Abstract

We propose a method for measuring the full polarization states of a light field by using hybrid polarization-angular multiplexing digital holography based on geometric phase. Through acquiring the geometric phase distribution of the whole light field by only recording a composite hologram, and according to quantitative relationship between the geometric phase and polarization state, the Stokes parameters of a light field can be calculated. Compared with other methods, this method can be used to obtain the complex amplitude information of the light field simultaneously without requiring other complex devices or elements to be adjusted, thus enabling dynamic polarization state measurement. The measurement results of the light fields generated by standard polarized optical elements, vortex half-wave retarder, and liquid crystal depolarizer verified this method’s feasibility and validity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
One-shot carrier fringe polarimeter in a double-aperture common-path interferometer

Gildardo-Pablo Lemus-Alonso, Cruz Meneses-Fabian, and Rosaura Kantun-Montiel
Opt. Express 26(13) 17624-17634 (2018)

Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer

Juan Carlos G. de Sande, Massimo Santarsiero, Gemma Piquero, and Franco Gori
Opt. Express 20(25) 27348-27360 (2012)

Synthesis of highly focused fields with circular polarization at any transverse plane

David Maluenda, Rosario Martínez-Herrero, Ignasi Juvells, and Artur Carnicer
Opt. Express 22(6) 6859-6867 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. Y. Bazhenov, O. A. Kulikovskaya, and V. B. Taranenko, “Nonlinear coherent polarimetry for measuring the complex nonlinear index,” Opt. Lett. 19(6), 381–383 (1994).
    [Crossref] [PubMed]
  2. S. Ippolito, “Polarized high-resolution imaging,” Nat. Photonics 2(5), 273–274 (2008).
    [Crossref]
  3. M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
    [Crossref]
  4. P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
    [Crossref] [PubMed]
  5. H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16(12), 3200–3205 (1977).
    [Crossref] [PubMed]
  6. P. A. Williams, “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38(31), 6508–6515 (1999).
    [Crossref] [PubMed]
  7. G. E. Jellison, “Four-channel polarimeter for time-resolved ellipsometry,” Opt. Lett. 12(10), 766–768 (1987).
    [Crossref] [PubMed]
  8. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
    [Crossref] [PubMed]
  9. R. M. A. Azzam, “Rotating-detector ellipsometer for measurement of the state of polarization of light,” Opt. Lett. 10(9), 427–429 (1985).
    [Crossref] [PubMed]
  10. H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
    [Crossref]
  11. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
    [Crossref] [PubMed]
  12. H. A. Tsai and Y. L. Lo, “Phase-based method in heterodyne-modulated ellipsometer,” Appl. Phys. B 113(4), 537–542 (2013).
    [Crossref]
  13. D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
    [Crossref] [PubMed]
  14. M. Yokota, Y. Terui, and I. Yamaguchi, “Analysis of polarization state by digital holography with polarization modulation,” Opt. Rev. 13(6), 405–409 (2006).
    [Crossref]
  15. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
    [Crossref] [PubMed]
  16. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
    [Crossref] [PubMed]
  17. X. Liu, Y. Yang, L. Han, and C. S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
    [Crossref] [PubMed]
  18. T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
    [Crossref] [PubMed]
  19. S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Ind. Acad. Sci.A 44(5), 247–262 (1956).
    [Crossref]
  20. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
    [Crossref]
  21. M. V. Berry, “The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
    [Crossref]
  22. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
    [Crossref] [PubMed]
  23. T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
    [Crossref] [PubMed]
  24. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
    [Crossref] [PubMed]
  25. J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
    [Crossref] [PubMed]
  26. J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
    [Crossref] [PubMed]
  27. T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
    [Crossref] [PubMed]
  28. S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
    [Crossref]
  29. J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
    [Crossref] [PubMed]
  30. L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
    [Crossref] [PubMed]
  31. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  32. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  33. U. Schnars and W.P.O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [Crossref]
  34. B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
    [Crossref]

