Abstract

Optical wireless communication (OWC) has been presented as a promising candidate for future space-air-ground-ocean-integrated communication. However, the OWC is quite sensitive to the variation of the channel transmission characteristics. The light beam absorption and the scattering in the transmission media affect not only the channel feature, but also the imaging quality. Thus, there is an inherent relationship between the OWC performance and the optical imaging quality. Based on this consideration, we firstly present the idea of introducing computer vision mechanisms into the OWC systems, and then propose a computer vision-based multi-domain cooperative adjustment (CV-MDCA) mechanism’s functional modules to realize the intelligent adaptive transmission in OWC systems. The CV-MDCA mechanism are specifically designed, with the emphasis on how to quantitatively determine the exact on-line channel quality from the captured images by using effective computer vision schemes. Two groups of experiments, the indoor-simulated underwater visible light communication and the outdoor-practical atmospheric free-space optics, are implemented in order to evaluate the presented CV-MDCA mechanism’s performance. The results not only validate the feasibility to determine the channel quality, according to the captured channel images, but also reveal the presented three computer vision-based criteria’s limitations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Free-space optical channel characterization and experimental validation in a coastal environment

Wael G. Alheadary, Ki-Hong Park, Nasir Alfaraj, Yujian Guo, Edgars Stegenburgs, Tien Khee Ng, Boon S. Ooi, and Mohamed-Slim Alouini
Opt. Express 26(6) 6614-6628 (2018)

Studies on characterizing the transmission of RF signals over a turbulent FSO link

Pham Tien Dat, Abdemoula Bekkali, Kamugisha Kazaura, Kazuhiko Wakamori, Toshiji Suzuki, Mitsuji Matsumoto, Takeshi Higashino, Katsutoshi Tsukamoto, and Shozo Komaki
Opt. Express 17(10) 7731-7743 (2009)

Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550  nm operation

Amr S. El-Wakeel, Nazmi A. Mohammed, and Moustafa H. Aly
Appl. Opt. 55(26) 7276-7286 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
    [Crossref]
  2. Y. Ji, J. Zhang, X. Wang, and H. Yu, “Towards converged, collaborative and co-automatic (3C) optical networks,” Sci. China Inf. Sci. 61(12), 121301 (2018).
    [Crossref]
  3. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
    [Crossref]
  4. M. Z. Hassan, M. J. Hossain, J. Cheng, and V. Leung, “Adaptive transmission for coherent OWC with multiple parallel optical beams,” IEEE Photonics Technol. Lett. 30(12), 1119–1122 (2018).
    [Crossref]
  5. I. B. Djordjevic, “Adaptive modulation and coding for free-space optical channels,” J. Opt. Commun. Netw. 2(5), 221–229 (2010).
    [Crossref]
  6. B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
    [Crossref]
  7. H. Lee, I. Lee, T. Q. S. Quek, and S. H. Lee, “Binary signaling design for visible light communication: a deep learning framework,” Opt. Express 26(14), 18131–18142 (2018).
    [Crossref] [PubMed]
  8. J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
    [Crossref] [PubMed]
  9. J. P. Oakley and B. L. Satherley, “Improving image quality in poor visibility conditions using a physical model for contrast degradation,” IEEE Trans. Image Process. 7(2), 167–179 (1998).
    [Crossref] [PubMed]
  10. G. Papari and N. Petkov, “Edge and line oriented contour detection: State of the art,” Image Vis. Comput. 29(2-3), 79–103 (2011).
    [Crossref]
  11. S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
    [Crossref]
  12. Y. T. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. Image Process. 26(4), 1579–1594 (2017).
    [Crossref] [PubMed]
  13. K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
    [Crossref] [PubMed]

2019 (1)

K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
[Crossref] [PubMed]

2018 (4)

Y. Ji, J. Zhang, X. Wang, and H. Yu, “Towards converged, collaborative and co-automatic (3C) optical networks,” Sci. China Inf. Sci. 61(12), 121301 (2018).
[Crossref]

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. Leung, “Adaptive transmission for coherent OWC with multiple parallel optical beams,” IEEE Photonics Technol. Lett. 30(12), 1119–1122 (2018).
[Crossref]

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

H. Lee, I. Lee, T. Q. S. Quek, and S. H. Lee, “Binary signaling design for visible light communication: a deep learning framework,” Opt. Express 26(14), 18131–18142 (2018).
[Crossref] [PubMed]

