Abstract

A high-speed refractive index sensing system based on the Fourier domain mode locked laser (FDML) and a microfiber Bragg grating (mFBG) is theoretically studied and experimentally demonstrated. Unlike traditional physical parameter sensing systems, which directly use the FDML as the wavelength scanning source and the optical sensor as the spectra shaping component, we inserted an mFBG into the FDML cavity in order to generate time domain pulse signals used for sensing. The wavelength shift in optical frequency domain is converted into time domain pulse drift. The sensitivity of the proposed refractive index (RI) sensing system is improved by two orders of magnitude, compared with the wavelength monitoring method. The scanning speed is as high as 43 kHz. Moreover, the sensitivity curve can be adjusted by tuning the direct current voltage. The nonlinear sensitivity and linear sensitivity with RI can be achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber Fabry–Perot interferometer fabricated by taper-drawing technique and its application as a radio frequency interrogated refractive index sensor

Jiejun Zhang, Qizhen Sun, Ruibing Liang, Jianghai Wo, Deming Liu, and Perry Shum
Opt. Lett. 37(14) 2925-2927 (2012)

Spectrum interrogation of fiber acoustic sensor based on self-fitting and differential method

Xin Fu, Ping Lu, Wenjun Ni, Hao Liao, Shun Wang, Deming Liu, and Jiangshan Zhang
Opt. Express 25(4) 4429-4437 (2017)

Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection

Ming Han, Tongqing Liu, Lingling Hu, and Qi Zhang
Opt. Express 21(24) 29269-29276 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, 2nd Edition, CRC Press (2008).
  2. M. E. Lippman, Harrison’s Principles of Internal Medicine, McGraw-Hill, Medical Publishing Division (2008).
  3. L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
    [Crossref] [PubMed]
  4. J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
    [Crossref] [PubMed]
  5. J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
    [Crossref] [PubMed]
  6. Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
    [Crossref] [PubMed]
  7. N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
    [Crossref] [PubMed]
  8. T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
    [Crossref] [PubMed]
  9. L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
    [Crossref]
  10. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).
  11. Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
    [Crossref] [PubMed]
  12. N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
    [Crossref] [PubMed]
  13. W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
    [Crossref] [PubMed]
  14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  15. H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
    [Crossref]
  16. J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
    [Crossref]
  17. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
    [PubMed]
  18. X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
    [Crossref] [PubMed]
  19. FFP-TF2 Fiber Fabry-Perot Tunable Filter Technical Reference, [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2016/08/Fiber-Fabry-Perot-Tunable-Filter-Technical-Reference.pdf
  20. F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
    [Crossref] [PubMed]
  21. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
    [Crossref] [PubMed]

2018 (3)

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
[Crossref] [PubMed]

2017 (3)

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

2016 (1)

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

2015 (2)

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
[Crossref]

2014 (2)

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

2013 (1)

F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
[Crossref] [PubMed]

2012 (1)

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[Crossref] [PubMed]

2008 (1)

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

2006 (1)

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Aissaoui, N.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Aksimentiev, A.

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

Bao, X.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[Crossref] [PubMed]

Bergaoui, L.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Boujday, S.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Cai, L.

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Cao, Y.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

Chen, L.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[Crossref] [PubMed]

Chen, Z.

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Eom, T. J.

H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
[Crossref]

Feng, X.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
[Crossref] [PubMed]

Fujimoto, J. G.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

Gao, S.

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Guan, B. O.

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Guan, B.-O.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Guo, T.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

Harris, E.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[Crossref] [PubMed]

Hou, Y.

X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
[Crossref] [PubMed]

Huang, Y.

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Huang, Y.-Y.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Huber, R.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

Jeon, M. Y.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Jeong, M. Y.

H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
[Crossref]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Jin, L.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Jung, E. J.

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Jung, W.

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Kim, C. S.

H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
[Crossref]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Kim, G. H.

H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
[Crossref]

Kim, M. K.

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Ko, M. O.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Kwon, Y. S.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Lambert, J. F.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Landoulsi, J.

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Lee, H. D.

H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
[Crossref]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Li, F.

F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
[Crossref] [PubMed]

Li, J.

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Li, M.

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

Li, X. G.

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Li, Y.

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[Crossref] [PubMed]

Li, Z.

X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
[Crossref] [PubMed]

Liang, L.-L.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Liang, X.

X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
[Crossref] [PubMed]

Liang, Y.

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

Liu, B.

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

Liu, T.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Park, J.

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Ran, Y.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Shen, P.

X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
[Crossref] [PubMed]

Shi, L.

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

Si, W.

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

Sun, D.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

Sun, L. P.

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Sun, L.-P.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Tan, Y. N.

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

Wai, P. K. A.

F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
[Crossref] [PubMed]

Wang, H.

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

Wang, X.

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

Wang, Y.

X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
[Crossref] [PubMed]

Wojtkowski, M.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

Xiao, P.

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

Xu, X.

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

Yuan, S.

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

Zhang, A.

F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
[Crossref] [PubMed]

Zhang, X.

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

Zhao, Y.

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Zhu, S.

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

ACS Nano (1)

W. Si and A. Aksimentiev, “Nanopore sensing of protein folding,” ACS Nano 11(7), 7091–7100 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Opt. 86(15), 151122 (2005).