2018 (2)

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

2017 (5)

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

X. Liu, Y. Yang, L. Han, and C. S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

2016 (5)

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

2015 (1)

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

2013 (1)

H. A. Tsai and Y. L. Lo, “Phase-based method in heterodyne-modulated ellipsometer,” Appl. Phys. B 113(4), 537–542 (2013).
[Crossref]

2011 (1)

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

2010 (1)

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

2008 (1)

S. Ippolito, “Polarized high-resolution imaging,” Nat. Photonics 2(5), 273–274 (2008).
[Crossref]

2007 (1)

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
[Crossref] [PubMed]

2006 (1)

M. Yokota, Y. Terui, and I. Yamaguchi, “Analysis of polarization state by digital holography with polarization modulation,” Opt. Rev. 13(6), 405–409 (2006).
[Crossref]

2002 (2)

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

U. Schnars and W.P.O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

1999 (3)

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
[Crossref] [PubMed]

P. A. Williams, “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38(31), 6508–6515 (1999).
[Crossref] [PubMed]

1994 (2)

V. Y. Bazhenov, O. A. Kulikovskaya, and V. B. Taranenko, “Nonlinear coherent polarimetry for measuring the complex nonlinear index,” Opt. Lett. 19(6), 381–383 (1994).
[Crossref] [PubMed]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

1992 (1)

H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
[Crossref]

1987 (2)

G. E. Jellison, “Four-channel polarimeter for time-resolved ellipsometry,” Opt. Lett. 12(10), 766–768 (1987).
[Crossref] [PubMed]

M. V. Berry, “The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

1985 (2)

R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
[Crossref] [PubMed]

R. M. A. Azzam, “Rotating-detector ellipsometer for measurement of the state of polarization of light,” Opt. Lett. 10(9), 427–429 (1985).
[Crossref] [PubMed]

1984 (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
[Crossref]

1977 (1)

H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16(12), 3200–3205 (1977).
[Crossref] [PubMed]

1956 (1)

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Ind. Acad. Sci.A 44(5), 247–262 (1956).
[Crossref]

Alfano, R. R.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Alonso, M. A.

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

Azzam, R. M. A.

R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
[Crossref] [PubMed]

R. M. A. Azzam, “Rotating-detector ellipsometer for measurement of the state of polarization of light,” Opt. Lett. 10(9), 427–429 (1985).
[Crossref] [PubMed]

Bazhenov, V. Y.

V. Y. Bazhenov, O. A. Kulikovskaya, and V. B. Taranenko, “Nonlinear coherent polarimetry for measuring the complex nonlinear index,” Opt. Lett. 19(6), 381–383 (1994).
[Crossref] [PubMed]

Beghuin, D.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

Berry, H. G.

H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16(12), 3200–3205 (1977).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry, “The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
[Crossref]

Bevilacqua, F.

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

Buller, G. S.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Chen, M.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Chen, P.

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

Chen, X.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Cheng, H.

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

Cheng, Z. J.

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

Choi, Y.

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

Colomb, T.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

Cuche, E.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

Dahlgren, P.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

Dai, S.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

Dennis, M. R.

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

Depeursinge, C.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

Di, J.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

Edmiston, C.

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

Gabrielse, G.

H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16(12), 3200–3205 (1977).
[Crossref] [PubMed]

Garcia, M.

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

Ge, S.

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

Gerardot, B. D.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Gori, F.

F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
[Crossref] [PubMed]

Gruev, V.

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

Guo, C. S.

X. Liu, Y. Yang, L. Han, and C. S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

Gutiérrez-Cuevas, R.

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

Han, L.

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

X. Liu, Y. Yang, L. Han, and C. S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

Hassett, J.

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

Hu, W.

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

Ippolito, S.

S. Ippolito, “Polarized high-resolution imaging,” Nat. Photonics 2(5), 273–274 (2008).
[Crossref]

Javidi, B.

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
[Crossref] [PubMed]

Jellison, G. E.

