Abstract

We experimentally demonstrate speckle noise reduction and beam wander mitigation by using a rotating diamond/KBr pellet and a multimode fiber (MMF). As the diamond/KBr diffuser is rotated, the reflected speckle images that are captured by an infrared camera are temporally averaged. We demonstrate 78% speckle noise reduction by averaging 25 frames, which is within 80% of the theoretical contrast reduction. Large beam position fluctuations are also significantly suppressed by adding the MMF. This combination of beam wander mitigation and speckle reduction offers significant benefits for emerging optical technologies that use quantum cascade lasers as illumination sources.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly parallel, interferometric diffusing wave spectroscopy for monitoring cerebral blood flow dynamics

Wenjun Zhou, Oybek Kholiqov, Shau Poh Chong, and Vivek J. Srinivasan
Optica 5(5) 518-527 (2018)

Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity

Dalip Singh Mehta, Dinesh N. Naik, Rakesh Kumar Singh, and Mitsuo Takeda
Appl. Opt. 51(12) 1894-1904 (2012)

Acousto-optic control of speckle contrast in multimode fibers with a cylindrical piezoelectric transducer oscillating in the radial direction

Woosung Ha, Sejin Lee, Yongmin Jung, Jun Ki Kim, and Kyunghwan Oh
Opt. Express 17(20) 17536-17546 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
    [Crossref] [PubMed]
  2. R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
    [Crossref]
  3. F. Fuchs, B. Hinkov, S. Hugger, J. M. Kaster, R. Aidam, W. Bronner, K. Köhler, Q. Yang, S. Rademacher, K. Degreif, F. Schnürer, and W. Schweikert, “Imaging stand-off detection of explosives using tunable MIR quantum cascade lasers,” in Quantum Sensing and Nanophotonic Devices VII (Vol. 7608, p. 760809) (2010).
  4. M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
    [Crossref] [PubMed]
  5. R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
    [Crossref]
  6. A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
    [Crossref] [PubMed]
  7. T. Tschudi, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39(6), 1659–1664 (2000).
    [Crossref]
  8. G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
    [Crossref] [PubMed]
  9. W. F. Hsu and C. F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
    [Crossref] [PubMed]
  10. C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
    [Crossref] [PubMed]
  11. G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, “A quantitative Approach to Speckle Reduction via Frequency Compounding,” Ultrason. Imaging 8(3), 151–164 (1986).
    [Crossref] [PubMed]
  12. D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
    [Crossref] [PubMed]
  13. A. Efimov, “Coherence and speckle contrast at the output of a stationary multimode optical fiber,” Opt. Lett. 43(19), 4767–4770 (2018).
    [Crossref] [PubMed]
  14. B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
    [Crossref] [PubMed]
  15. R. Furstenberg, C. A. Kendziora, C. J. Breshike, V. Nguyen, and R. A. McGill, “Laser speckle reduction techniques for mid-infrared microscopy and stand-off spectroscopy. in Next-Generation Spectroscopic Technologies X (Vol. 10210, p. 1021004) (2017).
  16. S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
    [Crossref] [PubMed]
  17. G. Li, Y. Qiu, and H. Li, “Coherence theory of a laser beam passing through a moving diffuser,” Opt. Express 21(11), 13032–13039 (2013).
    [Crossref] [PubMed]
  18. J. Lehtolahti, M. Kuittinen, J. Turunen, and J. Tervo, “Coherence modulation by deterministic rotating diffusers,” Opt. Express 23(8), 10453–10466 (2015).
    [Crossref] [PubMed]
  19. B. Hinkov, F. Fuchs, J. M. Kaster, Q. Yang, W. Bronner, R. Aidam, and K. Köhler, “Broad band tunable quantum cascade lasers for stand-off detection of explosives,” in J. C. Carrano and C. J. Collins, eds. (International Society for Optics and Photonics), Vol. 7484, p. 748406 (2009).
  20. T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
    [Crossref]
  21. C. J. Breshike, C. A. Kendziora, R. Furstenberg, V. Nguyen, and R. A. McGill, ” “Stabilizing infrared quantum cascade laser beams for standoff detection applications.” in Quantum Sensing and Nano Electronics and Photonics XIV, vol. 10111, p. 101110B. (2017).
  22. R. Müller, C. A. Kendziora, and R. Furstenberg, “Feedback stabilization of quantum cascade laser beams for stand-off applications,” in In Micro-and Nanotechnology Sensors. Systems, and Applications IX 10194, 101942U (2017).
  23. R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Characterization and control of tunable quantum cascade laser beam parameters for stand-off spectroscopy,” in Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII (Vol. 9824, p. 98240L) (2016).
  24. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

