Abstract

We propose a non-contact measurement method for determining two-dimensional (2D) temperature distribution of light-emitting diodes (LEDs). This method is based on both micro-hyperspectral imaging technology and reflected light method, owning merits of both high efficiency and high spatial resolution. Blue and green bare LEDs are used as LED under test, while red and near-infrared LEDs provide incident light to avoid spectral overlapping so as to reduce measurement error. During data processing, the convolution linear filtering algorithm is employed to improve the measurement accuracy. This proposed method is compared with the micro-thermocouple and infrared thermal imaging, with their respective comparison results in fairly good agreements. For spatial resolution of 2D temperature distribution, this method increases at least one order of magnitude compared with the thermal imaging method.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heat dissipation performance of a high-brightness LED package assembly using high-thermal conductivity filler

K. C. Yung, H. Liem, and H. S. Choy
Appl. Opt. 52(35) 8484-8493 (2013)

Three-dimensional thermal model of a high-power diode laser bar

Di-Hai Wu, Chung-En Zah, and Xingsheng Liu
Appl. Opt. 57(33) 9868-9876 (2018)

Improving the color uniformity of multiple colored light-emitting diodes using a periodic microstructure surface

Shang-Ping Ying, Chao-Ying Lin, and Chih-Cheng Ni
Appl. Opt. 54(28) E75-E79 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
    [Crossref] [PubMed]
  2. Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
    [Crossref] [PubMed]
  3. C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
    [Crossref]
  4. X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
    [Crossref]
  5. H. Baumgartner, A. Vaskuri, P. Kärhä, and E. Ikonen, “Temperature invariant energy value in LED spectra,” Appl. Phys. Lett. 109, 231103 (2016).
    [Crossref]
  6. S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
    [Crossref]
  7. N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).
    [Crossref]
  8. Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
    [Crossref]
  9. J. H. Kim and M. W. Shin, “Thermal behavior of remote phosphor in light-emitting diode packages,” IEEE Electron Device Lett. 36, 832–834 (2015).
    [Crossref]
  10. Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
    [Crossref]
  11. S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
    [Crossref]
  12. H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
    [Crossref]
  13. B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
    [Crossref]
  14. Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
    [Crossref]
  15. K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
    [Crossref]
  16. T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24, 26565–26574 (2016).
    [Crossref] [PubMed]
  17. A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
    [Crossref]
  18. O. J. Joung and Y. H. Kim, “Application of an IR thermographic device for the detection of a simulated defect in a pipe,” Sensors 6, 1199–1208 (2006).
    [Crossref]
  19. M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
    [Crossref]
  20. J. A. Summers, M. Farzaneh, R. J. Ram, and J. A. Hudgings, “Thermal and optical characterization of photonic integrated circuits by thermoreflectance microscopy,” IEEE J. Quantum Electron. 46, 3–10 (2010).
    [Crossref]
  21. B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, “Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers,” J. Appl. Phys. 113, 104502 (2013).
    [Crossref]
  22. Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
    [Crossref]
  23. B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
    [Crossref]
  24. G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
    [Crossref]

2018 (1)

Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
[Crossref] [PubMed]

2017 (4)

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
[Crossref]

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

2016 (3)

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24, 26565–26574 (2016).
[Crossref] [PubMed]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

H. Baumgartner, A. Vaskuri, P. Kärhä, and E. Ikonen, “Temperature invariant energy value in LED spectra,” Appl. Phys. Lett. 109, 231103 (2016).
[Crossref]

2015 (2)

J. H. Kim and M. W. Shin, “Thermal behavior of remote phosphor in light-emitting diode packages,” IEEE Electron Device Lett. 36, 832–834 (2015).
[Crossref]

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

2013 (4)

B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, “Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers,” J. Appl. Phys. 113, 104502 (2013).
[Crossref]

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

2010 (1)

J. A. Summers, M. Farzaneh, R. J. Ram, and J. A. Hudgings, “Thermal and optical characterization of photonic integrated circuits by thermoreflectance microscopy,” IEEE J. Quantum Electron. 46, 3–10 (2010).
[Crossref]

2009 (1)

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

2007 (1)

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

2006 (1)

O. J. Joung and Y. H. Kim, “Application of an IR thermographic device for the detection of a simulated defect in a pipe,” Sensors 6, 1199–1208 (2006).
[Crossref]

2005 (5)

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[Crossref] [PubMed]

H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
[Crossref]

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
[Crossref]

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).
[Crossref]

2004 (1)

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

Bahk, J.-H.

