it is attenuated and refracted). The Bragg-diffracted beam converges on the focus and diverges thereafter (purple beam). The measured far field intensity of the Bragg-diffracted beam of a wedged MLL is depicted. (c) Schematic of the Bragg-diffracting condition for an incident collimated beam parallel to the optic axis when the MLL is rotated so that the wedge vertex is upstream of the lens.
Fig. 2
Fig. 2 Three kinds of imaging modes were used in two configurations of the MLLs. In the “nanoprobe” configuration the vertices of the MLL wedges lie downstream of the lens (a) and in the “full-field” configuration they lie upstream (b, c). (a) A sample placed in the diverging beam downstream of beam focus in the nanoprobe configuration forms a projection hologram. Alternatively, the sample can be placed upstream of the lenses (Alt. sample pos.). (b) Another projection holography mode is obtained in the “full-field” configuration where a collimated incident beam parallel to the optical axis is Bragg-diffracted into the diverging beam depicted in Fig. 1(c). The sample may again be placed upstream of the MLL (as shown) or downstream (Alt. sample pos.). Rays (shown in blue) originating from an object in a small field near the optics axis satisfy the Bragg condition of the focused beam to form a magnified direct image. (c) In the direct imaging mode with bright-field illumination, the lens is tilted so that the incident rays pass both through the object field and the lens aperture. Rays (shown in blue) originating from the object satisfy the Bragg condition of the focused beam to form a magnified direct image. In dark-field direct imaging, the incoming beam (orange) is directed away from the lens aperture and the scattered rays (blue) are Bragg-diffracted by the MLL. The right column shows cropped detector images obtained in the respective configurations. For all depicted configurations, the sample was a Siemens star and distances on the detector image axes refer to object space.
Fig. 3
Fig. 3 The intensity of the lens pupil in the projection imaging configuration of Fig. 2(a) at (a) 17.3 keV and at (b) 34.5 keV. The horizontal and vertical axes are the horizontal diffraction angle 2θh and the vertical diffraction angle 2θv, respectively. A flat-field corrected bright-field real image of a test object at 17.3 keV is depicted in (c). The intensity of the field at 17.3 keV without the sample present is shown in (d), with an extent that is smaller than the FOV of the image of an object. The axes in both (c) and (d) are distances in object space. For all intensity plots the grey scale is linearly scaled between 0 counts (black) and the maximum intensity (white).
Fig. 4
Fig. 4 (a) Diffraction efficiency as a function of the pupil position (2θh) and lens tilt for MLL lens 1h measured at 17.3 keV. (b) Plots of diffraction efficiency for the parts of the MLL with the thickest layers (red solid line) and for the thinnest layers (green dashed line). (c) Cropped full field image of the center of the Siemens star test sample, for which the features were located at the center of the FOV. (d) The same sample features after moving the sample to the horizontal edge of the FOV, while still being centered in the vertical direction.
Fig. 5
Fig. 5 Wavefront characterization at 17.3 keV. (a) 2D wavefront retrieved from ptychography after removing primary aberrations of focus and astigmatism. (b) The separated horizontal and vertical wavefronts after removing 45° astigmatism. The black curves show the horizontal phase profile and the red curves show the vertical profile. The solid lines are the results from ptychography and the dashed lines were obtained from speckle tracking. (c) The intensity in the focal plane according to ptychographic reconstructions. (d) The horizontal and vertical profiles of the focal-plane intensity.
Fig. 6
Fig. 6 (a) and (b) Detected maps of the X-ray transmission through the two MLLs at 17.3 keV. The slits were opened to reveal the incident beam and the lenses were slightly displaced from their overlapping condition. The vertically-focusing MLL is in the Bragg-diffracting condition. A schematic is shown in (c) with the vertically-focusing MLL indicated by the red rectangle, the horizontally-focusing MLL indicated by the blue rectangle, and their overlap in purple. Both lenses were mounted on silicon substrates, depicted as cyan squares. In (a) the horizontally-focusing MLL was tilted away from the Bragg condition and in (b) set to the Bragg condition.
Fig. 7
Fig. 7 Bright-field direct imaging of the Siemens star with the MLL objective being translated along the optical axis. (a–c) Experimental images for defocus distances of 0.6 mm, 0 mm, and −0.6 mm relative to the best focus for the region depicted by the light-orange box. (d–f) Corresponding partial coherent wavefront simulations with the same three distances. The orange scale bars in (e) are 2 μm in the object plane. (g) Vertical line profiles obtained from the position indicated by the yellow box in (b). The seven curves correspond to relative sample-objective distances of −0.9 mm, −0.6 mm, −0.3 mm, 0 mm, 0.3 mm, 0.6 mm, and 0.9 mm, respectively, with the shortest distance at the bottom. Corresponding simulations with a vertical coherence length of 130 nm are shown in blue.

Tables (2)

Tables Icon

Table 1 List of MLL design parameters for the lenses used in this paper a .

Tables Icon

Table 2 Focal length, focus size (FWHM) and efficiency of the investigated MLLs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r n ( z ) n λ f + n 2 λ 2 4 ZP condition ( 1 z 2 f + n λ / 2 ) Bragg's law

Metrics