2017 (2)

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Y. T. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. Image Process. 26(4), 1579–1594 (2017).
[Crossref] [PubMed]

2015 (1)

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

2014 (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

2011 (1)

G. Papari and N. Petkov, “Edge and line oriented contour detection: State of the art,” Image Vis. Comput. 29(2-3), 79–103 (2011).
[Crossref]

2010 (1)

I. B. Djordjevic, “Adaptive modulation and coding for free-space optical channels,” J. Opt. Commun. Netw. 2(5), 221–229 (2010).
[Crossref]

2003 (1)

S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[Crossref]

1998 (1)

J. P. Oakley and B. L. Satherley, “Improving image quality in poor visibility conditions using a physical model for contrast degradation,” IEEE Trans. Image Process. 7(2), 167–179 (1998).
[Crossref] [PubMed]

Alfalou, A.

K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
[Crossref] [PubMed]

Amer, K. O.

K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
[Crossref] [PubMed]

Bayvel, P.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Brosseau, C.

K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
[Crossref] [PubMed]

Bülow, H.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Chagnon, M.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Cheng, J.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. Leung, “Adaptive transmission for coherent OWC with multiple parallel optical beams,” IEEE Photonics Technol. Lett. 30(12), 1119–1122 (2018).
[Crossref]

Cosman, P. C.

Y. T. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. Image Process. 26(4), 1579–1594 (2017).
[Crossref] [PubMed]

Djordjevic, I. B.

I. B. Djordjevic, “Adaptive modulation and coding for free-space optical channels,” J. Opt. Commun. Netw. 2(5), 221–229 (2010).
[Crossref]

Elbouz, M.

K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
[Crossref] [PubMed]

Eriksson, T. A.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Hajjami, J.

K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
[Crossref] [PubMed]

Hassan, M. Z.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. Leung, “Adaptive transmission for coherent OWC with multiple parallel optical beams,” IEEE Photonics Technol. Lett. 30(12), 1119–1122 (2018).
[Crossref]

He, P.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Hossain, M. J.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. Leung, “Adaptive transmission for coherent OWC with multiple parallel optical beams,” IEEE Photonics Technol. Lett. 30(12), 1119–1122 (2018).
[Crossref]

Huang, M.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Huang, Z.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

Ji, Y.

Y. Ji, J. Zhang, X. Wang, and H. Yu, “Towards converged, collaborative and co-automatic (3C) optical networks,” Sci. China Inf. Sci. 61(12), 121301 (2018).
[Crossref]

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

Karanov, B.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Khalighi, M. A.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

Lavery, D.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Lee, H.

H. Lee, I. Lee, T. Q. S. Quek, and S. H. Lee, “Binary signaling design for visible light communication: a deep learning framework,” Opt. Express 26(14), 18131–18142 (2018).
[Crossref] [PubMed]

Lee, I.

H. Lee, I. Lee, T. Q. S. Quek, and S. H. Lee, “Binary signaling design for visible light communication: a deep learning framework,” Opt. Express 26(14), 18131–18142 (2018).
[Crossref] [PubMed]

Lee, S. H.

H. Lee, I. Lee, T. Q. S. Quek, and S. H. Lee, “Binary signaling design for visible light communication: a deep learning framework,” Opt. Express 26(14), 18131–18142 (2018).
[Crossref] [PubMed]

Leung, V.

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. Leung, “Adaptive transmission for coherent OWC with multiple parallel optical beams,” IEEE Photonics Technol. Lett. 30(12), 1119–1122 (2018).
[Crossref]

Li, J.

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

Li, W.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Lin, T.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Liu, X.

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

Narasimhan, S. G.

S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[Crossref]

Nayar, S. K.

S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[Crossref]

Oakley, J. P.

J. P. Oakley and B. L. Satherley, “Improving image quality in poor visibility conditions using a physical model for contrast degradation,” IEEE Trans. Image Process. 7(2), 167–179 (1998).
[Crossref] [PubMed]

Papari, G.

G. Papari and N. Petkov, “Edge and line oriented contour detection: State of the art,” Image Vis. Comput. 29(2-3), 79–103 (2011).
[Crossref]

Peng, Y. T.

Y. T. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. Image Process. 26(4), 1579–1594 (2017).
[Crossref] [PubMed]

Petkov, N.