2018 (2)

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

A. Efimov, “Coherence and speckle contrast at the output of a stationary multimode optical fiber,” Opt. Lett. 43(19), 4767–4770 (2018).
[Crossref] [PubMed]

2017 (1)

R. Müller, C. A. Kendziora, and R. Furstenberg, “Feedback stabilization of quantum cascade laser beams for stand-off applications,” in In Micro-and Nanotechnology Sensors. Systems, and Applications IX 10194, 101942U (2017).

2016 (1)

C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
[Crossref] [PubMed]

2015 (3)

J. Lehtolahti, M. Kuittinen, J. Turunen, and J. Tervo, “Coherence modulation by deterministic rotating diffusers,” Opt. Express 23(8), 10453–10466 (2015).
[Crossref] [PubMed]

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

2014 (1)

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

2013 (2)

G. Li, Y. Qiu, and H. Li, “Coherence theory of a laser beam passing through a moving diffuser,” Opt. Express 21(11), 13032–13039 (2013).
[Crossref] [PubMed]

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref] [PubMed]

2012 (2)

D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref] [PubMed]

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
[Crossref]

2011 (1)

W. F. Hsu and C. F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
[Crossref] [PubMed]

2010 (2)

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
[Crossref] [PubMed]

2008 (1)

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

2000 (1)

T. Tschudi, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39(6), 1659–1664 (2000).
[Crossref]

1986 (1)

G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, “A quantitative Approach to Speckle Reduction via Frequency Compounding,” Ultrason. Imaging 8(3), 151–164 (1986).
[Crossref] [PubMed]

Akram, M. N.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

Allen, G.

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref] [PubMed]

Allison, J. W.

G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, “A quantitative Approach to Speckle Reduction via Frequency Compounding,” Ultrason. Imaging 8(3), 151–164 (1986).
[Crossref] [PubMed]

Andrew McGill, R.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

Azimi, M.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Blanchard, R.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Boas, D. A.

C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
[Crossref] [PubMed]

Byers, J.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

Cao, H.

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref] [PubMed]

Chen, P.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Chen, X.

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

Clewes, R. J.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Diehl, L.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Dufresne, E. R.

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref] [PubMed]

Efimov, A.

A. Efimov, “Coherence and speckle contrast at the output of a stationary multimode optical fiber,” Opt. Lett. 43(19), 4767–4770 (2018).
[Crossref] [PubMed]

Ekwinska, M.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Fischl, B.

C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
[Crossref] [PubMed]

Furstenberg, R.

R. Müller, C. A. Kendziora, and R. Furstenberg, “Feedback stabilization of quantum cascade laser beams for stand-off applications,” in In Micro-and Nanotechnology Sensors. Systems, and Applications IX 10194, 101942U (2017).

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
[Crossref]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Goodman, J. W.

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
[Crossref] [PubMed]

Halvorsen, E.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Hasenkampf, A.

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

Howle, C. R.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Hsu, W. F.

W. F. Hsu and C. F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
[Crossref] [PubMed]

Hubler, G. K.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Kalicinski, S.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Kartashov, V.