B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, “Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers,” J. Appl. Phys. 113, 104502 (2013).
[Crossref]

Bassler, M.

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

Baumgartner, H.

H. Baumgartner, A. Vaskuri, P. Kärhä, and E. Ikonen, “Temperature invariant energy value in LED spectra,” Appl. Phys. Lett. 109, 231103 (2016).
[Crossref]

Chae, J.-H.

H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
[Crossref]

Chang, R. R.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Charlot, B.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Chen, G.

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Chen, K.

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

Chen, L.

Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
[Crossref] [PubMed]

Chen, S.

Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
[Crossref] [PubMed]

Chen, S.-Y.

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Chen, Z.

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Chhajed, S.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
[Crossref]

Chiou, S.-C.

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Choi, S.-B.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Choi, S.-Y.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Christofferson, J.

B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, “Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers,” J. Appl. Phys. 113, 104502 (2013).
[Crossref]

Chung, T.-Y.

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Cretin, B.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Dang, S.-J.

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Dilhaire, S.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Elsaesser, T.

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

Fan, X.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Farzaneh, M.

J. A. Summers, M. Farzaneh, R. J. Ram, and J. A. Hudgings, “Thermal and optical characterization of photonic integrated circuits by thermoreflectance microscopy,” IEEE J. Quantum Electron. 46, 3–10 (2010).
[Crossref]

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Filloy, C.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Fournier, D.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Gao, Y.

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Gao, Y.-L.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Gessmann, T.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
[Crossref]

Gomes, S.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Gu, Y.

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).
[Crossref]

Guo, Z.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Guo, Z.-Q.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Ha, K.-H.

H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
[Crossref]

Hsieh, Y.-H.

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Hu, R.

Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Hudgings, J. A.

J. A. Summers, M. Farzaneh, R. J. Ram, and J. A. Hudgings, “Thermal and optical characterization of photonic integrated circuits by thermoreflectance microscopy,” IEEE J. Quantum Electron. 46, 3–10 (2010).
[Crossref]

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Ikonen, E.

H. Baumgartner, A. Vaskuri, P. Kärhä, and E. Ikonen, “Temperature invariant energy value in LED spectra,” Appl. Phys. Lett. 109, 231103 (2016).
[Crossref]

Joung, O. J.

O. J. Joung and Y. H. Kim, “Application of an IR thermographic device for the detection of a simulated defect in a pipe,” Sensors 6, 1199–1208 (2006).
[Crossref]

Kang, C.-M.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Kärhä, P.

H. Baumgartner, A. Vaskuri, P. Kärhä, and E. Ikonen, “Temperature invariant energy value in LED spectra,” Appl. Phys. Lett. 109, 231103 (2016).
[Crossref]

Katagiri, T.

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24, 26565–26574 (2016).
[Crossref] [PubMed]

Kim, J. H.

J. H. Kim and M. W. Shin, “Thermal behavior of remote phosphor in light-emitting diode packages,” IEEE Electron Device Lett. 36, 832–834 (2015).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[Crossref] [PubMed]

Kim, S.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Kim, Y. H.

O. J. Joung and Y. H. Kim, “Application of an IR thermographic device for the detection of a simulated defect in a pipe,” Sensors 6, 1199–1208 (2006).
[Crossref]

Kobayashi, T.

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24, 26565–26574 (2016).
[Crossref] [PubMed]

Kong, D.-J.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Kozlowska, A.