G. Papari and N. Petkov, “Edge and line oriented contour detection: State of the art,” Image Vis. Comput. 29(2-3), 79–103 (2011).
[Crossref]

Quek, T. Q. S.

H. Lee, I. Lee, T. Q. S. Quek, and S. H. Lee, “Binary signaling design for visible light communication: a deep learning framework,” Opt. Express 26(14), 18131–18142 (2018).
[Crossref] [PubMed]

Satherley, B. L.

J. P. Oakley and B. L. Satherley, “Improving image quality in poor visibility conditions using a physical model for contrast degradation,” IEEE Trans. Image Process. 7(2), 167–179 (1998).
[Crossref] [PubMed]

Schmalen, L.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Thouin, F.

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

Uysal, M.

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

Wang, X.

Y. Ji, J. Zhang, X. Wang, and H. Yu, “Towards converged, collaborative and co-automatic (3C) optical networks,” Sci. China Inf. Sci. 61(12), 121301 (2018).
[Crossref]

Wang, Z.

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

Yu, H.

Y. Ji, J. Zhang, X. Wang, and H. Yu, “Towards converged, collaborative and co-automatic (3C) optical networks,” Sci. China Inf. Sci. 61(12), 121301 (2018).
[Crossref]

Zhang, J.

Y. Ji, J. Zhang, X. Wang, and H. Yu, “Towards converged, collaborative and co-automatic (3C) optical networks,” Sci. China Inf. Sci. 61(12), 121301 (2018).
[Crossref]

IEEE Comm. Surv. and Tutor. (1)

M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Comm. Surv. and Tutor. 16(4), 2231–2258 (2014).
[Crossref]

IEEE Photonics J. (1)

Z. Huang, Z. Wang, M. Huang, W. Li, T. Lin, P. He, and Y. Ji, “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photonics J. 9(2), 1 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Z. Hassan, M. J. Hossain, J. Cheng, and V. Leung, “Adaptive transmission for coherent OWC with multiple parallel optical beams,” IEEE Photonics Technol. Lett. 30(12), 1119–1122 (2018).
[Crossref]

IEEE Trans. Image Process. (2)

J. P. Oakley and B. L. Satherley, “Improving image quality in poor visibility conditions using a physical model for contrast degradation,” IEEE Trans. Image Process. 7(2), 167–179 (1998).
[Crossref] [PubMed]

Y. T. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. Image Process. 26(4), 1579–1594 (2017).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded images,” IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003).
[Crossref]

Image Vis. Comput. (1)

G. Papari and N. Petkov, “Edge and line oriented contour detection: State of the art,” Image Vis. Comput. 29(2-3), 79–103 (2011).
[Crossref]

J. Lightw. Tech. (1)

B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lavery, P. Bayvel, and L. Schmalen, “End-to-end deep learning of optical fiber communications,” J. Lightw. Tech. 36(20), 4843–4855 (2018).
[Crossref]

J. Opt. Commun. Netw. (1)

I. B. Djordjevic, “Adaptive modulation and coding for free-space optical channels,” J. Opt. Commun. Netw. 2(5), 221–229 (2010).
[Crossref]

Opt. Express (3)

H. Lee, I. Lee, T. Q. S. Quek, and S. H. Lee, “Binary signaling design for visible light communication: a deep learning framework,” Opt. Express 26(14), 18131–18142 (2018).
[Crossref] [PubMed]

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
[Crossref] [PubMed]

Sci. China Inf. Sci. (1)

Y. Ji, J. Zhang, X. Wang, and H. Yu, “Towards converged, collaborative and co-automatic (3C) optical networks,” Sci. China Inf. Sci. 61(12), 121301 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Block diagram of the CV-MDCA mechanism.
Fig. 2
Fig. 2 Block diagram and experiment setup for indoor simulated visible light communication.
Fig. 3
Fig. 3 Captured channel images and the edge detection results for indoor simulated underwater VLC.
Fig. 4
Fig. 4 (a) Underwater VLC system BER in different impurity concentration; (b) Variation curves of normalized image parameters in different impurity concentration.
Fig. 5
Fig. 5 Captured channel images and the edge detection results for outdoor atmospheric FSO.
Fig. 6
Fig. 6 (a) Atmospheric FSO system BER in different weather cases; (b) Variation curves of normalized image parameters in different weather cases.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V= I max - I min I max + I min
I R =O e βd +E( 1 e βd )
β= 1 d ln( OE I R E )

Metrics