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

Kaur, S.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Kendziora, C. A.

R. Müller, C. A. Kendziora, and R. Furstenberg, “Feedback stabilization of quantum cascade laser beams for stand-off applications,” in In Micro-and Nanotechnology Sensors. Systems, and Applications IX 10194, 101942U (2017).

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
[Crossref]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Krishnamurthy, K.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Kröger, N.

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

Kubota, S.

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
[Crossref] [PubMed]

Kuittinen, M.

J. Lehtolahti, M. Kuittinen, J. Turunen, and J. Tervo, “Coherence modulation by deterministic rotating diffusers,” Opt. Express 23(8), 10453–10466 (2015).
[Crossref] [PubMed]

Le, C.-P.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Lee, L.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Lehtolahti, J.

J. Lehtolahti, M. Kuittinen, J. Turunen, and J. Tervo, “Coherence modulation by deterministic rotating diffusers,” Opt. Express 23(8), 10453–10466 (2015).
[Crossref] [PubMed]

Li, B.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Li, G.

G. Li, Y. Qiu, and H. Li, “Coherence theory of a laser beam passing through a moving diffuser,” Opt. Express 21(11), 13032–13039 (2013).
[Crossref] [PubMed]

Li, H.

G. Li, Y. Qiu, and H. Li, “Coherence theory of a laser beam passing through a moving diffuser,” Opt. Express 21(11), 13032–13039 (2013).
[Crossref] [PubMed]

Magnain, C.

C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
[Crossref] [PubMed]

McGill, R. A.

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
[Crossref]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Mehta, D. S.

D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref] [PubMed]

Müller, R.

R. Müller, C. A. Kendziora, and R. Furstenberg, “Feedback stabilization of quantum cascade laser beams for stand-off applications,” in In Micro-and Nanotechnology Sensors. Systems, and Applications IX 10194, 101942U (2017).

Naik, D. N.

D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref] [PubMed]

Nguyen, V.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
[Crossref]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Ouyang, G.

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

Papantonakis, M.

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

Papantonakis, M. R.

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
[Crossref]

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Pein, B. C.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Petrich, W.

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

Pfluegl, C.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Pucci, A.

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

Qiu, Y.

G. Li, Y. Qiu, and H. Li, “Coherence theory of a laser beam passing through a moving diffuser,” Opt. Express 21(11), 13032–13039 (2013).
[Crossref] [PubMed]

Rake, M.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Redding, B.

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref] [PubMed]

Sakadžic, S.

C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
[Crossref] [PubMed]

Schönhals, A.

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

Singh, R. K.

D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref] [PubMed]

Smith, S. W.

G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, “A quantitative Approach to Speckle Reduction via Frequency Compounding,” Ultrason. Imaging 8(3), 151–164 (1986).
[Crossref] [PubMed]

Stepnowski, J.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Stepnowski, S. V.

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

Subramaniam, S.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Takeda, M.

D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref] [PubMed]

Tervo, J.

J. Lehtolahti, M. Kuittinen, J. Turunen, and J. Tervo, “Coherence modulation by deterministic rotating diffusers,” Opt. Express 23(8), 10453–10466 (2015).
[Crossref] [PubMed]

Tong, Z.

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

Trahey, G. E.

G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, “A quantitative Approach to Speckle Reduction via Frequency Compounding,” Ultrason. Imaging 8(3), 151–164 (1986).
[Crossref] [PubMed]

Tran, T.-K.-T.

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Tschudi, T.

T. Tschudi, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39(6), 1659–1664 (2000).
[Crossref]

Turunen, J.

J. Lehtolahti, M. Kuittinen, J. Turunen, and J. Tervo, “Coherence modulation by deterministic rotating diffusers,” Opt. Express 23(8), 10453–10466 (2015).
[Crossref] [PubMed]

Ulu, G.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Vakhshoori, D.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Vander Rhodes, G.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

von Ramm, O. T.