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

Latoszek, M.

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

Lee, D.-S.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Lee, J.-Y.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Li, Y.-L.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
[Crossref]

Lin, S.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

Lin, Y.

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Liu, S.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Lu, Y.

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Lu, Y.-J.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Luerssen, D.

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Luo, X.

Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
[Crossref]

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Ma, Y.

Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
[Crossref]

Maize, K.

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Matsuura, Y.

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24, 26565–26574 (2016).
[Crossref] [PubMed]

Mayer, P. M.

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Min, J.-H.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Nam, O.-H.

H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
[Crossref]

Narendran, N.

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).
[Crossref]

Park, Y.-J.

H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
[Crossref]

Pavageau, S.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Peng, Z.-B.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Pipe, K. P.

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Qiu, H.-H.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Raad, P. E.

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Ram, R. J.

J. A. Summers, M. Farzaneh, R. J. Ram, and J. A. Hudgings, “Thermal and optical characterization of photonic integrated circuits by thermoreflectance microscopy,” IEEE J. Quantum Electron. 46, 3–10 (2010).
[Crossref]

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Ryu, H.-Y.

H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
[Crossref]

Schubert, E. F.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
[Crossref]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[Crossref] [PubMed]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

Seo, D.-J.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Shakouri, A.

B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, “Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers,” J. Appl. Phys. 113, 104502 (2013).
[Crossref]

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Shih, B.-J.

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Shih, T.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Shih, T.-M.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

Shim, J.-P.

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

Shin, M. W.

J. H. Kim and M. W. Shin, “Thermal behavior of remote phosphor in light-emitting diode packages,” IEEE Electron Device Lett. 36, 832–834 (2015).
[Crossref]

Shu, W.

Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
[Crossref]

Spellenberg, B.

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

Summers, J. A.

J. A. Summers, M. Farzaneh, R. J. Ram, and J. A. Hudgings, “Thermal and optical characterization of photonic integrated circuits by thermoreflectance microscopy,” IEEE J. Quantum Electron. 46, 3–10 (2010).
[Crossref]

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Sun, C.-C.

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Tessier, G.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Tomm, J. W.

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

Trannoy, N.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Vairac, P.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Vaskuri, A.

H. Baumgartner, A. Vaskuri, P. Kärhä, and E. Ikonen, “Temperature invariant energy value in LED spectra,” Appl. Phys. Lett. 109, 231103 (2016).
[Crossref]

Vermeersch, B.

B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, “Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers,” J. Appl. Phys. 113, 104502 (2013).
[Crossref]

Volz, S.

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

Wang, J.

Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
[Crossref] [PubMed]

Wang, K.

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Weik, F.

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

Wu, B.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

Wu, T.-Z.

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Xi, Y.

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
[Crossref]

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

Xiao, Y.

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

Yang, T.-H.

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Yu, X.

Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
[Crossref]

Zhang, J.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

Zhang, W.

Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
[Crossref] [PubMed]

Zheng, J.-H.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Zhu, L.

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

Zhu, L.-H.

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

AIP Adv. (1)

Z.-Q. Guo, T.-M. Shih, Z.-B. Peng, H.-H. Qiu, Y.-J. Lu, Y.-L. Gao, L.-H. Zhu, J.-H. Zheng, and Z. Chen, “On a relationship among optical power, current density, and junction temperature for InGaN-based light-emitting diodes,” AIP Adv. 7, 015307 (2017).
[Crossref]

Appl. Phys. Lett. (4)

Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163–2165 (2004).
[Crossref]

H. Baumgartner, A. Vaskuri, P. Kärhä, and E. Ikonen, “Temperature invariant energy value in LED spectra,” Appl. Phys. Lett. 109, 231103 (2016).
[Crossref]

H.-Y. Ryu, K.-H. Ha, J.-H. Chae, O.-H. Nam, and Y.-J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett. 87, 093506 (2005).
[Crossref]