G. E. Jellison, “Four-channel polarimeter for time-resolved ellipsometry,” Opt. Lett. 12(10), 766–768 (1987).
[Crossref] [PubMed]

Jüptner, W.

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

Jüptner, W.P.O.

U. Schnars and W.P.O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Kang, Y. G.

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

Kim, B.-M.

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

Kimura, H.

H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
[Crossref]

Kremer, P. E.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Kulikovskaya, O. A.

V. Y. Bazhenov, O. A. Kulikovskaya, and V. B. Taranenko, “Nonlinear coherent polarimetry for measuring the complex nonlinear index,” Opt. Lett. 19(6), 381–383 (1994).
[Crossref] [PubMed]

Kumar, S.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Lee, K. J.

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

Li, E.

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

Li, P.

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

Li, Y.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

Liu, S.

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu, Y. Yang, L. Han, and C. S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

Livingston, A. E.

H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16(12), 3200–3205 (1977).
[Crossref] [PubMed]

Lo, Y. L.

H. A. Tsai and Y. L. Lo, “Phase-based method in heterodyne-modulated ellipsometer,” Appl. Phys. B 113(4), 537–542 (2013).
[Crossref]

Lu, Y.

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

Ma, C.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

Ma, Y.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Maehara, T.

H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
[Crossref]

Malhotra, T.

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

Marinov, R.

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

Marquet, P.

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

Milione, G.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Murata, S.

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
[Crossref] [PubMed]

Namioka, T.

H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
[Crossref]

Nitanai, E.

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
[Crossref] [PubMed]

Nolan, D. A.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Nomura, T.

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
[Crossref] [PubMed]

Numata, T.

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
[Crossref] [PubMed]

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Ind. Acad. Sci.A 44(5), 247–262 (1956).
[Crossref]

Park, K.

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

Ren, X.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Schnars, U.

U. Schnars and W.P.O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

Sun, W.

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

Taghizadeh, M. R.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Taranenko, V. B.

V. Y. Bazhenov, O. A. Kulikovskaya, and V. B. Taranenko, “Nonlinear coherent polarimetry for measuring the complex nonlinear index,” Opt. Lett. 19(6), 381–383 (1994).
[Crossref] [PubMed]

Terui, Y.

M. Yokota, Y. Terui, and I. Yamaguchi, “Analysis of polarization state by digital holography with polarization modulation,” Opt. Rev. 13(6), 405–409 (2006).
[Crossref]

Tsai, H. A.

H. A. Tsai and Y. L. Lo, “Phase-based method in heterodyne-modulated ellipsometer,” Appl. Phys. B 113(4), 537–542 (2013).
[Crossref]

Vail, A.

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

Vamivakas, A. N.

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

Wang, B. Y.

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

Wei, B.

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

Wen, D.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Williams, P. A.

P. A. Williams, “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38(31), 6508–6515 (1999).
[Crossref] [PubMed]

Xi, T.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

Xie, M.

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

Yamaguchi, I.

M. Yokota, Y. Terui, and I. Yamaguchi, “Analysis of polarization state by digital holography with polarization modulation,” Opt. Rev. 13(6), 405–409 (2006).
[Crossref]

Yamamoto, M.

H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
[Crossref]

Yan, X.

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

Yanagihara, M.

H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
[Crossref]

Yang, T. D.

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

Yang, Y.

X. Liu, Y. Yang, L. Han, and C. S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

Yokota, M.

M. Yokota, Y. Terui, and I. Yamaguchi, “Analysis of polarization state by digital holography with polarization modulation,” Opt. Rev. 13(6), 405–409 (2006).
[Crossref]

Yue, F.

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

Yue, Q. Y.

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

Zhang, J.

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

Zhang, L.

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

Zhang, Y.

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

Zhao, J.