G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, “A quantitative Approach to Speckle Reduction via Frequency Compounding,” Ultrason. Imaging 8(3), 151–164 (1986).
[Crossref] [PubMed]

Wang, H.

C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
[Crossref] [PubMed]

Wang, K.

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

Williams, B.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Witinski, M. F.

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

Yan, X.

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

Yeh, C. F.

W. F. Hsu and C. F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
[Crossref] [PubMed]

Appl. Opt. (5)

C. A. Kendziora, R. Furstenberg, M. Papantonakis, V. Nguyen, J. Byers, and R. Andrew McGill, “Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces,” Appl. Opt. 54(31), F129–F138 (2015).
[Crossref] [PubMed]

W. F. Hsu and C. F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
[Crossref] [PubMed]

D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, “Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,” Appl. Opt. 51(12), 1894–1904 (2012).
[Crossref] [PubMed]

B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52(6), 1168–1172 (2013).
[Crossref] [PubMed]

S. Kubota and J. W. Goodman, “Very efficient speckle contrast reduction realized by moving diffuser device,” Appl. Opt. 49(23), 4385–4391 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).
[Crossref]

in In Micro-and Nanotechnology Sensors. Systems, and Applications IX (1)

R. Müller, C. A. Kendziora, and R. Furstenberg, “Feedback stabilization of quantum cascade laser beams for stand-off applications,” in In Micro-and Nanotechnology Sensors. Systems, and Applications IX 10194, 101942U (2017).

J. Microelectromech. Syst. (1)

T.-K.-T. Tran, S. Subramaniam, C.-P. Le, S. Kaur, S. Kalicinski, M. Ekwinska, E. Halvorsen, and M. N. Akram, “Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction,” J. Microelectromech. Syst. 23(1), 117–127 (2014).
[Crossref]

Opt. Eng. (1)

T. Tschudi, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39(6), 1659–1664 (2000).
[Crossref]

Opt. Express (4)

M. F. Witinski, R. Blanchard, C. Pfluegl, L. Diehl, B. Li, K. Krishnamurthy, B. C. Pein, M. Azimi, P. Chen, G. Ulu, G. Vander Rhodes, C. R. Howle, L. Lee, R. J. Clewes, B. Williams, and D. Vakhshoori, “Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm,” Opt. Express 26(9), 12159–12168 (2018).
[Crossref] [PubMed]

G. Li, Y. Qiu, and H. Li, “Coherence theory of a laser beam passing through a moving diffuser,” Opt. Express 21(11), 13032–13039 (2013).
[Crossref] [PubMed]

J. Lehtolahti, M. Kuittinen, J. Turunen, and J. Tervo, “Coherence modulation by deterministic rotating diffusers,” Opt. Express 23(8), 10453–10466 (2015).
[Crossref] [PubMed]

A. Hasenkampf, N. Kröger, A. Schönhals, W. Petrich, and A. Pucci, “Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser,” Opt. Express 23(5), 5670–5680 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

A. Efimov, “Coherence and speckle contrast at the output of a stationary multimode optical fiber,” Opt. Lett. 43(19), 4767–4770 (2018).
[Crossref] [PubMed]

G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35(17), 2852–2854 (2010).
[Crossref] [PubMed]

C. Magnain, H. Wang, S. Sakadžić, B. Fischl, and D. A. Boas, “En face speckle reduction in optical coherence microscopy by frequency compounding,” Opt. Lett. 41(9), 1925–1928 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Chemical imaging using infrared photothermal microspectroscopy,” Proc. SPIE 8374, 837411 (2012).
[Crossref]

Ultrason. Imaging (1)

G. E. Trahey, J. W. Allison, S. W. Smith, and O. T. von Ramm, “A quantitative Approach to Speckle Reduction via Frequency Compounding,” Ultrason. Imaging 8(3), 151–164 (1986).
[Crossref] [PubMed]

Other (6)

F. Fuchs, B. Hinkov, S. Hugger, J. M. Kaster, R. Aidam, W. Bronner, K. Köhler, Q. Yang, S. Rademacher, K. Degreif, F. Schnürer, and W. Schweikert, “Imaging stand-off detection of explosives using tunable MIR quantum cascade lasers,” in Quantum Sensing and Nanophotonic Devices VII (Vol. 7608, p. 760809) (2010).