A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T. Elsaesser, B. Spellenberg, and M. Bassler, “Analysis of thermal images from diode lasers: temperature profiling and reliability screening,” Appl. Phys. Lett. 86, 203503(2005).
[Crossref]

IEEE Electron Device Lett. (1)

J. H. Kim and M. W. Shin, “Thermal behavior of remote phosphor in light-emitting diode packages,” IEEE Electron Device Lett. 36, 832–834 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Summers, M. Farzaneh, R. J. Ram, and J. A. Hudgings, “Thermal and optical characterization of photonic integrated circuits by thermoreflectance microscopy,” IEEE J. Quantum Electron. 46, 3–10 (2010).
[Crossref]

IEEE Trans. Compon. Packag. Technol. (1)

G. Tessier, S. Pavageau, B. Charlot, C. Filloy, D. Fournier, B. Cretin, S. Dilhaire, S. Gomes, N. Trannoy, P. Vairac, and S. Volz, “Quantitative thermoreflectance imaging: calibration method and validation on a dedicated integrated circuit,” IEEE Trans. Compon. Packag. Technol. 30, 604–608 (2007).
[Crossref]

IEEE Trans. Electron Devices (3)

Y. Xiao, T.-Z. Wu, S.-J. Dang, Y.-L. Gao, Y. Lin, L.-H. Zhu, Z.-Q. Guo, Y.-J. Lu, and Z. Chen, “Determining junction temperature of LEDs by the relative reflected intensity of the incident exciting light,” IEEE Trans. Electron Devices 64, 2257–2260 (2017).
[Crossref]

S. Lin, T. Shih, Y. Lu, Y. Gao, L. Zhu, G. Chen, B. Wu, Z. Guo, J. Zhang, X. Fan, R. R. Chang, and Z. Chen, “Determining junction temperature in InGaN light-emitting diodes using low forward currents,” IEEE Trans. Electron Devices 60, 3775–3779 (2013).
[Crossref]

B. Wu, S. Lin, T.-M. Shih, Y. Gao, Y. Lu, L. Zhu, G. Chen, and Z. Chen, “Junction-temperature determination in InGaN light-emitting diodes using reverse current method,” IEEE Trans. Electron Devices 60, 241–245 (2013).
[Crossref]

Int. J. Heat Mass Transf. (1)

Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phosphor-converted light-emitting diodes,” Int. J. Heat Mass Transf. 106, 1–6 (2017).
[Crossref]

J. Appl. Phys. (2)

S. Chhajed, Y. Xi, Y.-L. Li, T. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
[Crossref]

B. Vermeersch, J.-H. Bahk, J. Christofferson, and A. Shakouri, “Thermoreflectance imaging of sub 100 ns pulsed cooling in high-speed thermoelectric microcoolers,” J. Appl. Phys. 113, 104502 (2013).
[Crossref]

J. Disp. Technol. (1)

N. Narendran and Y. Gu, “Life of LED-based white light sources,” J. Disp. Technol. 1, 167–171 (2005).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. Farzaneh, K. Maize, D. Luerssen, J. A. Summers, P. M. Mayer, P. E. Raad, K. P. Pipe, A. Shakouri, R. J. Ram, and J. A. Hudgings, “CCD-based thermoreflectance microscopy: principles and applications,” J. Phys. D: Appl. Phys. 42, 143001 (2009).
[Crossref]

Microelectron. Reliab. (1)

K. Chen and N. Narendran, “Estimating the average junction temperature of AlGaInP LED arrays by spectral analysis,” Microelectron. Reliab. 53, 701–705 (2013).
[Crossref]

Opt. Express (4)

T. Kobayashi, T. Katagiri, and Y. Matsuura, “Multi-element hollow-core anti-resonant fiber for infrared thermal imaging,” Opt. Express 24, 26565–26574 (2016).
[Crossref] [PubMed]

Y. Zhang, J. Wang, W. Zhang, S. Chen, and L. Chen, “LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes,” Opt. Express 26, 17300–17311 (2018).
[Crossref] [PubMed]