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

Appl. Opt. (5)

H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16(12), 3200–3205 (1977).
[Crossref] [PubMed]

P. A. Williams, “Rotating-wave-plate Stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38(31), 6508–6515 (1999).
[Crossref] [PubMed]

T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41(1), 27–37 (2002).
[Crossref] [PubMed]

J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
[Crossref] [PubMed]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

Appl. Phys. B (1)

H. A. Tsai and Y. L. Lo, “Phase-based method in heterodyne-modulated ellipsometer,” Appl. Phys. B 113(4), 537–542 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. Liu, L. Han, P. Li, Y. Zhang, H. Cheng, and J. Zhao, “A method for simultaneously measuring polarization and phase of arbitrarily polarized beams based on Pancharatnam-Berry phase,” Appl. Phys. Lett. 110(17), 171112 (2017).
[Crossref]

J. Mod. Opt. (1)

M. V. Berry, “The Adiabatic Phase and Pancharatnam’s Phase for Polarized Light,” J. Mod. Opt. 34(11), 1401–1407 (1987).
[Crossref]

Meas. Sci. Technol. (1)

U. Schnars and W.P.O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Nat. Photonics (1)

S. Ippolito, “Polarized high-resolution imaging,” Nat. Photonics 2(5), 273–274 (2008).
[Crossref]

Opt. Express (6)

D. Wen, F. Yue, S. Kumar, Y. Ma, M. Chen, X. Ren, P. E. Kremer, B. D. Gerardot, M. R. Taghizadeh, G. S. Buller, and X. Chen, “Metasurface for characterization of the polarization state of light,” Opt. Express 23(8), 10272–10281 (2015).
[Crossref] [PubMed]

X. Liu, Y. Yang, L. Han, and C. S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B.-M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

L. Han, Z. J. Cheng, Y. Yang, B. Y. Wang, Q. Y. Yue, and C. S. Guo, “Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration,” Opt. Express 25(18), 21877–21886 (2017).
[Crossref] [PubMed]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref] [PubMed]

T. Xi, J. Di, Y. Li, S. Dai, C. Ma, and J. Zhao, “Measurement of ultrafast combustion process of premixed ethylene/oxygen flames in narrow channel with digital holographic interferometry,” Opt. Express 26(22), 28497–28504 (2018).
[Crossref] [PubMed]

Opt. Lett. (10)

J. Zhao, X. Yan, W. Sun, and J. Di, “Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states,” Opt. Lett. 35(20), 3519–3521 (2010).
[Crossref] [PubMed]

J. Zhang, C. Ma, S. Dai, J. Di, Y. Li, T. Xi, and J. Zhao, “Transmission and total internal reflection integrated digital holographic microscopy,” Opt. Lett. 41(16), 3844–3847 (2016).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24(9), 584–586 (1999).
[Crossref] [PubMed]

T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32(5), 481–483 (2007).
[Crossref] [PubMed]

V. Y. Bazhenov, O. A. Kulikovskaya, and V. B. Taranenko, “Nonlinear coherent polarimetry for measuring the complex nonlinear index,” Opt. Lett. 19(6), 381–383 (1994).
[Crossref] [PubMed]

P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, and J. Zhao, “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205–2208 (2016).
[Crossref] [PubMed]

G. E. Jellison, “Four-channel polarimeter for time-resolved ellipsometry,” Opt. Lett. 12(10), 766–768 (1987).
[Crossref] [PubMed]

R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
[Crossref] [PubMed]

R. M. A. Azzam, “Rotating-detector ellipsometer for measurement of the state of polarization of light,” Opt. Lett. 10(9), 427–429 (1985).
[Crossref] [PubMed]

Opt. Rev. (1)

M. Yokota, Y. Terui, and I. Yamaguchi, “Analysis of polarization state by digital holography with polarization modulation,” Opt. Rev. 13(6), 405–409 (2006).
[Crossref]

Optica (1)

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4(10), 1263–1271 (2017).
[Crossref]

Photon. Res. (1)