R. Furstenberg, C. A. Kendziora, C. J. Breshike, V. Nguyen, and R. A. McGill, “Laser speckle reduction techniques for mid-infrared microscopy and stand-off spectroscopy. in Next-Generation Spectroscopic Technologies X (Vol. 10210, p. 1021004) (2017).

B. Hinkov, F. Fuchs, J. M. Kaster, Q. Yang, W. Bronner, R. Aidam, and K. Köhler, “Broad band tunable quantum cascade lasers for stand-off detection of explosives,” in J. C. Carrano and C. J. Collins, eds. (International Society for Optics and Photonics), Vol. 7484, p. 748406 (2009).

C. J. Breshike, C. A. Kendziora, R. Furstenberg, V. Nguyen, and R. A. McGill, ” “Stabilizing infrared quantum cascade laser beams for standoff detection applications.” in Quantum Sensing and Nano Electronics and Photonics XIV, vol. 10111, p. 101110B. (2017).

R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. A. McGill, “Characterization and control of tunable quantum cascade laser beam parameters for stand-off spectroscopy,” in Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII (Vol. 9824, p. 98240L) (2016).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical images of diamond/KBr pellets (a) 1% (wt) diamond (20 − 30 μm) / 99% (wt) KBr pellet and (b) 2% (wt) diamond (20 − 30 μm)/98% (wt) KBr pellet. (c) FTIR transmittance spectra for KBr pellet and 6 different diamond/KBr pellets with 1-3% (wt) loading level of diamond of two diamond size (20 − 30 μm, 4 − 6 μm) powders.
Fig. 2
Fig. 2 Schematics of the (a) free beam path and (b) de-speckle measurement setup. A tunable QCL (Daylight Solutions “MIRcat-QT”) is employed as the active illumination source. The laser light transmitted through either free beam path or de-speckle unit (multimode fiber and diamond/KBr diffuser) illuminates an Infragold disk, and the diffusely reflected light is collected by an IR camera for the characterization of speckle noise.
Fig. 3
Fig. 3 Captured images with (a) no diffuser, (b) a stationary diffuser and (c) a rotating diffuser (1% mass loading level of 20 − 30 μm diamond). (g) Line profiles extracted from the dashed lines in the images show speckle intensity fluctuation. The intensities of the line profiles marked “No diffuser” are normalized for comparison. (d – f) 2D fast Fourier transform (FFT) filtered images of the raw captured images. (h) Line profiles extracted from the dashed lines in the 2D FFT filtered images show reduced signal noise levels. All scale bars in the captured images are 2 mm. The laser wavelength is 9 μm. The average power of the laser is 400 mW.
Fig. 4
Fig. 4 The reduction of speckle contrast C extracted from speckle images as a function of the number of averaged frames with no diffuser, with a stationary, and three rotating diamond/KBr diffusers of different diamond mass loading levels (1 to 3%). The orange line represents the theoretical reduction of speckle contrast. The reduction of speckle contrast C extracted from speckle images with 2D FFT filtering (red star) as a function of the number of averaged frames using a rotating diamond/KBr diffuser (1% of 20 − 30 μm). The speckle contrast values extracted from 2D FFT filtered images are in better agreement with the theoretical reduction of speckle contrast (orange line).
Fig. 5
Fig. 5 (a) Beam centroid (X and Y), (b) Beam widths (X and Y). (c) Ratio (R) of beam centroid to beam width.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C= σ d I d
C 1 M
σ T = σ N 2 + σ S 2

Metrics