C.-M. Kang, D.-J. Kong, J.-P. Shim, S. Kim, S.-B. Choi, J.-Y. Lee, J.-H. Min, D.-J. Seo, S.-Y. Choi, and D.-S. Lee, “Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display,” Opt. Express 25, 2489–2495 (2017).
[Crossref]

B.-J. Shih, S.-C. Chiou, Y.-H. Hsieh, C.-C. Sun, T.-H. Yang, S.-Y. Chen, and T.-Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23, 33861–33869 (2015).
[Crossref]

Prog. Energy Combust. Sci. (1)

X. Luo, R. Hu, S. Liu, and K. Wang, “Heat and fluid flow in high-power LED packaging and applications,” Prog. Energy Combust. Sci. 56, 1–32 (2016).
[Crossref]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
[Crossref] [PubMed]

Sensors (1)

O. J. Joung and Y. H. Kim, “Application of an IR thermographic device for the detection of a simulated defect in a pipe,” Sensors 6, 1199–1208 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Introduction of the experimental setup.
Fig. 2
Fig. 2 Normalized spectrum of blue, green, red, and NIR LEDs.
Fig. 3
Fig. 3 (a) The TSP of blue LUT under red incident light and 2D temperature distribution under different currents of (b) 100 mA, (c) 200 mA, (d) 300 mA, (e) 400 mA, and (f) 500 mA, respectively.
Fig. 4
Fig. 4 (a) The TSP of blue LUT under NIR incident light and 2D temperature distribution under different currents of (b) 100 mA, (c) 200 mA, (d) 300 mA, (e) 400 mA, and (f) 500 mA, respectively.
Fig. 5
Fig. 5 (a) The topography of blue LUT. The temperature distribution of Line S01 on the blue LUT at different currents under the incident of (b) red light and (c) NIR light, respectively.
Fig. 6
Fig. 6 For five currents, the comparison of averaged temperature of blue LUT by μ-HIRL method with that by μ-TC method under two incident lights. The error bars represent MSE in results of μ-HIRL method from those of μ-TC method.
Fig. 7
Fig. 7 Two lines on the blue LUT of (a) μ-HIRL method, (c) TI method. Normalized temperature (TN) distribution of blue LUT, measured by μ-HIRL method and TI method, respectively. (b) Line L01, (d) Line L02. Error bars represent the MSE in results of μ-HIRL method from those of TI method.
Fig. 8
Fig. 8 (a) The TSP of green LUT under NIR incident light and 2D temperature distribution under different currents of (b) 100 mA, (c) 200 mA, (d) 300 mA, (e) 400 mA, and (f) 500 mA, respectively.
Fig. 9
Fig. 9 (a) The topography of green LUT. (b) Temperature distribution of Line S02 on the green LUT under the NIR incident light. The circles indicate some dark dots on the right side of green LUT.
Fig. 10
Fig. 10 For five currents, the comparison of averaged temperature of green LUT by μ-HIRL method with that by μ-TC method only under NIR incident lights. The error bars represent MSE in results of μ-HIRL method from those of μ-TC method.
Fig. 11
Fig. 11 Two lines on the green LUT of (a) μ-HIRL method, (c) TI method. TN distribution of green LUT, measured by μ-HIRL method and TI method, respectively. (b) Line L03, (d) Line L04. Error bars represent the MSE in results of μ-HIRL method from those of TI method.

Tables (1)

Tables Icon

Table 1 The peak wavelength of incident LED and LUT

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ( T ) R ( T 0 ) + d R d T ( T T 0 )
T s T 0 + K L [ L ( T s ) L ( T 0 ) ] = T 0 + K L Δ L
K ( i , j ) = K L h = m , n K L ( i + m , j + n ) h ( m , n )
h = ( h 11 h 12 h 1 n h 21 h 22 h 2 n h m 1 h m 2 h m n ) m × n
T s ( i , j ) = T 0 ( i , j ) + K ( i , j ) Δ L ( i , j )

Metrics