Abstract

A new surface plasmon resonance (SPR) configuration is proposed, which consists of a prism, a dielectric layer, a metal coating, and a matching liquid. The optical constants of each layer in the proposed prism-dielectric-metal-liquid (PDML) configuration have been optimized to match the SPR conditions and reach the strongest intensity. Combining the PDML configuration with spectroscopic ellipsometry, SPR spectroscopic ellipsometry (SPRSE) with a PDML configuration was developed. The SPR wavelength can be adjusted to the desired wavelength by varying the thickness of the dielectric layer. The amplitude and phase change, magnified by the SPR in the visible and near-infrared wavelengths, were obtained to determine the optical constants and thickness of ultrathin metal coatings. The extracted optical constants were found to be in good agreement with the results obtained using transmission electron microscopy (TEM) and X-ray reflectivity (XRR) techniques. These SPRSE measurements show great potential for characterizing the interface between a metal coating and a dielectric layer, and the surface uniformity of ultrathin metal coatings.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration

Guohang Hu, Hongbo He, Anna Sytchkova, Jiaoling Zhao, Jianda Shao, Marialuisa Grilli, and Angela Piegari
Opt. Express 25(12) 13425-13434 (2017)

Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry

Yao Shan, Guohang Hu, Liyuan Gu, Hongbo He, Aijun Zeng, Yuanan Zhao, and Anna Sytchkova
Appl. Opt. 56(28) 7898-7904 (2017)

Microfabricated Otto chip device for surface plasmon resonance-based optical sensing

Eduardo Fontana, Jung-Mu Kim, Ignacio Llamas-Garro, and Gustavo Oliveira Cavalcanti
Appl. Opt. 54(31) 9200-9204 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
    [Crossref]
  2. J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
    [Crossref]
  3. Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
    [Crossref]
  4. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  5. Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
    [Crossref]
  6. M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
    [Crossref]
  7. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241(4), 313–324 (1971).
    [Crossref]
  8. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [Crossref]
  9. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
    [Crossref] [PubMed]
  10. A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
    [Crossref]
  11. H. Raether, Surface Plasmons on Smooth Surfaces and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  12. Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
    [Crossref]
  13. T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46(9), 1575–1582 (2007).
    [Crossref] [PubMed]
  14. Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
    [Crossref] [PubMed]
  15. G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
    [Crossref] [PubMed]
  16. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 1980).
  17. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [Crossref]
  18. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
    [Crossref] [PubMed]
  19. CDGM Zemax catalog 2017–09 (obtained from http://www.cdgmgd.com ).
  20. M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20(7), 1312–1319 (2005).
    [Crossref] [PubMed]
  21. K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
    [Crossref]
  22. Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
    [Crossref]

2018 (1)

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

2017 (4)

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
[Crossref]

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

2016 (1)

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

2014 (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

2010 (1)

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

2008 (2)

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
[Crossref]

2007 (1)

T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46(9), 1575–1582 (2007).
[Crossref] [PubMed]

2006 (1)

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

2005 (1)

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20(7), 1312–1319 (2005).
[Crossref] [PubMed]

2004 (1)

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[Crossref] [PubMed]

1997 (1)

D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
[Crossref]

1984 (1)

M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1971 (1)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

1968 (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Ahmad, M.

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20(7), 1312–1319 (2005).
[Crossref] [PubMed]

Alda, J.

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
[Crossref]

Arwin, H.

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[Crossref] [PubMed]

Betsis, S. C.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Bliokh, Yu. P.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Cai, Q.-Y.

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Che, L.-Y.

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cuadrado, A.

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
[Crossref]

Cui, Y.

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

De Rego, P. J.

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

Dodge, M. J.

M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
[Crossref] [PubMed]

Elshorbagy, M. H.

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
[Crossref]

Ewing, D.

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

Felsteiner, J.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Gao, Q.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

Grilli, M.

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

Gu, L.

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

He, H.

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

Hench, L. L.

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20(7), 1312–1319 (2005).
[Crossref] [PubMed]

Hloupis, G.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Hu, G.

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

Iwata, T.

T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46(9), 1575–1582 (2007).
[Crossref] [PubMed]

Johansen, K.

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jundt, D.

D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
[Crossref]

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

Li, E.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

Liou, S. H.

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

Lipson, S. G.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Liu, M.-H.

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Liu, Y. F.

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

Maeda, S.

T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46(9), 1575–1582 (2007).
[Crossref] [PubMed]

Mao, P.-H.

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Moutzouris, K.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Nabok, A.

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Pan, Y.

Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
[Crossref]

Papamichael, M.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Piegari, A.

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

Poksinski, M.

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[Crossref] [PubMed]

Shan, Y.

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

Shao, J.

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

Small, D. L.

D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
[Crossref]

Stavrakas, I.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Sytchkova, A.

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

Triantis, D.

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Tsargorodskaya, A.

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

Vander, R.

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Wang, A. X.

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

Wang, B.

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

Wang, H.

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

Wang, S.

Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
[Crossref]

Wang, X.

Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
[Crossref]

Yang, Y.

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

Yi, K.

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

Yin, X.

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

You, Y.

Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
[Crossref]

Zelmon, D. E.

D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
[Crossref]

Zeng, A.

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

Zhang, D.-X.

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Zhang, R.-J.

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Zhao, J.

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

Zhao, Y.

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

Zheng, Y.-X.

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Zhou, J.

Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
[Crossref]

AIP Adv. (1)

Y. F. Liu, X. Yin, Y. Yang, D. Ewing, P. J. De Rego, and S. H. Liou, “Tunneling magnetoresistance sensors with different coupled free layers,” AIP Adv. 7(5), 056666 (2017).
[Crossref]

Am. J. Phys. (1)

Y. You, X. Wang, S. Wang, Y. Pan, and J. Zhou, “A new method to demonstrate frustrated total internal reflection in the visible band,” Am. J. Phys. 76(3), 224–228 (2008).
[Crossref]

Appl. Opt. (4)

M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
[Crossref] [PubMed]

T. Iwata and S. Maeda, “Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry,” Appl. Opt. 46(9), 1575–1582 (2007).
[Crossref] [PubMed]

Y. Shan, G. Hu, L. Gu, H. He, A. Zeng, Y. Zhao, and A. Sytchkova, “Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry,” Appl. Opt. 56(28), 7898–7904 (2017).
[Crossref] [PubMed]

H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt. 43(15), 3028–3036 (2004).
[Crossref] [PubMed]

Appl. Phys. B (1)

K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, and D. Triantis, “Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared,” Appl. Phys. B 116(3), 617–622 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Yu. P. Bliokh, R. Vander, S. G. Lipson, and J. Felsteiner, “Visualization of the complex refractive index of a conductor by frustrated total internal reflection,” Appl. Phys. Lett. 89(2), 021908 (2006).
[Crossref]

Biosens. Bioelectron. (1)

M. Ahmad and L. L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers,” Biosens. Bioelectron. 20(7), 1312–1319 (2005).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

J. Zhao, H. He, H. Wang, K. Yi, B. Wang, and Y. Cui, “Interface characterization of Mo/Si multilayers,” Chin. Opt. Lett. 14(8), 083401 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
[Crossref]

J. Phys. D Appl. Phys. (1)

Q.-Y. Cai, Y.-X. Zheng, P.-H. Mao, R.-J. Zhang, D.-X. Zhang, M.-H. Liu, and L.-Y. Che, “Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films,” J. Phys. D Appl. Phys. 43(44), 445302 (2010).
[Crossref]

Opt. Express (1)

G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25(12), 13425–13434 (2017).
[Crossref] [PubMed]

Photon. Res. (2)

M. H. Elshorbagy, A. Cuadrado, and J. Alda, “High-sensitivity integrated devices based on surface plasmon resonance for sensing applications,” Photon. Res. 5(6), 654–661 (2017).
[Crossref]

Q. Gao, E. Li, and A. X. Wang, “Ultra-compact and broadband electro-absorption modulator using an epsilon-near-zero conductive oxide,” Photon. Res. 6(4), 277–281 (2018).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Thin Solid Films (1)

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films 516(24), 8993–9001 (2008).
[Crossref]

Z. Phys. (2)

E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241(4), 313–324 (1971).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[Crossref]

Other (3)

H. Raether, Surface Plasmons on Smooth Surfaces and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 1980).

CDGM Zemax catalog 2017–09 (obtained from http://www.cdgmgd.com ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of an SPR spectroscopic ellipsometry setup, where the PDML configuration is inside the black dashed line.
Fig. 2
Fig. 2 Optical constants of the ZF1 glass, MgF2 layer, and n-butanol reported in the literature.
Fig. 3
Fig. 3 Simulated ellipsometric parameters (a) Ψ and (b) Δ as functions of the wavelength and incident angle of ellipsometry without SPR excitation. (c) Ψ and (d) Δ as functions of the wavelength and incident angle in SPRSE.
Fig. 4
Fig. 4 Simulated ellipsometric parameters (a) Ψ and (b) Δ for two different Ag-film thicknesses by means of SE without SPR, SPRSE using the PDML configuration, and SPRSE using the Otto–Bliokh configuration (OBC). The incident angle is 64° for the first two cases and 42° in the last case. The wavelengths range from 500 to 2000 nm in all cases.
Fig. 5
Fig. 5 Experimental results (dots) and fitted results (lines) of the ellipsometric parameters (a) Ψ and (b) Δ of a ~10-nm-thick Ag film and a ~15-nm-thick Ag film. In each case, the incident angle is 64°, and the wavelengths range from 500 nm to 2000 nm.
Fig. 6
Fig. 6 Thicknesses of the Ag films measured by SPRSE using the PDML configuration and X-ray reflectivity (XRR).
Fig. 7
Fig. 7 Transmission electron microscopy (TEM) image of the cross-sectional structure of an ultrathin Ag film deposited on a layer of MgF2 film.
Fig. 8
Fig. 8 (a) Refractive index and (b) Extinction coefficient of a 10.9-nm-thick silver layer measured by SPRSE using the PDML configuration, and SPRSE using the Otto–Bliokh configuration (OBC).
Fig. 9
Fig. 9 (a) Measurement points and YY’ axis on the surface of the Ag film with the PDML configuration and (b) film thickness of a 10.9-nm-thick Ag film measured at different positions along the YY’ axis, where the angle of incidence is 64°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k x = k 0 ε m ε d ε m + ε d ,
ρ= r p r s =tanΨexp( iΔ ).
n 2 =1+ B n λ 2 λ 2 C n 2 ,
δ= λ 4π n 1 2 sin 2 θ n 4 2 ,
ε= ε [ 1 ω p 2 ω( ω+iΓ ) ],

Metrics