B. Wei, P. Chen, S. Ge, L. Zhang, W. Hu, and Y. Lu, “Liquid crystal depolarizer based on photoalignment technology,” Photon. Res. 4(2), 70–73 (2016).
[Crossref]

Phys. Rev. Lett. (2)

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107(5), 053601 (2011).
[Crossref] [PubMed]

T. Malhotra, R. Gutiérrez-Cuevas, J. Hassett, M. R. Dennis, A. N. Vamivakas, and M. A. Alonso, “Measuring Geometric Phase without Interferometry,” Phys. Rev. Lett. 120(23), 233602 (2018).
[Crossref] [PubMed]

Proc. Ind. Acad. Sci.A (1)

S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Ind. Acad. Sci.A 44(5), 247–262 (1956).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802), 45–57 (1984).
[Crossref]

Rev. Sci. Instrum. (1)

H. Kimura, M. Yamamoto, M. Yanagihara, T. Maehara, and T. Namioka, “Full polarization measurement of synchrotron radiation with use of soft x-ray multilayers,” Rev. Sci. Instrum. 63(1), 1379–1382 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the proposed PAMDH system based on geometric phase. BE: beam expander; L: lens; P: polarizer; S: sample; HWP: half-wave plate; NPBS1-NPBS2: non-polarized beam splitters; PBS1-PBS2: polarized beam splitters; M1-M3: mirrors; NDF: neutral density filter; MO: microscope objective; TL: tube lens.
Fig. 2
Fig. 2 Theoretical model for measuring polarization state based on geometric phase
Fig. 3
Fig. 3 (a) Composite hologram recorded by PAMDH system and the details of hologram. (b) Spatial spectra of the hologram.
Fig. 4
Fig. 4 Measurement results of Stokes parameters. (a) Comparison of measured and theoretical value; (b) positions on the Poincare’s sphere of the measured polarization states; (c) result of 30 measurements corresponding to a linear polarization beam with θ = π/6.
Fig. 5
Fig. 5 (a) Setup for generating elliptically polarized light; (b) Positions on the Poincare’s sphere of the measured polarization states; (c) Comparison of measured and theoretical values.
Fig. 6
Fig. 6 (a) Measurement results of Stokes parameters for the first order radial vector beam. (b) The elliptical polarization distribution calculated by Stokes parameters.
Fig. 7
Fig. 7 Measurement results of Stokes parameters for the LC depolarizer. (a) Micrograph of the LC depolarizer; (b) dynamic phase distribution of the LC depolarizer; (c1) Stokes parameters distribution of linear incident polarized beam with θ = π/4; (c2) Stokes parameters distribution of left-handed circularly polarized incident beam.

Tables (1)

Tables Icon

Table 1 Measurement results of linear polarization beam with θ = π/6

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I= | E O + E RH + E RV | 2 = | E OH | 2 + | E OV | 2 + | E RH | 2 + | E RV | 2 + E OH E RH * + E OV E RV * + E OH * E RH + E OV * E RV = I H + I V ,
I H = | E OH | 2 + | E RH | 2 +2| E OH || E RH |cos φ H ,
I V = | E OV | 2 + | E RV | 2 +2| E OV || E RV |cos φ V .
I OH = | E OH | 2 = I O cos 2 ( OH /2 ),
I OV = | E OV | 2 = I O sin 2 ( OH /2 ).
2 χ 1 =π/ 2 OH =π/ 2 2arctan | E OV |/ | E OH | .
φ H = φ Hd + φ Hpb ,
φ V = φ Vd + φ Vpb .
2 ψ 1 =( φ H φ V )( φ Hd φ Vd ).
E H =β| E OH || E RH |exp( i φ H ),
E V =β| E OV || E RV |exp( i φ V ).
2 ψ 1 =arg( E H / E V )Δφ,
2 χ 1 =π/ 2 2arctan | E V |/ | E H | .
{ S 1 =sin2 χ 1 S 2 =cos2 χ 1 cos2 ψ 1 S 3 =cos2 χ 1 sin2 ψ 1 .

Metrics