X. Liang, Z. Li, Y. Wang, Y. Hou, and P. Shen, “Delay-disorder fiber Bragg grating recognition and calibration method for a Fourier domain mode-locked wavelength-swept laser-based interrogation system,” Appl. Opt. 57(28), 8148–8153 (2018).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

T. Liu, L.-L. Liang, P. Xiao, L.-P. Sun, Y.-Y. Huang, Y. Ran, L. Jin, and B.-O. Guan, “A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating,” Biosens. Bioelectron. 100, 155–160 (2018).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

H. D. Lee, G. H. Kim, T. J. Eom, M. Y. Jeong, and C. S. Kim, “Linearized wavelength interrogation system of fiber Bragg grating strain sensor based on wavelength-swept active mode locking fiber laser,” J. Lightwave Technol. 33(12), 2617–2622 (2015).
[Crossref]

Langmuir (1)

N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert, and S. Boujday, “Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption,” Langmuir 28(1), 656–665 (2012).
[Crossref] [PubMed]

Opt. Express (9)

Y. Cao, T. Guo, X. Wang, D. Sun, Y. Ran, X. Feng, and B. O. Guan, “Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation,” Opt. Express 23(21), 27061–27070 (2015).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

J. Li, H. Wang, L. P. Sun, Y. Huang, L. Jin, and B. O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref] [PubMed]

J. Li, B. Liu, L. P. Sun, Y. Liang, M. Li, and B. O. Guan, “Study of lateral-drilled DBR fiber laser and its responsivity to external refractive index,” Opt. Express 24(9), 9473–9479 (2016).
[Crossref] [PubMed]

Y. Li, E. Harris, L. Chen, and X. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Opt. Express 18(8), 8135–8143 (2010).
[Crossref] [PubMed]

N. Liu, L. Shi, S. Zhu, X. Xu, S. Yuan, and X. Zhang, “Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing,” Opt. Express 26(1), 195–203 (2018).
[Crossref] [PubMed]

F. Li, A. Zhang, X. Feng, and P. K. A. Wai, “Frequency synchronization of Fourier domain harmonically mode locked fiber laser by monitoring the supermode noise peaks,” Opt. Express 21(25), 30255–30265 (2013).
[Crossref] [PubMed]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, “193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing,” Opt. Express 19(19), 18577–18583 (2011).
[Crossref] [PubMed]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

Opt. Fiber Technol. (1)

J. Park, Y. S. Kwon, M. O. Ko, and M. Y. Jeon, “Dynamic fiber Bragg grating strain sensor interrogation with real-time measurement,” Opt. Fiber Technol. 38, 147–153 (2017).
[Crossref]

Opt. Lett. (1)

L. P. Sun, J. Li, S. Gao, L. Jin, Y. Ran, and B. O. Guan, “Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing,” Opt. Lett. 39(12), 3531–3534 (2014).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

L. Cai, Y. Zhao, and X. G. Li, “A fiber ring cavity laser sensor for refractive index and temperature measurement with core-offset modal interferometer as tunable filter,” Sens. Actuators B Chem. 242, 673–678 (2017).
[Crossref]

Other (3)

S. Yin, P. B. Ruffin, and F. T. S. Yu, Fiber Optic Sensors, 2nd Edition, CRC Press (2008).

M. E. Lippman, Harrison’s Principles of Internal Medicine, McGraw-Hill, Medical Publishing Division (2008).

FFP-TF2 Fiber Fabry-Perot Tunable Filter Technical Reference, [Online]. Available: http://www.micronoptics.com/wp-content/uploads/2016/08/Fiber-Fabry-Perot-Tunable-Filter-Technical-Reference.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental set up of the FDML based RI sensing system.
Fig. 2
Fig. 2 (a)The optical reflective spectra of the mFBG measured in air (red line) and in water (blue line). (b) The CW laser optical spectra with the mFBG integrated in the cavity (red line: mFBG in air, blue line: mFBG in water).
Fig. 3
Fig. 3 (a) The optical spectra of the FDML output when the mFBG is inside the cavity (the blue curve) and the mFBG is outside the cavity (the red curve). (b) The waveforms of pulse in time domain when the mFBG is inside the cavity (the blue curve) and the mFBG is outside the cavity (the red curve).
Fig. 4
Fig. 4 (a) The sensing curve of the wavelength demodulation method (the red circles are the experimental results and the black line is the fitting line). (b) The sensing curve of the time domain demodulation method (the blue triangles are the experimental results and the black line is the fitting line).
Fig. 5
Fig. 5 The driving voltage versus time curve (blue line) and the FDML wavelength versus pulse peak time (red triangles for the forward pulse and red inverted triangles for the backward triangle).
Fig. 6
Fig. 6 (a) The simulated RI sensing data (red markers) and fitting curves (blue lines) under different DC voltages. (b) The experiment results and the fitting curve (blue line) when DC voltage is 5.394 V.

Tables (1)

Tables Icon

Table 1 RI Sensing Resolution Comparison and Speed Comparison between Optical Wavelength Monitoring and FDML Forward Pulse Monitoring for Ambient RIa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V(t)=0.5 V pp sin(2π f d t)+ V DC
λ(t)=AV(t)+ λ 0
λ(t)=A(0.5 V pp sin(2π f d t)+ V DC )+ λ 0 =Δλ( V pp , f d ) sin(2π f d t)+ λ c ( V DC )
f cav = c n core L
t p =arcsin(( λ s λ c )/Δλ)/2π f d
r λ = dλ dn 1 R OSA
r t = d(arcsin(( λ s λ c )/Δλ)/2π f d ) dn 1 R OSA = d(arcsin(( λ s λ c )/Δλ)/2π f d ) dλ dλ dn 1 R Oscilloscope

Metrics